H. W. Gould and Jocelyn Quaintance

Products of numbers which obey a Fibonacci-type recurrence, Fibonacci Quart. 45 (2007), no. 4, 337-346.

Abstract

Let

$$
\begin{align*}
& Q_{r}(n)=G_{n+1} G_{n+2} \cdots G_{n+r} \tag{0.1}\\
& \hat{Q}_{r}(n)=J_{n+1} J_{n+2} \cdots J_{n+r} \tag{0.2}
\end{align*}
$$

where, for various non-zero constants a, b, and c, one defines

$$
\begin{align*}
G_{m} & =a G_{m-1}+b G_{m-2} \tag{0.3}\\
J_{m} & =a J_{m-1}+b J_{m-2}+c J_{m-3} .
\end{align*}
$$

Through repeated iterations, one can show that

$$
\begin{align*}
& Q_{r}(n)=\sum_{j=1}^{r} R_{j}^{r}(a, b) G_{n+1}^{r+1-j} G_{n}^{j-1} \tag{0.5}\\
& \hat{Q}_{r}(n)=\sum_{p=1}^{r-1} \sum_{q=1}^{r-p} R_{p, q}^{r}(a, b, c) J_{n+2}^{p} J_{n+1}^{q} J_{n}^{r-p-q} \tag{0.6}
\end{align*}
$$

where the $R_{j}^{r}(a, b)$ and $R_{p, q}^{r}(a, b, c)$ are polynomials that obey a recurrence relation. This recurrence relation is a sum whose terms are binomial coefficients times monomials $a^{l} b^{k}$ for (0.5) or binomial coefficients times monomials $a^{l} b^{k} c^{s}$ for (0.6).

