. eew_e_@ew _ L

'e 'ekwJJ

AN
INTRODUCTION
TO
FIBONACCI DISCOVERY
Brother U. Alfred

The Fibonacci Association






U 9e9eL

AN

INTRODUCTION
TO

FIBONACCI DISCOVERY
Brother U. Alfred

The Fibonacci Association

© 1965 by The Fibonacci Association. All rights reserved.

Printed in The United States of America.



| [ !
00009 _0® _ ) m A A A X A A



P OOOW® J-eewwy

INTRODUCTION

Anybody who claims to put out a book devoted to the discovery of mathematics
is faced with a problem. A certain amount of explanation is necessary in order to
introduce the topic. In an extreme form, once this explanation is concluded, people
could then be encouraged to make discoveries. On this basis, the present book
would contain one or two pages. But evidently, for most people this would not be
sufficient. A certain amount of suggestion is required: suggestion of problems to
be studied; indications of how to attack the problem; and in many cases, the solution
of the problem, so that a person will be able to make the next step should an impasse
be reached. '

Evidently, preparing a book on discovering mathematics is not a simple task.
This volume is based on the assumption that a person who uses it wants to discover
mathematics; that, therefore, he will make a real effort to find the answer by him-
self before looking to the solution in the key section of the book.

Hence the following general approach is used,

(1) The topic for research is int roduced by explanation. Examples are given when
this seems advisable.

(2) There are suggested exercises to familiarize the researcher with the idea that
has been explained. For these exercises answers are provided in another part
of the book. However, the answers are not in sequence, so that the danger of
looking ahead on the answers CAN be avoided.

(3) Specific points for research are then given. Once again, answers are usually
provided and even the complete solution in certain instances,

These arrangements allow for independent activity while at the same time obviating
the dangers of frustration.

Going through a discovery book in mathematics is not like reading a textbook,
much less a novel. Ideas take TIME to deve lop. It is better to wait and come to an
answer on one's own rather than short-circuit the process by looking too readily to
the solution or answer in the book. After a while, this process will pay off in a
sense of achievement and mastery.

Brother U.Alfred
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l. DISCOVERING FIBONACCI FORMULAS
DEFINITION OF THE FIBONACCISEQUENCE

A sequence is an ordered set of quantities. Thus the following are sequences:
1,2,3,4,5,6,7.......
2,4,6,8,10,12,.......
2,4,8,16,32,64,128,.....
In a sequence, there is a first term, a second, a third, etc. and if the sequence is
infinite, there is no last term. Essentially, what we are doing is setting the terms
of the sequence into one-to-one correspondence with the natural numbers: 1,2, 3,..
So when we speak of the Fibonacci sequence, we are talking about a certain
set of quantities arranged in order. These are identified by the letter capital F
with a subscript 1,2,3,4......to indicate which term of the sequence we are talk~
ing about. Thus F16 would mean the sixteenth Fibonacci number.

We start with F1 =1, F2= 1. This is all that is needed along with the

LAW OF THE FIBONACCISEQUENCE, namely, that every term is the sum of the
two preceding terms. So

F,= F,4+F, = 141 = 2

— = + =
F5 _‘F4-|’-F3 3 2 5
F6 = F5+F4 = 5 %3 = 8
In general, Fn+1= + ?

(See answer #1, p., 36) )

PROB LEMS

P.1l. Find the first twenty terms of the Fibonacci sequence, (Compare your results
with Table 1, p. 52 )

Let us write the Fibonacci numbers out less forrr;ally: 1, 1,2,3,5,'8,13,21, .

Question: Is it possible to go backward as well as forward in the sequence? If so,
how can this be done ?

Question: Going backward, we have 34, 21,and then 13. How is the 13 obtained from
34 and 21? Does this rule seem to work for other cases ? Could you formu-
late in words a rule for obtaining the previous Fibonacci number from two
successive Fibonacci numbers? (See answer #2, p. 35 )

Using anl and Fn as two successive Fibonacci numbers, write a formula

for Fn-l' (See answer # 3, p. 34 )

Applying this formula, or using the verbal rule, obtain the twenty Fibonacci
numbers that precede 1,1. (See answer # 4, p. 33 )

How should we name these Fibonacci numbers ? We continue backward with

-1 -



DISCOVERING FIBONACCI FORMULAS

our subscripts on the number line.

i i I x 2 . 3 Y 5 1 i [ I

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

The Fibonacci number before F1 would thus be F0 ; the Fibonacci number before

FO would be F_l;

Give names to the twenty Fibonacci numbers before 1,1. (See answer #5, p. 42 )

etc.

QUESTION: Do you notice any relation between the Fibonacci numbers with nega-
tive subscripts and those with positive subscripts ? For example: How is F 4

related to F4? F 7 to F_,? Could you state in words a rule for this relation-

ship? (See answer #6, p. 40 ). Can you state this rule in one neat formula ?
(See answer #7,p. 39 )

A Fibonacci Formula ) .

Now that the Fibonacci sequence has been defined, we are ready to go to
work and find formulas. Let us start with sums. Possibly the most obvious
question to ask is: What is the sum of the first ten terms or the first fifty terms
of the Fibonacci sequence? Now, we have to know what sort of answer to look for.
We are accustomed when adding n.terms of a sequence to get a formula which de-
pends entirely on n, Thus the sum of the first n integers: 1,2,3,4,....,n is:

n( ngl)
2

But with the Fibonacci numbers we usually have to look for an answer in terms of
Fibonacci numbers themselves. One way to proceed is to make a table. In the
first column we put k which takes on values 1,2, 3,4, ...numbering thereby the
things we are going to add. In the second column in the present case, we put Fk'

the kth Fibonacci number; in the third column we put the sum of the first k terms
of the Fibonacci sequence. Here is how it looks.

k Fk Sum
1 1 1

2 1 2

3 2 4

4 3 7

5 5 12

6 8 20

7 13 33

8 21 54

9 34 88

Looking at the sum column, do you see any relation between the numbers we ob-
tain and the Fibonacci numbers ? (For example, what is the sum of the first six
Fibonacci numbers in terms of Fibonacci numbers? What is the sum of the first
eight Fibonacci numbers in terms of Fibonacci numbers ? Does this suggest a
rule that can be put into words? (See answer #8, p 37 )

-2 -
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DISCOVERING FIBONACCI FORMULAS

Note on Summation Notation

The sum of the first seven Fibonacci numbers can be written:

Pt P+ F 4 Fo+F 4 F,

This way of writing the sum is not too inconvenient for a small number like seven.
But if we wanted the sum of 100 terms, or if we wanted to show the sum of the first
n terms--an indefinite number of terms--we would have to write something like;

Fl - FZ + F3 + ....-....+Floo

or Fl - FZ + F3 *reeseeeog Fn

where the dots indicate all the terms that we have failed to write down. Still more
conveniently we can use the summation notation;

¢ 5
k=l k

for the sum of the first 100 terms; or g Fk for the sum of the first n terms.
kzl

So, inthe present investigation where we are trying to find the sum of the first n
terms .of the Fibonacci sequence, this sum canbe expressed:
i F
k=1
What would be the formula for this summation? (See answer #9, p. 38 )

k*

Another Summation

Suppose that instead of adding all the Fibonacci numbers, we add all those
with odd subscripts. That is, we are taking the sum:

Fl-r F31- F5
What would be the formula for this summation ?

At the outset we have a problem of notation. If we number the first column
k: 1,2,3,4,......, what are we going to call the second column ? (See answer #10,
p. 41 )

k F > F
? kfl ?

1 1 1

2 2 3

3 5 8

4 13 21

5 34 55

6 89 144

7 233 377

Write down the formula for the sum of the first n Fibonacci numbers with odd sub-
scripts. (See answer # 11, p. 33 )

-3 -



DISCOVERING FIBONACCI FORMULAS

PROBLEM
P.2. Find the sum of the first n Fibonacci numbers with even subs cripts,
(See answer P.2, p. 34 )

Other Summations

In addition to finding the Fibonacci numbers directly on the surface, some-
times they appear as part of a product, as squares, etc. For example, what is the
sum of the squares of the first n Fibonacci numbers ? Again, we form a table,

n

k sz zFi
k=1

1 1 1

2 1 2

3 4 6

4 9 15

5 25 40

6 64 104

7 169 273

Suppose we try factoring the sums. Do we obtain Fibonacci numbers by some fac-
torization? For example, the sum of the squares of the first six Fibonacci num-
bers is the product of what Fibonacci numbers ? See if this works for other cases.
What, then, would be the general formula for: )

(See answer # 12, p. 39 )

PROB LEMS
P.3. Find the sum of Fl + FS + F9 +:¢es. tonterms. (Answer, p., 37 )

P.4. Find the sum of F2 + F6 + FIO +..... tonterms, (Answer, p. 40 )
P.5. Find the sum ofF3 - ]:‘7 - F11 #..... tonterms. (Answer, p. 35 )

P.6. Find the sum of F, + F8 + FIZ +..... tonterms. (Answer,p. 41 )

OTHER FORMULAS

Thus far we have concentrated on summations. But this is far from being
the only type of Fibonacci relation, One very interesting formula is indicated by
the following. Take any Fibonacci number; square it; subtract the product of the
two numbers on either side., What answer (s) do you get uniformly? If this is true
in general, what would be the formula for this relation? (See answer # 13,p. 36 )

Possibly this suggests further inquiry along the same line. What would hap-

pen if we were to take the square of a Fibonacci number and subtract the product
of the Fibonacci numbers two removed on either side? For examp le:

2 .

= ?

FlO F8 FlZ is what ?

Try this for a number of cases, What is the general relation? (See answer 14,
p. 38 ).

-4 -

ey X X X XaKi




J _ 009w

DISCOVERING FIBONACCI FORMUILAS

Pursue this line of development, taking successive ly numbers three re-
moved, then four removed, etc. Write down general formulas for these cases up
to seven removed. (See answer #15, p. 42 ).

What general formula would this indicate if we were to take the square of
any Fibonacci number and subtract the product of numbers k removed from it on
either side? (See answer # 16,p. 33 ).

LUCAS NUMBERS

For the sake of simplicity we began our discovery work by dealing with the
sequence: 1,1,2,3,5,8,13,21,.....known as THE FIBONACCISEQUENCE. We
would now like to point out that a sequence of the Fibonacci type can be developed
by starting with any two numbers a and b, adding them to get the next term, etc.,
using in general the law that each succeeding term is the sum of the two previous
terms.

EXAMPLE. Starting with 3,7, the next term is 10; then 17; then 27; then 44;etc.

PROBLEMS

P.7. Find the first ten terms of the Fibonacci sequences beginning with:
(@) 3and 12; (b) -7 and 4; (c) 6 and - 13.

(See answer to P.7.,p. 38 )

In addition to the very special Fibonacci sequence, there is a closely relat-
ed sequence of the Fibonacci type known as the LUCAS SEQUENCE. We shall in-
dicate its terms by the capital letter L with subscripts. For this Lucas sequence,

L1 = 1, L2 = 3
P.8. Find the first twenty terms of the Lucas sequence. (See table 2,p.54 )
P.9. Find the twenty terms before L. in the Lucas sequence. These would be
indicated by L L ., etc. (See P.9, p. 36 )

0" Tl
P.10. What is the relation between L_, and L ? (See P.10,p.39 )

With the Lucas sequence evidently, we have some brand new territory for
exploring all the various relations we considered in the Fibonacci sequence. A
word of caution may be in order. We must not expect that when there is a simple
tf;o?r?élla in the Fibonacci sequence we will find a like situation in the Lucas se-

uence,

PROB LEMS

P.ll. Find the formula for the sum of the first n terms of the Lucas sequence.
(See answer P.11,p. 42)

P.12. Find the fcrmula for the sum of the first n Lucas numbers with odd sub-
scripts. (See answer P.12, p. 37)

P.13. Determine the formula for the sum of the first n Lucas numbers with even
subscripts. (See answer P.13, p. 35)

P.14. Find the formula for n

TL
k=1 4k

(Answers may come out in Fibonacci numbers as well as Lucas numbers. See
P.14, p. 40)

-5 -



DISCOVERING FIBONACCI FORMULAS

P. 15, Determine the formula for ; L
k=1 4k-3
(Answer P.15, p. 41)
n
P.16. Determine the formula for
L
4k-2
k=1
(Answer P.16,p. 36)
P.17. Determine the formula for n
Tl
k=1
(Answer P.17,p. 39)
. 2
P.18. Find the formula for Ln - Ln-an+l + (Answer P,18,p. 42)
. 2
P.19. Determine the formula for Ln - Ln-Z Ln1-2' (Answer P. 19,p. 37)
. 2
P.20. Find the formula for Ln - Ln-3 Ln+3. (Answer P,20,p. 33)
P.21. Determine the formula for L2 - L L . (Answer P.21,p. 38)
n n-4 "n 4
P.22. Determine the formula for L2 -L _L . (Answer P.22,p. 35)
n n-5"n, 5
P.23, Find the formula for L2 - L L . (Answer P.23,p. 40)
n n-kngk

RELATION OF FIBONACCI AND LUCAS NUMBERS

Let us make a table of Fibonacci and Lucas numbers placing those with the same
subscript next to each other in the same line.

k Fk Lk
1 1 1
2 1 3
3 2 4
4 3 7
5 5 1
6 8 18
7 13 29
8 21 47
9 34 76

The seventh Lucas number is 29, The sum of the 6th and 8th Fibonacci numbers is
8 421 or 29. Does this seem to hold in general? If s0, what relation is there be-
tween Lucas numbers and Fibonacci numbers ? Expressed by formula:

Ln = ? interms of Fibonacci numbers,

(See answer #17, p. 34)

PROBLEMS.
P.24. If we add the 6th and 8th Lucas numbers does this sum have any relation to
the seventh Fibonacci number? Examine this for different cases., Do you arrive

-6 -
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DISCOVERING FIBONACCI FORMULAS

at a law? (See P.24,p.4])
P.25. Take the product of two corresponding Fibonacci and Lucas numbers, such
as F4 and L4. What do you get? Try this for different cases. What formula

does this suggest? (See P.25,p. 42)

P.26. Take the sum of the squares of two consecutive terms of the Fibonacci se-~
quence. Is there a formula that seems to fit this case ? (See P.26,p. 41)

P.27. Try the same thing for the Lucas sequence. Do you find a formula? (See
P.27,p. 34) i

P 28. Take the product of two successive terms of the Fibonacci sequence. Com-
pare this with the product of the terms on either side of these two terms. (For
example, compare the product of F5F6 with the product F4F7). D you find a
law? (See P, 28,p. 40)

P.29. Do likewise for the Lucas sequence. (See P.29,p. 37)

P.30. Is there an answer for the following difference;

FnLn +1 " Fn &1 Ln ? (See P.30,p. 33)
P.31. Likewise for FnLn +2 Fn +2 Ln. (See P.31,p.38) -
P.32. Again FnLn $3° Fn +3 Ln is what? (See P.32,p. 35)
P.33, What is Fn Ln wd - Fn +4 Ln ? (See P.33, p. 36) |
P.34, Find a formula for FoLi,s - Fo.+5l,  (Bee P.34, p. 39

P.35 To what general formula FnLn s Fn +kLn does this lead? (See P, 35,
p. 37)
RESEARCH

Possibly the preceding work with Fibonacci and Lucas numbers has given
you some leads. But there are many, many more possibilities for formulas. Just
try anything!! Start making a collection of formulas for yourself. See how many
you can find. It's an interesting game.

PROOF OF FORMUILAS BY MATHEMATICAL INDUCTION

To this point we have been engaged in a freewheeling operation of arriving
at plausible results without any attempt to demonstrate by proof that they are logic-
ally sound. For it is quite clear that no matter how many individual cases show
that our formula is correct, this does not enable us to conclude that it holds in gen-
eral for all similar cases. Psychologically, of course, we might be willing to bet
one hundred to one that our result is true, But no matter how strong the probability
is in favor of our formula, there is still a need for arriving at certainty,

Proof will put the results we have found on a solid basis, Our house of math-
ematics will then have a good foundation and we can proceed with confidence to draw
other deductions from those which have already been shown to be true.

There is another value of proof which is not emphasized enough, The effort
to show that our results are correct can oftentimes lead to the need of developing
other formulas., Ina word, PROOF 5 A MAJOR ROAD TO DS COVERY!

-7 -



PROOF BY MATHEMATICAL INDUCTION

For the moment we are going to consider mathematical induction as a mode

of proof while noting that there are other means of arriving at conclusions. For

example, once we have one or more formulas established, we can then use them as

means of deriving additional formulas.,

We shall first illustrate the process of mathematical induction for a non-
Fibonacci situation. Suppose we wish to know the sum of the first n integers:

n
12+ 3 +.....4 n = T ke

k=1
We have already mentioned a formula:
n(n + 1)
2
When n is 1, the value of n(n +1)/2 is 1; when n is 2, its value is 3; whenn is 3,

its value is 6. These results agree with the first three cases of adding n integers,
when n is 1,2, or 3 respectively,

How are we going to show that the formula is true for any value of n? The
next step is to prove that if the formula is true up to a given integer n, then it fol-
lows as a consequence that it is true for n + 1. ‘

n .
Given: Tk = n(n +1)/2 for all integers < n (assumption)
k=1
To prove: n +1
Zk = (n+])(n+2)/2.
k=1

This latter relation is obtained by replacing n by n + 1 throughout, both on the
lefthand and righthand sides.

Proof. g k = n(n +1)/2 (assumed)
k=1
nel = nel (identity)
nel
Add: Zk = nm+1})/2 +n+ 1= (n+1)(n/2 +1)

L @ a2

Thus if the formula is true for n, it is true for n + 1.

Now we go back to our originally verified cases. We have found that the
formula holds for 1,2,and 3. By what we have just shown, if it is true for 3, it is
true for 4; if it is true for 4, it is true for 5; and so on. It will be true for all
positive integers by reason of the property of the positive integers that to each such
integer there is always a next found by adding 1. We can arrive at any integer no
matter how large by proceeding step by step. And since the logic of mathematical

induction applies for each step, it will apply for any number we may choose to se-
lect.

Let us apply this method of proof to some Fibonacci formulas, The formula
discovered for the sum of the first n terms of the Fibonacci sequence is:

n
YF, = F - 1.
k=1 k n42

For n=1, the sum is 1, and F1+2 -1=2 -1 or 1. This checks.
-8 -
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PROOF BY MATHEMATICAL INDUCTI ON

For n=2, the sum is 2, and F2+2 -1l=3-1 or 2.
For n=3, the sum is 4, and F3 2 -1=5-1 or 4,
Assume, then, that the formula holds for the first n Fibonacci numbers, i.e.,
n
TF, = F -1 for some n,
k=l k n+2
Add the next number: F = F
n+1 n +1
n 4+l
Then k=213 Fk = Fn +3 -1, since Fn +1 + Fn+2—Fn W3

This shows that if the formula is true for n, it is true for n 41,

back to our specific cases and from there proceed
sult is proved in general.

We can then go
to any value of n, Hence the re-

THE FORMU LA F2 . Fr F = (!
n n-l"n,l1
For n =1, 12 -0el =1 = (--1)0
Forns2, 12 ~le2 =21 = (-»1)1
For n=3, 22 -le3 =1 = (--1)2
Assume that FZ - F F = (_l)n-l for a given n.
n n-1"n 4l

We want to show that as a result of this assumption

2 =
ngl ” FnFn+2_
We have on substituting F =F + F_,
ng2 n+l n
2 2
n4l FnFn+2 - Fn.|,1 -Fn(Fn+1
2 2
= n 4l -Fnan.l -Fn - Fn-gu-l(Fn+1
2 _ 2
"Fn+1Fn-1 -Fn = -F

We can now return to our original verifications and
of n, Thus the formula is true in general,

PROBLEMS
P, 36. Prove by mathematical induction the formula

-1 .

+ F )

-F) -F’
n n

1

Ne- n
T I | R L

proceed from there to any value

for the sum of the first n terms

of the Fibonacci sequence with odd subscripts. (See solution, p. 38)

P.37. Prove by mathematical induction the formula
of the Fibonacci sequence with even subscripts.

-9

for the sum of the first n terms
(See solution,p, 35)



PROOF BY MATHEMATICAL INDUCTION
P.38. Prove by mathematical induction that the formula

2
F -F-ZFnZ_(l)
holds for all values of n. (See solution, p, 33)
P.39. Prove that n
T L L, =3 (No solution provided)
k=1 an
P.40. Prove that n
T LZk-l = LG -2 (No solution provided)
k=1
P.4l. Prove that n
z L 2k = LGﬂ -1 (No solution provided)
k‘l

P.42. Prove by mathematical induction that Ln =F _+F

(See solution, p. 36) n-l""n+l
The Summation n
L = F -1
k=1 4k 4n42
For n=1, we have one term, L4= 7. Also F6 -1 = 8 -1 =7, Checks.
n
Assume that TL 4k = F4n+2 -1  for some given n.
k=1
= L
Add Cangs = Danga
n¥l
Then N 21L4k = Fanee Tlyngs - L
Clearly, to combine the terms on the right we have to make a transformation,
Us ing L4n+4 = F4n+3+ F4n+5 » we have
n+l
. f ak = FaneatFupn s TFnes 1= Fupp Py o -1

= F4n+6 - L

Completing the mathematical induction, the formula is seen to hold in general
Aestesle e sooledle sk

P.43, Prove by mathematical induction that n
K= ‘?L 4k-3 = Fapq "L
(See solution , p. 41) -
P.44. Prove by mathematical induction that n
s Pk Fypy
(No solution provided)
P.45. Prove by mathematical induction that n
TL = F 1.
(No solution provided) k=] tk-l 4n+l

- 10 -
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PROOF BY MATHEMA TICAL INDUCTION

This concludes the INTRODUCTION TO MATHEMATICAL INDUCTION. We

shall come back to this again after having deve loped some additional approaches to

our subject. sessleste ol ole e sk

THE FIBONACCI SHIFT FORMU LAS

One of the very convenient properties of Fibonacci numbers is that no mat-
ter what terms of the sequence we have combined by addition and subtraction, we

can always find an equivalent sum in terms of two successive Fibonacci numbers
ANYWHERE IN THE SEQUENCE.

For example, given a combination
3F 41 - 5F, ,F7 F gt 10 F .

there is an equivalent sum in terms of Fn and Fn+1 alone. This would be

4Fn+1+‘ 49Fn.

To arrive at the necessary formulas for making this type of transformation we
start with our fundamental relation

Fn:-_ Fn-1+ Fn-Z .

Now replace Fn-l by Fn-2+ Fn We then have

-3°

Fn = 2Fn-2+ Fn—3

Replace Fn-z by Fn-3 + Fn_4 . This gives Fn.—. 3 Fn-3+ 2 Fn-4'
Continuing this operation of replacement, we find successive formulas;

F,= 5F .+ 3F_
F,=8F ¢+ 5F

F, = BBF _,+8F_ _

P.46. What would be the formula for

Fn = Fn-k Fn-k-l ?

(See answer p. 39)

Clearly, this formula, if it holds in general, enables us to shift k steps down

(considering the first Fn k ©On the right),

P.47. Prove the formula found in P. 46 by mathematical induction, (Note. There
are two letters involved, n and k. Our concern is with what ha

vary k, so that we go from k to k41 in our induction.)
(See solution p. 34)

Ppens when we

- 11 -



THE FIBONACCISHIFT FORMULAS
Shifting Upward

We start with the relation Fn+2 = Fn_._1 + }E‘n
from which F = F - F .
n n42 n¢l
- tai
Then replace Fn-tl by Fn«r3 Fn+2 to obtain
Fn = - Fn-l-3 +2 an’-Z'
Continue this process. Fn = 2 Fn-t-4 — 3 Fn+3

F = -3F .+ 5 Fn+4

n
Fn':. 5Fn+6 - 8 Fn+5
P.48. What is the formula for
? .
Fn = (-1 —Fni-kfl_ ———an-k

(See answer p. 42)

P.49. Prove the formula in P. 48 by mathematical induction, (See solution p. 40)

P.50. Prove that F2n= Fn Ln by letting k= n in the shift-down formula.
2

2
:Fn+ Fn+1
st el ookl

P.51. Prove that an by letting k=n in the shift-down formula.

+1

Shifting in the Lucas Sequence

P.52, Find the shift-down formula in the Lucas sequence. (See solution, p. 33)

P. 53. Find the shift-up formula in the Lucas sequence, (See solution, p. 36)

Sfedkvfesisksksieofedle sk

EXPLICIT FORMULAS FOR THE FIBONACCl AND LUCAS SEQUENCES

We have been operating thus far with Fibonacci and Lucas numbers by means
of the relation:
Fn.H = Fn t Fn--l

and the corresponding relation of the Lucas sequence. This is a recursion formula,
since it indicates a relation that recurs over and over again at each point of the se-
quences. However, while we are able to arrive at any Fibonacci or Lucas number
we care to name at least in principle using this formula, we are not able to set down
one single formula which gives us all Fibonacci or Lucas numbers by substituting
for n, This we now propose to investigate.

The key to achieving this result is found in the equation:

xz -x =1=0,

Why this particular equation is selected will become evident in what follows, We
first find the roots of this equation. These we shall designate r and s:

- 12 -
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EXPLICIT FORMULAS

r 1+ V5 s = 1 -5

2

Note that r4+s =1, the negative of the coefficient of x and rs equals -1, the constant
term in the equation,

We develop the Fibonacci numbers in terms of these roots,

We have rs= 146 1 -5 _ V5
2

This quantity r-s or {5 will appear in the denominator of the expressions
for the Fibonacci numbers,

Clearly, 17'1 = I=S =1
r-s ’
2 2
F,oo r -5 -
2 e = r4¢s = 1,

We now proceed by mathematical induction. Assume that

n n
F _ r -5 .
n<= < up to a given n,

Before proceeding, let us look to our original equation and draw some conc lusions
regarding our roots.
2
x =x+41
and since the roots r and s satisfy this equation we must have:

r2= re4-1 and sz.—. s ¢ 1,

But we can multiply through these equations by any power of r or s, so that, for
example, .

rm1= rn_'_ rn-l and snﬂ= sn+ sn-l.
Since by assumption, Fn 1 = rn-l - sn—l
- r-s
and Foo__ o s”
n —
r -s
it follows by addition that Fogl = L gt

r-s

using the property of the r's and s's that we have just indicated. Thus the formula
is seen to hold by mathematical induction.

P.54. Prove by mathematical induction that I, = " <4 s,
(See solution, p. 40) n

- 13 -



EXPLICIT FORMULAS
AN EASY APPROACH TO FORMULA DEVE LOPMENT

This formulation of the Fibonacci and Lucas numbers provides an easy means
of proving many formulas and deriving others. For example, since '

By I ¥ X X Yo

2n 2n n n n n

F2n=r - s - (r -5 ) (r4s)
r-s r-s
it is clear that F = F L.
2n n n

Again, suppose we want to prove the formula

2 - ntk _2
Fo " FakFag = 0 Fy

We can proceed to show that both sides are equivalent in terms of r and s.

2 n 2 n-k ‘n-k ntk ntk
Fo - F ,F . = 5-s“) (r -5 5)(r -5

an P + S2n an _ rn-k Sn‘f'k
5 } 5

ntk n-k 2n -
— -Tr s 4+ s

As noted before, rsz -1, Hence the above can be written

n . n-k n-k 6 2k 2k n n-k , 2k 2k
-2(-1) 4+ r s (r 4+ s ) _ =2(=1). + (-1) (r s )
5 5
_ (_l)n-k 1_Zk _2(_1)k + sZk
- 5
Now the righthand side expands into;
(~1)n'+k [er PR sk+ Szi)
5

which is an equivalent expression if we remember that n-k and nfk will be odd
and even together and that K k Kk
r s =(-1)

PROB LEMS K
P.55. Prove that F = F, [LZk =+ (-],

3k T

900000

(See solution, p. 41)

P,.56. Derive a formula for Fn Ln-fk+ Fn-(—k Ln'

(See solution, p. 34)
2 2 2

2
P.57. Prove that Lot 1t L. = 5F ,+F ).
(See solution, p. 38)
, k A
P.58. Prove that F5k = Fk E L4k + (-] LZkT ﬂ

(No solution provided) ' 14
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P. 59. Find a similar formula for F7k' (See p. 35)

P.60. Prove that - kﬂ
Ly = L [L2k+ (-1)

P.6l. Prove that k-1
L5k = Lk £L4k+ (-1) sz‘f‘.ﬂ

P.62. Find a similar formula for L 7k (See p. 39)

- F L

P.63. Derive a formula for F L .
n n n4k n

+k
(See solution,p. 37)

sestesfesfestestesieste et sesfeeso ol sl sk
DIVISION PROPERTIES OF FIBONACCI NUMBERS

Some of the most fascinating properties of Fibonacci numbers pertain to
their factors and their relation to divis ors. It is not difficult to discover regularity
in this respect, For example, looking over the table of Fibonacci numbers, it is evi-
dent that FS’ FlO’ F15, on'etc. are all divisible by 5.

P.64. What Fibonacci numbers seem to be divisible by:
(a) 2; (b) 3; (c) 7; (d) 13; (e) 4.7
(See solution, p. 36)

More generally one can examine the remainders that result when the Fibon-
acci numbers are divided by some given quantity. For example, for the divisor 13,
the remainders in order are:

L1,2,3,5,8,0,8,8,3,11,1, 1z,0,12,12,11,10,8,5,0,5, 5,10,2,12,1,0,1,1,2,3,5,8,0

LIS

We note that after 28 members of the sequence, we go back to the original set of re-
mainders. Thus we see that for divisor 13, the set of remainders of the Fibonacci
sequence is periodic with period 28,

CONGRUENCE APPROACH

If we had to divide the Fibonacci numbers by the divisor in each instance the
amount of work involved in studying these remainders and the ir periodicity would be
very great. Fortunately, we can work directly with the remainders themselves., A
brief explanation of congruences will make this clear.

In number theory, the divisor about which we have been speaking is called a
modulus. We say that two numbers a and b are congruent to each other modulo m
if their difference a-b is divisible by m. This is expressed in the following notation
(triple equality sign):

a = b (mod m)
Now when a is divided by m we get a quotient q and a remainder r which satisfy the
relation

a/m = q4 r/m

- 15 -



DIVESION PROPERTIES OF FIBONACCI NUMBERS
On multiplying by m, this becomes
a= qm<4r

Similarly b=pm4s

It a-b = (g-p)m $r-s

is divisible by m, it follows that r-s is divisible by m. But since both r and s are
less than m, this means that they must be the same. Thus another way of saying
that two quantities a and b are congruent modulo m is to state that on being divided
by m, they give the same remainder, r, where

0€&r<m
Now suppose we have two numbers
c = -qlm 4+ T

d=q2m+r2

If we add the numbers, c 4+ d= (ql J,-qz) m {-rlﬁ-rz_ .

Hence, we can find the remainder for the sum of c and d simply by considering the
remainders without using ¢ and d at all, This is what we do in working with the Fib-
onacci sequence.

Let us take an example. Suppose our modulus (divisor) is 17. We start. off
with the terms of the sequence less than 17: 1,1,2,3,5,8,13. When we come to 21,
we subtract out 17, so that our next term is 4, We add the 4 to-13 to obtain 17; sub-
tracting out 17 gives our next remainder 0. We add 0 to 4 to obtain 4; 4 to 0 to ob-
tain 4; 4 to 4 to obtain 8; 8 to 4 to obtain 12; 12 to 8 to obtain 20; subtracting out
17 gives 3; etc. This avoids all the division work into the large Fibonacci numbers.

The final sequence would be:
1,1,2,3,5,8,13,‘4,0,4,4,8,12,3,15,1,16,0,16,16,15,14,12,9,4, 13,0,13,13,9,5, 14, 2, 16,
,0,1,1,2,3,5,8, 00000

PROB LEMS :
P.65. Find the set of residues of the Fibonacci sequence modulo (a) 11; (b) 7; (c) 5;
(d) 3; (e) 2.  (See solution, p. 40)

P.66. What are the periods in the various cases in P.65? (See solution,p. 33)

P.67. Suppose we take the product of two primes, such as 3 and 5. Find the period
for modulus 15,

P, 68, Find the period for modulus 2l.

P.69. Determine the period for modulus 35,

P.70. Determine the period for modulus 77.

P.71. Study this problem: How the period of 15 is related to the periods of 3 and 5;
how the period of 21 is related to the periods of 3 and 7; how the period of 35 is
related to the periods of 5 and 7; how the period of 77 is related to the periods
of 7 and 11, (See solution,p. 39)

- 16 -
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DIVSION PROPERTIES OF FIBONACCI NUMBERS

P.72. On the basis of your work in P. 71, given that the period of 23 is 48 and the
period of 1l is 10, what would be the period of 253 ? (See solution,p. 35

P.73. Given that the period of 2 is 3, the period of 3 is 8, the period of 5 is 20,
what would be the period of 30? (See solution, p. 37)

P.74. Find the periods of 2, 22, 23, 24. «+«+...How does this seem to work?

(See solution, p. 41) 2 3 4
P.75. Find the periods of 3, 3, 37, 3°,..,..Does there seem to be a law? (p. 43)

P.76. Find the period of 72 and compare it to the period of 7. (Solution, p. 44)

PERIODICITY FOR ALL DIVISORS ?

We have found periodicity in the Fibonacci sequence for the remainders ob-
tained with both prime and composite divisors of small numbers. Can we be certain
that such periodicity exists for all divisors, no matter how large?

To fix our ideas, let us take some particular divisor, such as 97. The re-
mainders we may obtain by dividing by 97 are 0,1,2, 3,.... »96. There are 97 of
them in all. Now if two of these remainders are taken and made the start of a Fib-
onacci sequence of remainders, modulo 97, we evidently get a definite sequence of
quantities from them. Otherwise stated, two remainders in a given order determine
a sequence of remainders.

There being 97 remainders in all we can have 97 697 or 972 pairs in suc-
cession. We can also eliminate the pair 0,0, since this would give an endless set
of zeros which is not the case in the Fibonacci sequence we are dealing with. Thus
we have 9408 possible pairs at most.

Now when we continue setting down the remainders in our sequence we event-
ually get to 1,000, then 10,000, then 100,000, etc. terms. Hence, sooner or later
we must arrive at a pair in sequence that we had before. Once this takes place per-
iodicity has set in because what happened before will now repeat itself,

This argument which we have applied to the divisor 97 is equally true for any
divisor. Hence for any modulus, the set of remainders of the Fibonacci sequence is
periodic.

ARE ALL NUMBERS DIVISORS OF THE FIBONACCISEQUENCE ?

Does every integer divide some term of the Fibonacci sequence ? Perhaps it
may seem trivial to note that every integer divides F0= 0 in the Fibonacci sequence.

But then as a consequence of periodicity, it must divide other terms of the sequence
as well,
ENTRY POINT AND PERIOD

If we start with Fl' FZ' F3, +ssee., and the first Fibonacci number divisible
by a prime modulus p is Fd, then d is said to be the entry point of the prime p. It

must have been noted that the entry point and the period are not the same thing in all
cases. There are three situations which can be illustrated by the following,

- 17 -



DIVISION PROPERTIES OF FIBONACCI NUMBERS

(}) Entry point and period are the same.
Example. Modulus 11. 1,1,2,3,5,8,2,10,1,0.

(2) Entry point is half the period
Example. Modulus 7. 1,1,2,3,5,1,6,0,6, 6,5,4,2,6,1,0.

(3) Entry point is one-fourth the period.
Example. Modulus 13. 1,1,2,3,5,8,0,8,8,3,11,1,12,0,12,12, 11, 10,8,5,0,
5,5, 10,2,12,1,0.

P.77. Study the entry points and periods as found in Table 3, Can you determine
what characterizes each of the three cases mentioned above ? (Table 3 is found
onp. 55 ). (See solution,p. 45)

P.78. There is no rule for finding the entry point for a given prime modulus., Once
this is known, however, would it be possible to determine the period?
(See solution, p. 46)

P.79. The periods of 2 and 5 are special. Apart from them, all prime numbers
end in 1,3,7,0r 9. Examine the periods (Table 3) of primes and see whether
you can find any law regarding the periods. (Hint, Is there some quantity into
which the period divides ?) (See solution, p. 47)

DIVISION PROPERTIES OF THE LUCAS NUMBERS

By the same reasoning as was used in the case of Fibonacci numbers, there
must.be periodicity for any divisor in the Lucas numbers.

P.80. Are there integers which do not divide any member of the Lucas sequence ?
Try: 5,7,11,13,......(See solution, p. 45)

P.8l. The Lucas sequence has terms divisible by 3 and 7. How about 21? Similar-
ly, 3 and 4 divide terms of the sequence, but does 12? Likewise 7 and 4, but
does 28? When does a situation of this type arise ? (See solution, p. 44)

COMMON FACTORS

If two numbers a and b have a divisor in common, we say it is a common
divisor. I we find the largest number that divides both a and b, this is spoken of
as the greatest common divisor (abbreviated, gic.d.). If gis the greatest common
divisor of a and b, this is written:

(a,b) = g
Thus (6,15) = 3; (12,20) < 4.

If gis 1, then a and b have no common divisor greater than l. In this case we say
that they are relatively prime.

Now if we take two numbers that have a common divisor such as 6 and 9 and
add them together we get another number with this same common divisor, This is
provable in general, for if a=ga! and b=gb', then a+b = g(a'+b! ),

Now, in the Fibonacci sequence: L,2,3,5,8,13,....., we see that success-
ive terms do not have a common divisor. Will this be true throughout the sequence ?

- 18 -
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DIVISION PROPERTIES OF FIBONACCI NUMBERS

Yes, it will. For if it were not, then by working backward or forward, it would
have to follow that the terms throughout the sequence would have to possess this
common divisor greater than l--which is contrary to the facts at our portion of the
sequence. Hence, any two consecutive terms of the Fibonacci sequence are rela-
tively prime; similarly for the Lucas sequence.

P.82. Prove that the terms Fn and Fn +2 are relatively prime. (See solution,p. 43)
P.83. Prove that Fn and Ln may not have a common factor other than 2.

(See solution ,p. 35)

FIBONACCI NUMBERS AS DIVISORS

A remarkable property of the Fibonacci sequence is that smaller Fibonacci
numbers divide larger members of the sequence. For example, Fs'—' 5, divides
F10'= 55; F8= 21, divides F24‘.- 46368.

P.84. When does a smaller Fibonacci number divide a larger Fibonacci number ?

(See solution, p. 39)

P.85. What is the périodicity of the last digit of the Fibonacci numbers ? of the
last two digits ? Of the last three digits ? (See solution,p.36)

P.86. Prove that LG is not divisible by Ln' (See solution, p. 37)

P.87. If the Fibonacci numbers are expressed in base 7, what is the periodicity ‘of
the last digit? Of the last two digits ? Of the last three digits ?

(See solution,p. 33)
sedfe e deste e et e o

GENERAL FIBONACCI SEQUENCES

It was indicated earlier that besides the special Fibonacci and Lucas se-
quences we have been considering, there are many other sequences of the Fibonacci
type in which each term is the sum of the two preceding terms. Actually, it is pos-
sible to start with any two integers and produce such a sequence. However, if the

- two integers have a common factor, all the other terms of the sequence will have

this same:factor., For example, if we start with 3,12, the succeeding terms are
15, 27,42,69,111,etc., If the common factor 3 is removed, the sequence that re-
mains is 1,4,5,9,14,23,37,.....To avoid the duplication involved, let us limit our
considerations to sequences in which no two successive terms have the same com-
mon factor greater than 1,

P.88. Experiment with various sequences deve loping them forward and backward.
For example: The sequences determined by (1,4); (-23,12); (-9, -14); (4, =27).
Do you arrive at any conclusion regarding the general appearance of such se-
quences ? (See solution, p. 47)

SEQUENCES WITH POSITIVE TERMS (to the right)

Suppose we start with two large positive numbers, such as, 973 and 1458,
Evidently if we add them to get the next term to the right, we obtain a still larger
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GENERAL FIBONACCI SEQUENCES

positive number; and this will continue. But if we go to the left in the sequence,
we obtain a smaller positive quantity 1458-973 or 485; the next term is 973-485 or
488; the next term is 485-488 or -3; the next is 488 - (-3) or 491; the next is

-3 -491 or -494. Clearly we have arrived at the alternating part of the sequence.

When we go backward in the positive portion of the sequence, the numbers
keep getting smaller; evidently this cannot go on indefinitely. Once we obtain a
positive integer that is greater than the one following it, we arrive at a negative
term on the next step backward. i

This provides us with a convenient point of reference in a sequence with pos-
itive terms to the right. THERE B JUST ONE POSITIVE TERM WHICH IS LESS
THAN HALF THE TERM FOLLOWING IT. (Note. The Fibonacci sequence 0,1,1,
2,3,.....is an exception inasmuch as 0 is not a positive term, though it is less than
half the term that follows it.) If a is a term of the sequence such that 2a< b, where
b is the term (positive) following a, we shall speak of the sequence as (a,b). Thus
the above sequence would be indicated by (485, 973).

P.89. On the basis of the convention just adopted, what would be the standard method
of speaking of the sequences determined by the following pairs of numbers ?
(2) 84,111; (b) -872,743; (c)137,199. (See solution, p. 46)
GENERAL SEQUENCE RELATED TO THE FIBONACCISEQUENCE

Let us call the terms of our general Fibonacci sequence T, T_, T

r T, greeees
Let Tla:a

T, = b, where 2a<b

Then T3 = a+t+b
T4 = a4 2b
Ts;—,.-, 2a +3b
T6= 3a+5b

P,.89A. What is the general term in the above sequence,' T in terms of?a , b, and
. . . n
Fibonacci numbers? (See solution,p. 45)

CHARACTERBTIC NUMBER OF A FIBONACCISEQUENCE

In studying the Fibonacci and Lucas sequences, we found the following rela-
tions:

2 n-1
Fo - Faa Fnj—l = (1)

2 n
I"n - Ln-l Ln+1 = (05

In other words, the number 1 characterizes the Fibonacci sequence according to this

type of relation and the number 5 characterizes the Lucas sequence. Does this hold
true for other Fibonacci sequences ?

- 20 -
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GENERAL FIBONACCI SEQUENCES

Suppose we look at a sequence with T
are: 1,4,5,9,14,23,37,60,97,157, 254.....
52 - 4¢9 = .11

92 - 5014 = 11

1=1, T2=4. The terms in succession

157'2 - 97+254= 24649 - 24638= 11
It appears that 1l characterizes the Fibonacci sequence (I, 4),

P.90. By trying several cases as was done above, determine whether the following
Fibonacci sequences seem to have characteristic numbers associated with them,

(@) (5,1); (b) (3,8); (c) (2,9).

. 2 - n
P.91. Given that Tn - Tn-l Tn+1 = (-1) D
prove that 2 - n+l
Tn+1 Tn Tn+2 = (-1) D

(See solution, p. 47)
3 3 3fe e e e s sfesfesie sl sie
In studying the division properties of the Fibonacci sequence, it was shown
that every integer divides an infinity of terms of that sequence; whereas with the
Lucas sequence, there were many quantities which did not divide the sequence at
all. In particular, 5, the characteristic number of the sequence was not a divisor,

Can it be shown that other Fibonacci sequences do not have every integer dividing
one or other of their terms ?
2

Using the relation T -

n
n Thn Tnf—l =(-)'D

with D 2 1, it can be shown that D may not be a factor. For suppose D divides
some term of the sequence. By choos ing n properly, this could be T 1 in our for-
mula. Then D divides the right-hand side of our relation, it divides Fhe second term
on the left-hand side since it divides Tn-l but it cannot divide the square of Tn since

Tn and Tn | cannot have a factor in common (on the assumption that we started our

sequence with two relatively prime numbers as was agreed above). Therefore D may
not be a factor of any term of ‘the sequence,

For example, in the sequence (1,4), let us take the terms modulo 1. We ob-
tain: 1,4,5,9,3,1,4,5,9...... Periodicity has set in; there is no zero. Hence 1l is
not a factor of any term of the sequence.

P. 92. Verify that the D for each of the sequences in P. 90 does not divide any term

of the sequence by establishing that periodicity results-before a zero is obtained
in the list of remainders.

INVENTOR Y OF FIBONACCI SEQUENCES FOR A GIVEN MODU LUS

In establishing the fact that Fibonacci sequences were periodic we reasoned
as follows. For a given modulus, such as 13, there can only be 13 possible remain-
ders: 0,1,2,3,....,11,12. Two consecutive remainders determine what happens in
the rest of the sequence. Since thirteen quantities can be paired among themselves
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GENERAL FIBONACCI SEQUENCES

in 13 times 13 ways, there can only be 169 possible pairs in sequence. Eliminating
0,0 as a case since it leads to a sequence with all zero remainders, we would then

have remaining 168 possible pairs in sequence.

Now, it is not difficult to set down all possible cases that can arise for any
given modulus such as 13. Start with any pair of remainders,

0,1,1,2,3,5,8,0,8,8,3,11,1,12,0, 12,12, 11, 10, 8, 5, 0, 5, 5, 10, 2,12, 1.

This accounts for 28 pairs, examples of which are: 3,5; 12,0; 10,8. Now select
any pair not found in the above list such as 0, 2.

0,2,2,4,6,10,3,0,3,3,6,9,2,11,0,11,11,9,7, 3,10,0, 10,10, 7, 4, 11, 2,
Take another pair not previously covered.
0,4,4,8,12,7,6,0,6,6,12,5,4,9,0,9,9,5,1,6,7,0,7,7,1,8,9, 4.
Continue this operation.

1,3,4,7,1,5, 3, 8,11, 6, 4, 10, 1,11, 12, 10, 9, 6, 2, 8,10, 5, 2, 7,9, 3,12, 2.
1,4,5,9,1,10,11,8,6,1,7,8,2,10.12,9.8.4,12,3,2,5,7,12,6,5,11,3.‘
1,5,6,11,4,2,6,8,1,9,10,6,3,9,12,8,7,2,9,11,7,5,12,4, 3,7,10, 4.

If these sequences of residues are numbered (1) for 0,1..., (2)for 0,2,..., (3) for
0,4..., (4) for 1,3,...; (5) for 1,4,...., (6) for 1,5,..., then the following table
shows completely which sequence any given pair of residues produces. (First term
is from the column at the left; the second from the heading at the top.) Thus, for a
sequence generated by 37,82, since the residues modulo 13 are 11,4, the table shows
that this is part of a sequence of type 6 for modulus 13,

TABLE OF SEQUENCES DETERMINED BY
RESIDUE PAIRS MODULO 13
4 5 7
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P. 93, Find all the sequences for modulus 1l. Make a table showing which sequence
is generated by any given pair of residues.
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GENERAL FIBONACCI SEQUENCES
PERIODICITY

From the relation T = F . _,2 + F 1P

we can see that the period of any Fibonacci sequence for a modulus must be the same
as that of the Fibonacci sequence or some divisor of the period for the Fibonacci se-
quence. That this latter case arises is seen from the Lucas sequence where the
period of the modulus 5 is four, whereas for the Fibonacci sequence it is 20.

P.94. Examine the Fibonacci sequence (1, 4) for the following prime moduli: 2,3,5,
7,11,13,17,19. Determine (a) the period for the given prime; (b) whether the
prime divides any term of the sequence., (See solution,p. 43)

FORMULAS FOR THE GENERAL FIBONACCI SEQUENCES

In the case of the Fibonacci and Lucas sequences we found a number of for-

mulas that pertained to them specifically. Can we find formulas that apply to Fib-
onacci sequences in general?

We have already noted the following:

Tn-i-l = Tn 1- Tn-l

T, = Fo,2a+ F__ b

if Tls a and T2 = b.
2

T -

n
n Tn-l Tn't-l = () D

where D is characteristic of the Fibonacci sequence in question. The (-1)n would

hold on the assumption that 2a < b, i.e., we have set up the sequence according to
the standard form previously mentioned.

P.95. What is the sum of the first n terms of a general Fibonacci sequence ? Try
out particular examples and see whether you can find what this sum might be,
Prove your formula by induction, (See solution,p. 49)

P.96. Find the formula for n
: T TZk (See solution,p. 51)
ksl
P.97. Determine the formula for
> TZk-l (See solution,p, 50)
k=1
P. 98, Determine the formula for n
> T4k-1 (See solution,p, 46)
k=1
P.99. Determine the formula for
)3 T4k-2 (See solution, p. 44)
k=1
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GENERAL FIBONACCI SEQUENCES
P.100. Determinethe formula for

T " (See solution, p.50)

k=1 k-3
P.10l. Determine the formula for
z T4k (See solution, p. 46)
k=1

P, 102. What is the formula for

(See solution, p.49)
P.103. Find the formula for

(See solution, p. 51)

P. 104. Show that T T -T _T = 1% 4+ r?
n nfl n-2 "n-l n

(See solution, p, 45)

P.105. Show that mk
* ° - — (=1 F F
ek Tn T, Thoe= (-1

k" n-m
(See solution, p. 44)
THE ASSOCIATED "LUCAS'" SEQUENCE

In studying the Fibonacciand Lucas sequences we found the relation

L = Fn_1+ Fn+1

between the terms of the Lucas sequence and the Fibonacci sequence. Starting with
a sequence, such as (1,4) we can set up an associated '""Lucas" sequence by means

of the relation

R, = Tn-l t Tn+1
The following table shows this for the case (I, 4).

T1 =1, R1 =7
T2 = 4, R2 =6
T3 = 5, R3 = 13
T4 - 9 R4 =19
T5 - 14 R5 = 32
T6 = 23 R6 = 51
T7 - 37 R7 = 83
T8 = 60 R8 = 134

Clearly, the R sequence will also be a Fibonacci sequence with the relation

Rn-0-1= Rn+ R

- 24 -
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GENERAL FIBONACCI SEQUENCES

P.106. If the Fibonacci sequence T has a characteristic number D associated with
it, what is the characteristic number of the associated Lucas sequence as above
defined? (See solution,p. 43)

2 2

P.107. Show that R~ - R 2
n n-2k

2
=T, - Tho2k!

(See solution, p. 47)
P.108. Prove that Rn+lRp_'_1-\— RnRP = 5 (Tn+lTp+ 1+ T, Tp)
(See solution, p. 51)
n
P.109. Prove that T2n+l = F_ RM1 -+ (-] T,

(See solution, p. 49)
2 2 — 2
P.110. Show that R4 Rn+l = 5(T -+ Izn_\_l)
(See solution, p. 45)

P.1ll. Prove that F T -F_T = (-)* g T
n m m n m-n 0

(See solution, p. 44)

THE FIBONACCISEQUENCE AND PASCAL'S TRIANGLE

Beginning with this section, a number of special topics wil be taken up in
which various phases of mathematics will be shown in relation to the Fibonacci se-
quence. We start with the well-known Pascal Triangle. The properties of this
table of numbers are many, but we single out the following,

(1) The elements of each row represent the coefficients in the expansion of (l-i-x)n.

- ro, C .
(2) The coefficient of X~ in the expansion is nCr’ written also as
being the number of combinations of n things taken r at a time.

C = n!

n D —
* r! (n-r)!

(3) The law of formation of the table is this: Add two consecutive elements’ of any
row to obtain the element of the following row immediately below the element to
the right. This corresponds to the relation:

n+1cr = ncr + nCr-l' )

What is the connection with Fibonacci numbers ? If diagonals going upward to the
right in the triangle have their terms added the sums are the successive Fibonacci
numbers,

This is shown in the table on the following page.

- 25 -



Diagonal
sums
1 — 1
1 — 1/ 1
2 — 1 - 2 o 1
3 — 1 3 3 1
_— — —~
5 — 1 _ 4 o 6 _ 1
8 — 1 5 _ 10/ 10 5 1
13-—1/6/ 157 20 15 6 1
21 — 1:7 21 35 35 21 7 1
34— 1 8 28 56 70 56 28 8 1
P.112. What is the formula for the nth Fibonacci number in terms of the elements
of Pascal's triangle? (See solution,p. 43)
P.l13. Prove this relation by mathematical induction. (See solution,p. 50)
P.1l14, Prove that n
F,_ — TF C
2n k=l k nk
(See solution, p. 48)
P. 115, Prove that n
L. =YL C
2n k=1 k n k

THE FIBONACCI SEQUENCE AND PASCAL'S TRIANGLE

(No solution provided)

P.116. Prove that

— Ll 2 3
F,= 27 |c 45 .c,45 c.+5 c..

n

(See solution,p. 46)

P.117. Find a formula for Ln similar to that for Fn in P.116.

(See solution, p. 50)
: sie el e ok e sl sl sfesesie s e sie e

THE GOLDEN SECTION
Given a line AB. It is required to find a point C on the line so that
ABeCB = AC2

A c B

Looked at another way, AB/AC =AC/BC. It is this ratio that is known as the
Golden Section ratio.,

let AB/AC =r. Then AC = AB/r; BC=AC/r :AB/rZ.

Since AB = ACH4BC = AB/r +-AB/r2

- 26 -
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THE GOLDEN SECTION

we have the relation l=1/r 4+ 1/1-2 or r2 = re¢l,

Writing this as a quadratic equation r2 -r-1=0 and solving

r - 14—\/—5— or r— 1 - vT
2 2
The first is positive and greater than 1

; the second is negative, Evidently, the first
is the ratio in question. The value of :

r_ 14\5 is  1.618033989...........
2
The reciprocal of r is 2 - V5 -1 = .618033989,.,,, -

1+ /5 - 2

P.118. Construct an isosceles triangle with an angle‘of 36 degrees at the vertex.
What is the ratio of side to base ? (See solution,p, 46)

P.119, Construct a regular pentagon inscribed in a circle.
relations involving the Golden Sectio
diagonals, (See solution, p. 50)

Draw its diagonals., Find
n among sides, diagonals, and portions of

The user of this discovery book shou
the value of the Golden Section ratio is ex

termine an explicit formula for the Fibo
started with )

1d have noted that the equation for finding
actly the same in form as that used to de-
nacci and Lucas numbers (p.12). There we

x> - x - 1=,

found roots r_ 14—\/? and § = 1 - VI-S.‘
2 2
and proved that Fn — T

n n
Ln_rfs.

The r in these formulas is precisely the Golden Section ratio (often written as the
Greek letter, phi, ¢),

We are able to draw some interesting consequences from this connection.,
§= -.618033989.,,.. -being less than one and negative will have even powers plus
and odd powers minus; alsoas n increases the nth power of s will get smaller and
smaller, so that for large values of n,
. n
Fn equals approximately r /ﬁ-
Ln equals approximately "

For example, r25 is 167761.00000596086.....and L25 is 167761,
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THE GOLDEN SECTION

Let us draw some consequences from the above. What is the limiting ratio
approached by Fn/ Fn-l as n getslarger and larger ?

T eeee (

-1 -
Lim F_/F__, = Lim " -s™) /s o)
neew ny o
Divide all terms in numerator and denominator by rn-l. The right-hand

side becomes:

2h

Lim (r - s"/ rn-l) /@1 -sn-l/

n-—>» o
Now we have already noted that as n gets larger, s” gets smaller and smaller tend-
ing to zero in the limit, while the nth power of r gets larger since r is greater than

1. Thus in the limit -
Lim Fn/ Fn = r, the GOLDEN RATIO.

-1
n-H e .

P.120. Derive the value of the Lim Ln/ Ln-l' (No solution provided)
nyeo ’

It is a curious fact that no matter with what two numbers we start (apart from
two zero's) to begin a Fibonacci sequence, the ratio of successive terms will in the
limit approximate to r, the Golden Ratio. Let us take what looks like an extreme
example: 2,83. We shall list the terms and in a second column the ratio of each
term to the preceding term.

n T T /T

n n’ “n-l

1 2 --

2 83 41.5

3 85 1.0241

4 168 1.9765

5 253 1. 5060 ‘

6 421 1. 6640

7 674 1. 6010 [ |

8 1095 . 1,6246

9 1769 1, 61553 [

10 2864 1. 61899 (|

Can it be proved in general that the ratio of successive terms of any Fibon- .

acci sequence must converge to the Golden Ratio? In our study of general Fibonacci ‘

sequences, we found that starting with a and b as our first and second terms,

Tn = Fn-Z a + Fn-lb

Tpa1= Fp32a FF,P
P.121. Prove that Lim Tn/Tn = - (See solution, p. 45)
nFwo )
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GENERATING FUNCTIONS

A generating function is an expression which on being expanded formally into
a series unfolds a sequence by means of the coefficients in the series. For example,

1 —_ 1+x+’x2+‘x3+ x4+ e

1-x
by the operation of division. The coefficients 1,1,1,1,......thus have 1/(1-x) as their
generating function. A less trivial example which will illustrate ong method of find-
ing the coefficients which constitute the sequence is the following.

Of what set of quantities is 1/ (l-x)2 the generating function? Since we do not know
what they are we can set up the following relation:

2 3
1 > P ao-.\_ a,lx-\-azx +a.3x creesean
1 -2x4x .

We multiply both sides by 1-2x+x2 and obtain a relation in which 1 equals the pro-
duct of

(1 -2x+x°) by a0+a1x+a2x2+ a3x3+.......

Since this is an identity, the coefficients of like powers of x on either side must be
equal. Hence

a,o = 1
a - 2 a.o = 0
a, -2a1+ a, = 0

a -2a2+ a, = 0

a, - 2a3+a2 =0

Apart from the initial steps, we evidently have a recursion relation
a'n-\-l = Zan T 2a-1

for finding later coefficients from earlier ones. Solving:

a.o--l, a = 2, a, = 3, a, = 4, a, = 5, a; = 6, etc.

Clearly, we have generated the integers: 1,2, 3,4, 5, 6,......50 that 1/ (l-x)2 is the
generation function of the positive integers.

P.122. Determine what is generated by

(See solution,p. 43)

P.123. Find the quantities generated by

1 42x (See solution, p.48)

1 -x -xz
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GENERATING FUNCTIONS
. 124, Find a generating function for the Fibonacci sequence (1, 4).
. 125. Determine a generating function for the Fibonacci sequence (2,7).
.126. Taking the derivative of both sides of the relation found in P.122, derive
another generating function relation. (See solution,p. 5])
. 127. Find the sequence generated by:

1-x

1- 2x -2x2+ x>
(See solution, p.43)

.128. Modify the generating function in P.127 so as to obtain Lucas numbers instead
of Fibonacci numbers. (See solution, p. 48)

stk skok koK ok
MATRICES AND FIBONACCI NUMBERS

Given a second-order matrix (1 1) which we shall des ignate Q.
1 0

We raise this to powers by the usual method of matrix multiplication.

Qz-,: 2 1 Q3= 3 2
1 1 : 2 1

If we identify the quantities in the matrix as Fibonacci numbers, it appears that

Q = Fn-\-l Fn
Fn Fn-l
Multiplying by Q again gives F F
n+2 n41
Fn-\-l Fn
so that the result holds by mathematical induction.
The determinant of the original matrix is 1 1} = -1,
1 0

. n . n .
Therefore, the determinant of Q is (-1) , since the determinant of a product of

matrices is the product of the determinants of the matrices in the product. Apply-
ing this to the nth power of Q, we obtain

2 !
Fn«j-an-l -F = -1

a well-known relation.

RN XukE
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MATRICES AND FIBONACCI NUMBERS

Again:
— m=-
Q™ Q" = ™Tn
so that Fotl Fum Foal Fa Fminel Frmn
—
Fm Fm--l Fn Fn- Fm-\-n Fm-\-n -1

Since for equality, two matrices must have the same elements, we obtain the fol-
lowing identities:

Fm-rn-\—l = Fm-{-l Fn«|'-1 + Fm Fn
Fm+n = Fm+1 Fn T Fm Fn-l
m4n — Fm Fn-[-l T FmaFa

Fm-\-n-l = Fm Fn + Fm-l Fn-l

Letting m=n in the first, we have the special relation
2 2
F2n+1 - Fn1-1 T F,

In the second, m=n gives us

F21‘1= 1:‘n~l*-1 Fn + Fn Fn-l = Fn Ln

P. 129. Using matrices derive relations on the basis of
3 3
3" — (Qn)
P. 130. Consider a matrix which we may designate P
o o 1\\
0 1 2
V1 1 1/
Find the various powers of P and determine the eleme nts of R

in terms of Fibonacci
numbers. Prove your result by mathematical induction,

e sfesfesfeok s e sl s sl ol s e sfeskesesfe o

CONTINUED FRACTIONS

There are many interesting patterns in the continued fractions of ratios in-
volving Fibonacci numbers. For example,

55/34 = 1 % 21/34
34/21 = 1 4 13/21
21/13 = 1 4+ 8/13
13/8 = 1 + 5/8
8/5 = 1 + 3/5
5/3 =1 4+ 2/3
3/2 =1 % 1/2

- 31



CONTINUED FRACTIONS
Thus 55/34= (1,1,1,1,1,1,1,2) which can also be written (1,1,1,1,1,1,1,1, 1).

P. 131. Find the continued fraction representation of
Lo/ Lg
(See solution, p. 51)
P. 132. What, in general, would be the continued fraction representation of

Ln/ Ln-l?
(See solution, p. 46)

P. 133. What is the continued fraction representation of Fn/ Fn-Z?
¢ See solution, p. 48)

P. 134. Find the continued fraction representation of Ln/ Fn.

(See solution,p. 51)

P. 135. What is the continued fraction representation of Fn/ Fn_3f?
. (See solution, p. 46)

It is also possible to represent irrational numbers by continued fractions.
Such a number which is of special interest is the Golden Section ratio, ¢ .

405 — 14 V5 -l
P 2

2 :\[_5—"\"1
J5 -1 2

so that we are right back at our starting point. Thus the continued fraction repre-
sentation of ¢ is an infinite continued fraction with all its elements 1.

Then

EPILOGUE

The Fibonacci numbers are named after Leonardo Pisano who in his Liber
Abaci (1202) proposed the famous rabbit problem that gave rise to this series of in-
tegers. Over the years these numbers have inspired the production of hundreds of
mathematical papers either dealing with them directly or in their many adaptations
and relations. In December, 1962, the Fibonacci Association was organized for the
purpose of collecting a Fibonacci bibliography, engaging in research along these lines
and producing a publication, the Fibonacci Quarterly,

It is hoped that the present introduction will have served to provide a speak-
ing acquaintance with this particular field of mathematics. Those who wish to pursue
the topic at greater length will find many leads as well as the opportunity for publica-
tion in the Fibonacci Quarterly.

The Editor as of this writing is: Dr.Verner E. Hoggatt,Jr., Department of
Mathematics, San Jose State College, San Jose,Calif. The Managing Editor is:
Brother U.Alfred,Department of Mathematics, St. Mary's College, Calif.
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#4 «e...=6765, 4181, -2584, 1597, -987, 6l0, -377, 233,
p.1 -144, 89, -55, 34, -21, 13, -8, 5, -3, 2, -1, 4,0,1,1,......
#11,p.3 an
#16 2 ndk _2
p.5 Fn - Fn-k Fn+k=‘ (-1) Fk
P.20 2 _ n
p-6 I"n - Ln-3 I"n-|~-3 = (1) 20
P.30
7 F_L -F L = (!
p. n n+l n+l n
P.38 2 1
p.l0 For n=], F1 - F_1F3—‘-‘— 1- 102= -1= (-1)
We wish to show that >
Fn+l - Fn-l Fn—\-3 = (1)
if the formula is assumed to hold for n.
Substituting Fn+3: Fn+2 “+ ]_?n 41 Ve have
F 2 F F = F2 F F -F F
n+l n-1"n+3 — n¥l n-1""n+2 n-1" n+1
Substituting Fn+2— Fn+l_‘—Fn and Fn-1=Fn+l - Fn ’
this becomes
2 2 2 _ n-1 n+-1
F?n‘\'l - Fnﬁ-l 1 Fn - Fn-l Fn+1-'(-1) = (-1)
b;r a previous formula.
P.52 -
p.12 L= Fp e T F Lo
P. 66 (a) 10; (b) 16; (c) 20; (d) 8; (e) 3.
p. 16
P. 87 If the Fibonacci numbers are expressed in base 7, the period
p- 19 of the last digit will be the same as the period modulo 7 or

16. For the last two digits, the period will be that of 49 or
112. For the last three digits, the per1od will be that of
seven cubed or 784,
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#3 Fn-l = Fn-.-l - Fn
p.1

P.2 Fongr !
p.4
P.16
p. 6 F4n

#17 —
p.6 I"n Fn-—l + Fn-\-l

P.27

2 2 —

p.7 Ln + Ln+1 5 an.\.l
P. 47

p. 11 Assume Fn— Fk+1 Fn-k+ Fk Fn-—k-l

Replace Fn-k by Fn-k-l-+ Fn-k-z' This gives
P P Focieert Figt Frokezt Fie Faoko
= Fppr YFO Pt Frogr Frokez
= Fiez Fookar ¥ Frar Fookes
which is the original formula with k replaced by k¢ 1.

P.56 _
p:l4 Fn Ln+k+ Fn--{-k Ln -

+k
(rn _ sn) (rn'rk+ sn+ k) -\_ (rn'\-k .0 ) (rn+ Sn) _
ER N5
2ntk n ntk ntk n 2n+k 2n+k n+k n
r +r s ~-r s =8 +r +r S

n n+k 2n+k 2ntk 2ntk)
s r s

-r s - = 2 - -
T =

R XX X= Xu
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# 2 To obtain the Fibonacci number that precedes two successive
p.1 Fibonacci numbers, subtract the first from the second.

P.5 F__F

2n = 2n4-1

p.4

P.13

p.5 L2n+1 -1

P.22 2 _ n '

p.-6 Ln - Ln-S Ln+5 = (-1 125’

P.32 n-1

p.7 Fn I"n'l'3 - Fn-§-3 Ln = (1) 4

P, 37 Only the portion of the induction in which we proceed from
p.9 n to n41is giveg here.

TF = F, -1
k=1 2k n+]
Fontz = Fongo
n+l
ZF = F -1
k=1 2k 2n+3

P. 59 k k

p. 15 Fo— Fi [L6k+ (-1 Ly Ly +(-1)
P. 72

240

p.17
P. 1&;3 L, =Fn+tTF,, =F +2 F o,

P-

If Fn and Ln have a common factor greater than 1, it

must either divide 2 or Fn r But it cannot divide Fn r
since Fn and Fn ] are relatively prime. Therefore 2

must be the highest possible common factor, F3k and L3k

are the terms having this highest common factor 2.




LR Fn..,l = Fn‘.‘-Fn-l
p.l
#13
2 n-1
p.4 e FoaFop = 6D
P': 15127 , =9349, 5778, -3571, 2207, -1364, 843, -521
P. :
322, -199, 123, -76, 47, -29, 18, -1, 7, -4, 3, -1, 2.
P.16
p.6 F4n
P. 33 . n-1
p-7 Fa I"n-|—4 - Fn-\~4 L= (b 6
P.42 _ _ _ -1
p.10 For n=], Ll—l, F0+ FZ-— 041 =1. Checks
Assume L = Fn—1+Fn+1
L = Fn-2+ Fn (Formula holds to n)
Add L= F_4 F o1
Complete the induction.
P.53 k-l
p.12 L= (-1 Ek Lottt " Fre1 Mntk
P. 64 ) F ’. ,
P.85 The periodicity of the last digit of the Fibonacci numbers is
p.19 given by the period modulo 10. Since the period of 2 is 3 and

the period of 5 is 20, the period modulo 10 is 60.
Tor the last two digits, the modulus is 100. The period
of 4 is 6; the period of 25 is 100. Hence the period of the last
two digits is the least common multiple of 6 and 100 or 300.
For the last three digits, the modulus is 1000. The period
of 8 is 12; the period of 125 is 500. Hence the period of the
last three digits is the least common multiple of 12 and 500
or 1500.

X X 1B
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#8,p.2 The sum of the first n Fibonacci numbers is one less than
the (n42)nd Fibonacci number.
P.3
p- 4 an-l FZn
P, 12
p.5 LZn -2
P.19
2 n-l
p.6 Ln - Ln-Z Ln_\,,z = (-1)7 5
P.29 n
p-7 Ln Ln+l - I"n-l I'.'n+2 =5
P.35 n-l
p.7 Fn Ln+k - Fn—\-k Ln = (-] ZFk
P. 63 —
p. 15 Fn Ln+k - Fn+k I"n
+ .
(rn _ sn) (rn k+ s n+13 _ (rn+k _ snfk ) (rn+sn) —_
V5 5
2n+tk ntk n  n n+k 2n+k 2n+tk ntk n
r -r S 4+r s -5 -r -r s
\} 5
k k
0 sn'\' + SZn‘\' _ 2(_1)11'\‘1 == - Sk y
VER NE
n+l
2 (-1) Fk
P, 73 The least common multiple of 3, 8, and 20 is 120,
p. 17
P.86 __ 2n 2n _ .n n
p.19 LG—— r 4 s and Ln—' r 4 s

Clearly, one does not divide the other in general. There is
also the formula:

2 n+l
L, = L. 3 2(-1)7 . Except for L= 1, there

will be a remainder on dividing both sides by Ln'
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#9,p.3 -
Fn+2 1
#14 FZ - F F — (_l)n
p.4 n n-2 " n¥2
P.7 (a) 3,12,15,27,42,69,111,180,291,471.
.5
P (b) -7,4,-3,1,-2,-1,.3,-4,-17, -11.
(c) 6,-13, -7, -20,-27, -47, -74, =121, -195, =316
P.21 2 n-1
p.6 Ln b Ln-4 Ln+4 = (-1 45
P.31
7 F L -F L = (-)*h
p- n " nt2 2 “n
P. 36 . : : . .
9 Only the portion of the induction in which we proceed
p. from n to n+4l is given here.
n
TF = F
- kel 2k-1 2n
Font1 = Fony
n
TFok-1= Fonto
k=1
P. 57 2 2 2nt2 n+1 n+l 2n+2 2n
b 14 npr T L= T 2T ety e
+ 2" sn-{- sZn
. nt+l n+4l 1
Since r s = (_1)n+ and rnsn-; (-l)n, these terms

add to zero. Thus the sum becomes

2n42
. n< +52n+2+ r2n+ sZn

. . 2 2
The right-hand side S(Fn 1 Fn-(-l) equals

2
5 (r n_, rnsn+52n+ r2n‘\'2 > 1_n'\-l sn-\—l+ sZn-I-Z)

5

2
_— n+ 52n+ r2n+2+ SZn-\-Z

Thus the quantities are equal to each other,

"H T eNee
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#7, n-1
p.2 F-n = (-1) Frl
#12
p-4 Fn Fn<|--1
P.10 _ lk
p.5 L= I
P.17
p.6 F4n+l- 1
P.34 _ n-1
p.7 Falobs - Fogs by = ()00
P. 46
p.ll Fn - Fk+l Fn -k + Fk Fn -k -1
P. 62 .
: k-1 k-1
p. 15 L™ I [L6k+ 07 Ly + Lo+ (D ]
P.71 The period of the product of two primes is the least common
p. 16 multiple of the periods of the primes taken individually. Thus
P P P Y
for 77, the periods of 7 and 1l are 16 and 10 respectively. The
period of 77 is the least common multiple of 16 and 10 or 80.
The residues for 77 are shown herewith.
LL2,3,5,8,13,21, 34, 55,12, 67,2, 69,71, 63,57,43, 23, 66,12, 1, -
13,14, 27,41, 68, 32, 24, 55,1,56,57, 36,16, 52, 68,43, 34,0,
34,34, 68,25 16,41,57,21,1,22,23, 45, 68, 36,27, 63,13, 76, 12,
11,23, 34,57, 14, 71,8, 2,10, 12, 22, 34,56,13, 69,5,74, 2, 76,1, 0.
P.84 A smaller Fibonacci number divides a larger when the sub-
p.19 script of the smaller divides the subscript of the larger.

Let there be a Fibonacci number Fd and a larger Fibonacci

number de. Then
kd kd d k d k
de: = - S — (1‘ ) - (S )
B V5
The numerator has a factor rd - sd, so that F, must be a

d

factor of de.




#6, p.2

Fibonacci numbers with corresponding positive and
negative odd subscripts are the same; those with correspond-
ing positive and negative even subscripts are opposite in sign.

P.4 2
p. 4 Fon
P. 14
p.5 F4n<|-2 -1
P.23 2 ntk -1 _ _2
p.6 Ln " Lok Dot = D >Fy
P.28 el
p.7 FnFn+1 -Fn-an'\‘Z — (-1)
P.49 k-1 F
p.12 Assume  F = (-1) Fan+k+1'Fk+1 ntk
Replace Fn+k by Fn+k’+2 - Fn-|-k'\~1
F = (-) |-F  F 4+F  F +F F
n = D F e F e 2T FrptF ok TV Fie Frgieq
yk F . F -F F
= (-1 k+I n+k+2 k+2 " ntk+l
P.54 — - -
p. 13 For n=l, Ll.. r4-s = L.
Assume Ln = " + s” up ton
— n-l n-1
Ln-l_ r 4s
n+l n+1
Add Ln+1_ r 4 s
P. 65
p.16 (@) ,.,2,3,5,8,2,10,1,0. (b) 1,1,2,3,5,1,6,0,6,6,5,4,

2,6,1,0. (c) 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4, 1,0.
(d) 1,1,2,0,2,2,1,0. (e} 1,1,0.
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#10,p.3 o n
Headings: FZk-l EFZk X
k=1 -
P.6 2
p.4 Fonp™!
P.15
p.6 Fgn1 -1
P. 24 —_
p.7 > Fn Ln~1'+ I"n-\-l
P. 26
2 2
P-7 F2n+1 - Fn + Fn‘\'l
P, 43 For n=l, L4_3= .T..1 =1
p.10
F4_1 -1 = F3 -1= 2-1=1, Checks.
n
Assume .
k—?L4k'3 = F4n—1 -1 up to n.
Lgng1 = Fup + Fint2 (P.42)
n<+1
T L = F F -1
k=1 4k-3 4n+1+ 4n+42
= Fings -1
Complete the induction.
P.55 3k 3k k k 2
14 F — r -s (r -s)(r k-1-rksk-'l—52k)
= F Kk
-1
ko [Ly 4 (-
. . 2 . 3, 4
P. 74 The period of 2 is 3; of 27, is 6; of 2 , 18 12; of 27, is 24,
p. 17

The general formula for the period of 2" would appear to be

30271




F_1=1 F_lz;':-144
F-Z: -1 F_13=233
F_3 =2 F-14_ -377
F_4,”_, -3 F—IS:' 610
F-S: 5 F-16= -987
F-6= -8 F-17:1597
.‘E‘_7 =13 F_18=-2584
F-8 = -21 F_19= 4181
F_9 = 34 F 20 -6765
F-10= -55
#15 2 n-1
p.5 Fa Fao3 Fapz = (D04
2 n
Fn - n-4  n44 - (=1~ 9
2 n-1
Fn - Fn-S nys = (-1) 25
2 n
Fn - Fn-() ntb = (-1 64
2 n-1
Fn - Fn-? n+7 = -1 169
P.1
p.5 Loyz =3
P.18 2 _ n
p.6 Ln T Tn-l I"n-t-l =5
P.25 —_
p-7 FZn— Fn Ln
P. 48
p.12 F = (-1)k'1 F F F
n k ~ n¥k+l k4l "n4k
- 42 -
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P.75 Period of 3" is 8 '3n—1.
p-17
P.82 F = F__,+F
p.19 -2 n+l n
It Fn+2 and Fn have a divisor g greater than 1, this
quantity must divide Fn+1 as well. This would contradict
the fact that Fn and Fn+l are relatively prime.
P. 94 In the sequence (1,4), 2 has a period of 3 and is a divisor;
p.23 3 has a period of 8 and is a divisor; 5 has a period of 20 and
is a divisor; 7 has a period of 16 and is a divisor; 11 has a
period of 5 and does not divide any term of the sequence;
13 has a period of 28 and does not divide any term of the se-
quence; 17 has a period of 36 and divides no term of the
sequence; 19 has a period of 18 and divides certain terms of
the sequence.
P. 106 let T.—a, T_—b. Then T,. =—b-a; T.— a+b.
1 2 0 3
p.25
— q.2 .2 2
D-—T2 - T1T3— b -a  -ab.
For the associated Lucas sequence,
R1 — 2b-a, RZ’: 2a4Db, R3= a+ 3b.
2
R2 - R1 R3 = (2a+b)2 - (2b-a)(a+3b)
= 5(az-1- ab -bz)
Thus the characteristic number for the associated Lucas
sequence is 5 times that of the Fibonacci sequence.
P. 112 [etn/2)
p.26 F =2 _C._
n g, on k" k-1
where the square bracket on (n+1)/2 means the "'greatest
integer in."
P. 122 1 2 3 4
p.29 > = F1-|-F2x +F3x +F4x -\-st e
1l -x =-x
Pl-:'- lig The function generates:

2 2 2 2 2 3 2 4
F1+F2x+F3x+F4x+F5x ceesaen

- 43 -




P.76
p. 17

Period of 7 is 16; period of 72 is 716 or 1l12.

P. 81
p. 18

Despite the fact that the primes 3 and 7 divide terms of the

Lucas sequence, 21 does not. The Lucas sequence is divided

by 4, but neither 12 nor 28 divide any term of the sequence.
This situation arises as follows. In the case of 21, the

prime 3 divides terms with subscripts of the form 2+4k;

the prime 7 divides terms with subscripts of the form 4+8k.

If a term is divisible by 21, this means that both 3 and 7

must divide it, so that 24k must equal 4+8k' for some

values of k and k'. But this is clearly seen to be impossible.

P.99
p. 23

n

ZT 2 = FonTop

k=1

P, 105
p.24

We make an induction on k.
Whenk =0, T T - T T =0 checks with the formula.
m n m n

When k=1, - _ m-1
Tm-l Ty - Tan-l =(-1) Fo-m D

by P. 102. This also checks with the proposed formula.
Assume the relation holds up to k. Then

m+k
T T -T_T = (- F

m-k "n m Fn D

-m

k

-T T = (yPtk-lp g D
m

T n-kel (=) k-1" n-m

m-k+1 Tn
Subtract the first from the second. This gives

m+k+1 F F b

Tkl Tn = T T =00 k4l n-m

which is the expected relation for k+l. The induction can
now be completed on k.

P. 1l
p. 25

The solution would proceed as follows:

n-1
(1) Prove that Fn Tn - Fn 1 Tn- (-1) T0

+1 +

n-1
(2) Prove that Fn Tn_\_2 - Fn-\—Z Tn:_— (-1) T0

n-1
Adding: Fn Tn_‘_3 - Fn-\-3 Tn = (-1) F3 TO

Continued addition will arrive at the desired formula.

- 44 -
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P.77 Let k(p) be the period for prime p and Z(p) , the entry
p.18 point for prime p. The three cases are as follows:
() ¥ k(p)=Z(p), then k(p) = 2(2m+1) in form.
(2) If  k(p) =2 Z(p), then k(p) = 27 (2m+1), r>3,
(3) k(p) = 4 Z(p), then k(p)= 4 (2m-+1).

P. 80 A prime does not enter the Lucas sequence if the entry
p.18 point of the prime in the Fibonacci sequence is odd.
Examples are: 5,13,17, 37, 53, 61, 73,

P. 89A
p-20 I, = Frnoo? + FoalP -
P. 104 ' 2
p.24 Tn(Tn-l-l Tn-l) - Tn.
—_ 2
or T T . T T 1T
Then 2
Tn Tn+1 - Tn-Z Tn-l = TnTn-l -Tn-lTn-Z + Tn
— 2 2
p T, =T, b
P. 110 2 2 2
— 2
p. 25 Rn + Rn- 1 — (Tn+1 + Tn-l) + (Tn + Tn-Z)
— 2 2T_-T  )°
=@T, 4 T) T -T )
— 2 2
5T + Top)
P.121 Lim T /T .
p.28 im a= Lim Fn_2a+ F

n>o Nes o

a+ Fn_zb
Lim F-Z a+(F /F 2)19
n3 L+(Fn2 3)b

r '*'b/
+b/




P.78 There are three cases:
p- 18 (1) If Z(p)= 2m+1, then Kk(p)=4(2m+l).
(2) ¥ Z(p)=2(2m+1), then k(p)= 2(2m4).
r r+l
(3) ¥ zZ(p)=2 (2m+l), r 2 2, then k(p)= 2 (2m+ 1)
P. 89 (a) (27,84); (b) (485,1099); (c) (62,137)
p. 20
P.98 n
p.23 TTg1 = Fon Tonp
k=1
P.101 n
.24
P ZTy = Fon Tonse
k=1
P. 116 :
p.-26 n _n
Fn: r - s , where r:H—;rg ' S.‘:l‘g
\5 2
The formula is obtained by expanding rn and sn by the
binomial theorem and combining like terms.
C
P'21718 On bisecting the base angle of 72°
p- two isosceles triangles are formed.
s a Triangle ABD is similar to CAB.
Hence
D s/a= a/(s-a)
2 2 _
s=-a or s -as -a = 0
A B from which
a s/a— 1+\J5
2
The plus value indicates that s/a = ¢, so that it is
simply necessary to find two lines in this ratio to produce
the required triangle.
i ;322 Ln/ L., = (ln-Z' 3) meaning n-2 one's and a 3.
P. 135 A series of 4's ending in 3,5, or 4,
p. 32
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P.79 If a prime, p, is of the form 10x% 1, the period k(p)
p.18 divides p-1; if it is of the form 10x+ 3, the period k(p)
divides 2p+t2.
P.88 In all such sequences, there is a portion to the right in
p.19 which the signs of all the terms are either all plus or all
minus. There is a portion to the left in which the signs are
alternating. Since the sequences with minus signs to the
right may be obtained by multiplying all the terms of a cor-
responding sequence with plus signs to the right by minus
one, we shall limit ourselves to sequences in which the
terms to the right are positive,
P, 91 . 2 . n
p.21 Given that Tn - Tn-l Tn-H = (-1) D
To prove that: _ 2 - n-+1
Tn+1 - T, Tn+2 = () D
Proof. Replace Tn+2 by Tn-\-l+ Tn . This gives
2 2 2
Tn-\—l - Tn Tn-H - Tn - Tn-{-l(Tn-\-l -Tn) - Tn
_ 2 _ 2 n+1
= Tn-\-—l Tn-l --'1‘n = -(Tn - Tn+1Tn_1) = (-]) D
Therefore each Fibonacci sequence will have its own charac-
teristic D associated with it.
P. 107
b. 25 The proof of P,107 depends on the proof of P.110.

It is necessary to work with two formulas simultaneously,
name ly:
2 2

2
Rn - Rn-Zk - 5(Tn =T

2
n-2k )

and '
2 2 2 2
R+ Rk = 5 (Th + Ty okor)

Now, from P. 110,

2 2 _ 2 2
Rn + Rn—l =5 (Tn + Tn-l )
2 2 2 2

Subtracting the second equation from the first gives:

2 2 — 2 2
Rn - Rn-2 > (Tn - Tn-Z )
Adding 2 2 _ 2 2
Rn-Z T Rn-3 = > (Tn-2+ Tn-3 )
gives 2 2 2 2
R + R 5 = 5 T “+ T, .3 More.

- 47 -




P.107 Assume the two formulas hold up to k as given.
p. 25 2 2 2 2
(cont.) Then Rn - Rn-Zk - 5(Tn - Tn-Zk)
2 2 2 2
Rpzkt Rozkar = 5T ok 4 Tooak1)
Adding
2 2 — 2 2
Rn + Rn-Zk-l =53 (Tn + Tn-Zk-l)
Then
2 2 — 2 2
R-2k-1 T Ro2k-2 = 3T ok + Thoziez)
Subtract.
2 2 2 2
Rn - Rn-Zk-Z - 5(Tn N Tn-Zk-Z)
so that we have advanced from k to k+1. The induction on
k can now be completed.
L1 X :
F; 2‘2 The binomial expansion gives:
: n
n k
(1#2a) = Za C
k
k=0 "
2 2
We have r = l4r and s =14 s. Therefore
[
2n n n
r = (l+r) = Erk C
k=0 k
n
2P = (145 = rs© Sy
k=0
2n 2n n
Hence F2n= I -5 T (- sk) c
\5 k=0 k
G
n
= IF_ C
Kk =0 kn"k
P, 123 142x
2
p. 29 < . =L tL x+L, x> +L, xh......
1 1 2 3 4
-x -x
P. 128 2
1 7x -
p. 30 7x - 4x generates the squares of the
1- 2x sz + x3
Lucas numbers.
P. 133
p.32 Fn/ I:‘n-Z = (2 1n--5’ 2)

- 48 -
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P.95 T. = T
p.23 1 = T3- T,

T1+T2 —T3 = T4 - T2

T+T,+ 7T, = T, =T, +T;=7T,-T,

It appears that the formula is

n
T, = -
k—f} Kk Tn+2 T2 . Assume true to n.
Add T =
n4l n4l
n-41
T = T -T
k=1 k n+3 2
Complete the induction,
P.102
p.24 — m -1
Tm-l T - T Tn-l =1 Fn-m b
P. 109 : . :
25 We need to use two relations to make the induction:,

P.

n
TZn - Fn Rn—‘- (=1 TO

n
TZn-f-l - Fn Rn1-l+_ (-1) Tl

For n=0, we have T0=T0 and T1=T1 .

Assume the relations to hold up to n.
— n-1
Ton1™= Fa1Ry + (-1) T

n
TZn Fn Rn T TO

Add: — n
Tont1 = Fn-\-l R, T -1 (To =T

Here we must invoke an unproved relation:

~— n
Fo41Ra F R T Ry

Making this substitution, we have:

n
Ton41= FuRpgt (0 RytTo - T)

n
= PRt 0T




n
P. 97
T =T - T
p. 23 k=1 2k-l 2n 0
P. lzo‘f n
p. -
z T4k-3 - FZn T2n-1
k=1
P.113 This relation follows from the very nature of the Pascal
p.26 Triangle. For example, if we add the quantities (p.26) in
the table that give 21 and 34, we get 1, 8, 21, 20, and 5
the quantities in the next diagonal.
P, 17
p. 26 = Ll-n 2 3
L =2 oot 5,6, 45" c,+5 c.....
B
P. 119
p.27

D

Since the central angle of a regular decagon is 360, the
ratio of the radius to the side of the regular decagon is

¢ Thus the points of division on the circle can be de-
termined. Connecting alternate points gives the regular
inscribed pentagon. Inthe pentagon, BED is an isosceles
triangle with vertical angle of 36°, so that the ratio of the
diagonal to the side is ¢p. For the same reason it follows
that

EF = ED/ ¢

and FG:AF/w:ED/¢2 .
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P. 96 n
p. 23 z Tok = Toppn - T
P. 103 2 . ntk-1_2
p.24 Tn - Tn-k Tn+k = (-] Fk D
P. 108 We proceed by a double induction.
p. 25 - .
RZ R2+ R1 R1 = 5 (T2T2+ T1 Tl) by P.110
—_— 2 2
R2 R3+ Rl RZ = R2 + R1 + R1 RQ'\"R1 R2
Using RO-\- R2= 5 Tl' this becomes
5 T2+T2+T R)—S(Tz. Tz:\—T T. 4T, T
( 2 1 171 = 2 T+ 1 170 1 2)
=5 (T1 Tz-\--T2 T3)
Keeping the R, in the first product and the R. in the second
constant, it is now possible to build up the second sub-
scripts to any point desired. Thus
R2 RP'\‘I <+ R1 Rp = 5 (T2 Tp_‘_1 -[—Tl Tp) (1)
Again —_—
gain, R, R2+R2R1 5( T, Tz-\-TZ T,)
by rearranging one of the above relations. Also
2 2 __ 2 2
Ry &R, = 5(T, + T,)
Keeping the first element in each product constant, we can
now arrive at
=5(T, T T,6 T
R3Rp"'1 T RZ Rp ( 3 p-1-1+ 2 p)
Using (I) and (2), we can now build up the subscripts of the
first elements and thus arrive at
Rn+1 Rp H-}—Rn RP = 5 (Tn-l-l Tp+l+ Tn Tp)
P. 126
1 42x
p. 30 LS ol S :.-'F2+—2F3x+3F4x2+-4F5x3......
2.2
(l-=x-x")
P. 131
p. 32 LlO/L9= 123/76 =(1,1,1,1,1,1,1,1, 3)
P,.134 Ln/Fn: 2,4,4,.... ending in 5,3, or 4 .
p.32




TABLE 1
THE FIRST HUNDRED FIBONACCI NUMBERS
AND THEIR PRIME FACTORIZATIONS

T7THeea

Note. In this table, an underlined factor means that it is entering the sequence for
the first time.

n F Factors of F
n n

1 1 .

2 1

3 2 2

4 3 3

5 5 . 5

6 8 — 23

7 13 1

8 21 3e7

9 34 2617

10 55 5011 i
1 89 89,

12 144 2703

13 233 233

14 377 1329

15 610 205461

16 987 307047

17 1597 1597 ~ .

18 2584 27017419

19 4181 37,113 -

20 6765 395011441

21 10946 20134421

22 17711 894199

23 28657 28657

24 46368 3 2°e3%07.23 |
25 75025 5% #3001 .
26 121393 2331521
.27 196418 . 2017+53 1109 [
28 317811 241329,281 ()
29 514229 514229

30 832040 2715011 931061 @
31 1346269 55742417 _ @
32 2178309 34704702207 g
33 3524578 2 289419801 -
34 5702887 1597 +3571

35 9227465 5130141061,

36 14930352 27037417419 6107

37 24157817 739149 42221 "_

38 39088169 374113+ 9349

39 63245986 2233135721

40 102334155 305074 1144102161

- 52 -
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41
42
43
44
45
46
47
48
49
50
51

.52

53
54
55
56
57
58

‘59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

TABLE 1.

F
n

165580141
267914296
433494437
701408733
1134903170
1836311903
2971215073
4807526976
7778742049
12586269025
20365011074
32951280099
53316291173
86267571272
139583862445
225851433717
365435296162
591286729879
956722026041
1548008755920
2504730781961
4052739537881
6557470319842
10610209857723
17167680177565
27777890035288
44945570212853
72723460248141
117669030460994
190392490709135
308061521170129
498454011879264
806515533049393
1304969544928657
2111485077978050
3416454622906707
5527939700884757
8944394323791464
14472334024676221
23416728348467685
37889062373143906
61305790721611591
99194853094755497

160500643816367088
259695496911122585
420196140727489673

FIBONACCI NUMBERS

Factors of F
n

278959369
2 013 0294211 0421

433494437
3«43 +89 +199 4307
205¢170610109441
139+ 461+285657
2971215073 ,
2 930 7v23447, 1103

13297 «6168709 T

5%+ 11+101+151+3001
21597+ 6376021 -
3+233+521~90481
953« 55945741
- 27417419 +534109+5779
54894 661+474541
3e7e7+13+294281414503
2 *37 %113 797 +54833
5919489514229
353.2710260697

270 3°e5e11831 4106162521
4513 +555003497 -
557+ 2417~ 3010349
2+13%17+421+35239681
3+7+47+1087 <2207~ 4481
5+233e 14736206161

27 +89+199+9901+19801

269+116849+1429913
3+67+1597 93571 +63443

2 0137829418077 928657
5111213229 +71 +911+ 141961
6673 +46165371073

2 #3 2717219234107+ 103681

9375829+86020717
73+149-2221+54018521

2+5% 61-3001+230686501

3637011329349a 29134601
13894 988681+4832521

2 «79¢233.521-859.135721

157+ 92180471494753

34507+ 11+41+ 470160142161 .3041
24174534109 .2269 14373+ 19241
2789+ 59369 ¢ 370248451
99194853094755497

203 +13°29+83°211°281-421.1427

501597+ 9521 3415914041
6709 144481s 433494437

53 -



87
88
89
90
91
92
93
94
95
96
97
98
99
100
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TABLE 1.

F
n

679891637638612258
1100087778366101931
1779979416004714189
2880067194370816120
4660046610375530309
7540113804746346429
12200160415121876738
19740274219868223167
31940434634990099905
51680708854858323072
83621143489848422977
135301852344706746049
218922995834555169026
354224848179261915075

TABLE 2

FIBONACCI NUMBERS

Factors of Fn
20173 4514229 43821263937

347+43+894+199+263 307+ 881+ 967
1069+ 1665088321800481

2 6501141701931 4610 1814 5414109441

134130233 +741469+159607993
3.139 «461 4969 28657+ 275449
2055742417 4531100550901
2971215073« 6643838879

5437 «113.761l¢ 29641s 67735001

2376 70230470 769¢1103«220703167

193+ 389+3084989. 361040209
1329497+ 6168709+ 599786069
2417089 ¢197+ 198019 18546805133

345 11¢41+101+1514401s 3001 570601

THE FIRST FIFTY LUCAS NUMBERS
AND THEIR PRIME FACTORIZATIONS

76

123
199
322
521
843
1364
2207
3571
5778
9349
15127
24476
39603
64079
103682
167761
271443

Factors of LL
n

w

-~

m
T2+3
29
47
— 22, 19
3.41 -
199
247+23
521
3281

2% 1131

2

2+47¢1103
11+101+151
3490481

54 -
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TABLE 2. LUCAS NUMBERS

n L Factors of L,
n 2 n
27 439204 2°e1945779
28 710647 7% 14503
29 1149851 59619489
30 1860498 2 v3“94le2521
31 3010349 3010349
32 4870847 1087 ¢ 4481
33 7881196 279199 +9901
34 12752043 3067063443
35 20633239 110 294 71# 911
36 33385282 2470230103681
37 54018521 54018521
38 87403803 3029134601
39 141422324 2°¢79.521¢859
40 228826127 474160173041
41 370248451 370248451
42 599074578 . 2¢3°0 83428101427
43 969323029 T6709 . 144481
44 1568397607 742637881967
45 2537720636 27011419 v319181 541
46 4106118243 3449694275449
47 6643838879 6643838879
48 10749957122 2 976902207 23167
49 17393796001 294599786069
50 28143753123 3 +41,401e 570601

TABLE 3. ENTRY POINTS AND PERIODS
OF FIBONACCI AND LUCAS SEQUENCES
FOR PRIMES LESS THAN 270
Note. In this table k(p) indicates the period which is the same for both Fibonacci
and Lucas sequences except for 5, where it is 20 for the Fibonacci sequence and

4 for the Lucas sequence; Z(F,p) is the entry point of the Fibonacci sequence;
Z(L,p)'is the entry point of the Lucas sequence.

P k(p) Z(F, p) Z(L,p)
2 3 3 3
3 8 4 2
5 20 5 -
7 16 8 4
11 10 10 5
13 28 7 -
17 36 9 -
19 18 18 9
23 48 24 12
29 14 14 7



TABLE 3., PERIODS AND ENTRY POINTS

) 0000

P k{p) Z(F, p) Z(L, p)

31 30 30 15

37 76 19 -

41 40 20 10

43 88 44 22 |

47 32 16 8

53 108 27 -

59 58 58 29

61 60 15 -

67 136 68 34

71 70 70 35

73 148 37 -

79 78 78 39

83 168 84 42

89 44 n - -
97 196 49 -

101 50 50 25 S
103 208 104 52 :

107 72 36 18

109 108 27 -

113 76 19 -

127 256 128 64

131 130 130 65

137 - 276 69 -

139 46 46 23

149 148 37 .

151 50 50 25

157 316 79 -

163 328 164 82

167 336 168 84

173 348 87 --

179 178 178 89 @
181 90 90 45 .
191 190 190 - 95

193 388 97 . - @
197 396 99 --

199 22 22 1 ¢
211 42 42 21 @
223 448 224 112 ¢
227 456 228 114

229 114 114 57 _
233 52 13 -

239 238 238 119

241 240 120 60

251 250 250 125

257 516 129 --

263 176 88 44

269 268 67 -

- 56 -
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