Helmut Prodinger

Two Families of Series for the Generalized Golden Ratio, Fibonacci Quart. 53 (2015), no. 1, 74-77.

Abstract

Higher order Fibonacci numbers have the characteristic equation $X^{n}-X^{n}-\cdots-X-1=0$, where $n=2$ means the classical case. Special interest is in $\alpha=\alpha_{n}$, the dominant ($=$ largest, positive) root of this equation, which is the golden ratio for $n=2$.

Letting $\beta=\beta_{n}=1 / \alpha_{n}$, then, as $n \rightarrow \infty, \alpha_{n} \rightarrow 2$, and $\beta_{n} \rightarrow \frac{1}{2}$. In this paper, series expansions of $(2-\alpha)^{r}$ and $\left(\beta-\frac{1}{2}\right)^{r}$ are obtained for arbitrary exponents r. This extends results recently obtained in [2].

