Caroline Shapcott

\mathcal{C}-color compositions and palindromes,
Fibonacci Quart. 50 (2012), no. 4, 297-303

Abstract

An unexpected relationship is demonstrated between n-color compositions (compositions for which a part of size n can take on n colors) and part-products of ordinary compositions. As a consequence, we are able to use techniques developed for studying part-products to generalize the concept of n-color compositions to that of S-restricted \mathcal{C}-color compositions, whose part-sizes are restricted to an arbitrary set S of positive integers and for which a part of size n can take on $c_{n} \in \mathcal{C}=\left\{c_{1}, c_{2}, \ldots\right\}$ colors. We count the number of S-restricted \mathcal{C}-color compositions and the number of \mathcal{C}-color palindromic compositions, as well as the total number of parts in each setting. The celebrated Fibonacci numbers persist throughout.

