Zhi-Hong Sun

A criterion for polynomials to be congruent to the product of linear polynomials $(\bmod p)$,
Fibonacci Quart. 44 (2006), no. 4, 326-329.
Abstract Let $\left\{u_{n}\right\}$ be defined by $u_{1-m}=\cdots=u_{-1}=0, u_{0}=1$ and $u_{n}+a_{1} u_{n-1}+\cdots+a_{m} u_{n-m}=0(m \geq 2, n \geq 1)$. In this paper we show that the congruence $x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \equiv 0(\bmod p)$ has m distinct solutions if and only if $u_{p-m} \equiv \cdots \equiv u_{p-2} \equiv 0(\bmod p)$ and $u_{p-1} \equiv 1(\bmod p)$, where p is a prime such that $p>m$ and $p \nmid a_{m}$.

