Ana Paula Chaves and Diego Marques

A Diophantine Equation Related to the Sum of Squares of Consecutive k-Generalized Fibonacci Numbers, Fibonacci Quart. 52 (2014), no. 1, 70-74.

Abstract

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. There are several interesting identities involving this sequence such as $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$, for all $n \geq 0$. One of the most known generalizations of the Fibonacci sequence, is the k-generalized Fibonacci sequence $\left(F_{n}^{(k)}\right)_{n}$ which is defined by the initial values $0,0, \ldots, 0,1$ (k terms) and such that each term afterwards is the sum of the k preceding terms. In this paper, we prove that contrarily to the Fibonacci case, the Diophantine equation

$$
\left(F_{n}^{(k)}\right)^{2}+\left(F_{n+1}^{(k)}\right)^{2}=F_{m}^{(k)}
$$

has no any solution in positive integers n, m and k, with $n>1$ and $k \geq 3$.

