Patrick Flanagan, Marc S. Renault, and Josh Updike
Symmetries of Fibonacci Points, Mod m,
Fibonacci Quart. 53 (2015), no. 1, 34-41.

Abstract

Given a modulus m, we examine the set of all points $\left(F_{i}, F_{i+1}\right) \in \mathbb{Z}_{m}^{2}$ where F is the usual Fibonacci sequence. We graph the set in the fundamental domain $[0, m-1] \times[0, m-1]$, and observe that as m varies, sometimes the graph appears as a random scattering of points, but often it shows striking symmetry. We prove that in exactly three cases ($m=2,3$, or 6) the graph shows symmetry by reflection across the line $y=x$. We prove that symmetry by rotation occurs exactly when the terms $0,-1$ appear half-way through a period of $F(\bmod m)$. We prove that symmetry by translation can occur in essentially one way, and we provide conditions equivalent to the graph having symmetry by translation.

