John Greene
The Unboundedness of a Family of Difference Equations Over the Integers,
Fibonacci Quart. 46/47 (2008/2009), no. 2, 146-152.

Abstract

In this paper, we prove that positive integer solutions $\left\{a_{n}\right\}$ to

$$
a_{n}= \begin{cases}\frac{c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}}{d}, & \text { if } d \mid c_{1} a_{n-1}+\cdots+c_{k} a_{n-k} \\ c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}, & \text { otherwise }\end{cases}
$$

where the c 's are nonnegative integers, and $d=c_{1}+c_{2}+\cdots+c_{k}$, have the property that either $\left\{a_{n}\right\}$ is periodic with period at most k, or $\left\{a_{n}\right\}$ is unbounded.

