John Estes, William Staton, and Bing Wei Independent Sets of Cardinality s of Maximal Outerplanar Graphs, Fibonacci Quart. **51** (2013), no. 2, 147–150

Abstract

In 1982, Prodinger and Tichy defined the Fibonacci number f(G) to be the number of independent sets in the graph G. Let $\alpha(G)$ be the cardinality of a maximum independent set of G and $f_s = f_s(G)$ be the number of independent sets of cardinality s in G. Then the independence polynomial of G is defined to be $I(G; x) = \sum_{s=0}^{\alpha(G)} f_s(G)x^s$, and so I(G; 1) = f(G). In 1998, Alameddine determined that $f(P_n^2) \leq f(G) \leq f(S_n^2)$ for maximal outerplanar graphs G with equality reached uniquely by the 2-path P_n^2 and the 2-spiral S_n^2 , respectively. We will investigate f(G) for maximal outerplanar graphs by way of the coefficients f_s of I(G; x); we show that for a maximal outerplanar graph G and $s \geq 3$, $\binom{n+2-2s}{s} \leq f_s(G) \leq \binom{n-s}{s}$. The lower bound is uniquely reached by P_n^2 , and the upper bound is reached exclusively by D_6^2 and S_n^2 . As a corollary, we show the works of Alameddine with one more graph obtaining the upper bound when n = 6.