Roger E. Zarnowski

The Congruence Structure of the $\mathbf{3 x}+\mathbf{1}$ Map, Fibonacci Quart. 46/47 (2008/2009), no. 2, 115-125.

Abstract

Let $T: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $T(x)=\frac{1}{2} x$ if x is even, and $T(x)=$ $\frac{1}{2}(3 x+1)$ if x is odd. The $3 x+1$ Conjecture asserts that every positive x has an iterate $T^{n}(x)=1$. It is known that T^{n} maps congruence classes with modulus 2^{n} to those with modulus equal to a power of 3. We describe properties of the image class residues and use those properties to show that, under iteration by T, any congruence class with modulus of the form $2^{a} 3^{b}$ generates all integers not divisible by 3 . This has negative implications for the study of sufficient sets for the $3 x+1$ Conjecture. The analysis also provides insight into a particular permutation function associated with T.

