12 o Representation Theorems

A sequence of positive integers, ay, ay, ..., a,, ..., is complete with
respect to the positive integers if and only if every positive integer m is the
sum of a finite number of the members of the sequence, where each member
is used at most once in any given representation. We state the following

theorem without proof.

THEOREM |
The sequence defined by a,, = 2" (n > 0) is complete.

For example, since

ay=2°=1, a, = 2% = 4, a, = 2* = 16,

(11=2l=2, 03=23=8, 05225=32, o . ey

we can write, for example:

=1 5=44 1 9 =841
2=2 6=14+2 10 = 8 4 2
3=2+41 T=44241 11 =8+2+1
4 =4 8 =8 12=28+4

It can be proved that each representation is unique, and you should recognize
this as the basis for the binary system of numeration. For example:

1: 1 5: 101 9: 1001
2: 10 6: 110 10: 1010
3: 11 7: 111 11: 1011
4: 100 8: 1000 12: 1100
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The ancient Egyptians used the principle described on the preceding page
in their method of multiplication. For example, to find

243 X 25,

they would write two columns — powers of 2 and the corresponding products:

v 243/

2 486

4 972

8 1944/
16/ 3888 ¢/

Since 25 = 16 + 8 4+ 1,
243 X 25 = 3888 4 1944 + 243 = 6075,

as you can see by applying the distributive property.
We shall now prove an interesting theorem about the Fibonacci sequence.

THEOREM I

The Fibonacci sequence of numbers, where a, = F, (n > 1), is complete.
To discover a method of proof, let us look at the following table:

F] Fg F3 F.; F5 F(i
1 1 2 3 4 5 6 71 8

We observe that we can write:

1=F1=F2
2=F3 F2+F1
3=F4=F3+F2

4 = F,+ F,=Fy;+ F,+ F,
5=Fs=F,+ Fy

6=F5+F2:F4+F3+F2

7=F5+F3=F4+F3+F2+F1
8=F¢g=F;+ Fy=Fs+ Fs+ F>

Thus, each positive integer from 1 through 8 can be represented in at least
two ways as a sum of Fibonacci numbers where each is used at most once in
any representation.
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Proof of Theorem II. We know from (I;) (page 52) that
Fo=l=F +F+Fs+ -+ F,
and we observe in the list on page 70 that for 3 < n < 6, each integer
m=1,23 ..., F,—1

can be represented as a sum of some or all of the Fibonacci numbers Fy, F,,
Fa, ..., Fy_o. Thatis,forn=3 F,=F3=2F,—1=2—1=1,
F._- = F; =1, and we have

1=F1,

for n=4, F, =F;=3 F,—1=3—1=2, F,_y=Fy =1, and
we have

1 =F,, 2= F,+ Fy;

and so on. We shall use this as the basis of induction (recall page 54).

For the second part of the proof, we assume that every integer m =1,
2,3, ..., Fk — 1, k> 3, is representable using the Fibonacci numbers
Fy, Fo, ..., Fr_o. We must prove that every integer m =1, 2, 3, ...,
Fry1 — 1 is representable using Fy, Fo, ..., Fr_;, k> 3. If we add
Fi._, to each of the given representations, we shall have representations for

1+ Fe_y, 24+ Fiev, oo, Fo— 14 Fr_y,

where Fi + Fr_y — 1 = F;4, — 1. We now have representations for the
two sequences of consecutive positive integers

1, 2, 3, ..., Fr—1
and
1+ Fi_yy 24+ Feyy 34+ Fey, .., Fry— L

Are there any omissions bétween Fr—land 1 + F;_,? No,since fork = 3,

Fr—1=F3—1=1 and 1+ Fro_y =14+ Fy, = 2;
for k = 4,

Fr—1=F;,—1=2 and 1+ Fe_y =1+ F3 = 3;
and for k > 5, since F. — Fj_; > 2, we have

Fr = 1214 Fr_y,

and so there is an overlap. In any case, every integer m =1, 2, 3, ...,
Fryy — 1, k > 3, is representable using F,, Fo, ..., Fx_;, which is what
we set out to prove.

Thus, the proof is complete by mathematical induction.
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THEOREM il

The Fibonacci number sequence, where a, = Iy (n > 1), with an
arbitrary F, missing is complete.

Observe, for ex'ample, that if F, is omitted from the display on page 70,
every integer from 1 through 8 can still be represented by a sum of other
Fibonacci numbers.

Proof. From the proof of the previous theorem we note that we can properly
represent any number m = 1, 2,3, ..., Fupr — 1 by using only the
Fibonacci numbers Fy, Fa, Fs, - . ., Fu_1, that is, without using F,. Then
F,, can represent itself, and when we add F, 4 to the representations for
m=1,2,3,..., F,y1 — 1, we have representations for m = 1, 2,3,...,
2F, 41 — L Since 2F,41 — 1 > Fuq2 — 1, we can easily proceed over

the trouble spot.

THEOREM IV

The Fibonacci sequence of numbers, where a, = F, (n > 1), with any
two arbitrary Fibonacci numbers F, and F, missing is incomplete.

Proof. Since
Fy+ Fo+ Fs+ -+ Fy= Fiya — 1,

if F, < Fj is missing, then
F1+F2+F3+“'+Fp—l+Fp+l+“'+Fk: Fk-{-'z_Fp—' 1.
But with F,, > F, also missing, we can reach

F1+F2+"‘+Fp—1+Fp+1+“'+Fn—1
=Fu+l—Fp_l<Fn+l— 1.

Since F, > 1, there is a number F,,; — 1 without a proper representation.
This happened because even if we used all of those available numbers less
than F, at once, we cannotreach F, ; — 1 and any other Fibonacci numbers
which are available are too large, since the Fibonacci numbers are a strictly
increasing sequence for n > 2.

For example, suppose that we try to find a representation of 20 without
using Fs = 5 and F; = 13. Those available are then F,, Fa, F3, Fy, Fg.
The maximum attainableis I + 1 + 2 + 3 + 8 = 15. The next available
Fibonacci number is 21 so that we cannot find representations for 16, 17,
18, 19, and 20. :
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We shall now consider the corresponding properties for the Lucas sequence
of numbers. First, let us look at the following table:

Ly L, L, L, L,
2 1 3 4 5 6 17 8
1=1L,
2 =1L,
I=Ly=1L,+ L,
4=Lz3=L,+ L,

S=Lz+Li =L+ Ly
6=L3+Lo=Ls+ L1+ Ly
17=Ly=Lz+ Ly=Lz+ L+ Lo
8=Ls+ Ly =L3+ Ly + L,
We observe that each positive integer from 3 through 8 can be represented in
at least two ways as a sum of Lucas numbers where each is used at most
.once in any representation.

THEOREM V

The Llucas number sequence, where a, = L,_; (n > 1), is complete.

We know from (I,) (page 54) that

L1+L2+L3+”'+L71:Ln+2—3a

and so Lo+ L+ Lo+ Ly+ -+ L, =L,yo— 1.

Sincea, = Ly = 2,a, =L, = l,a3 =Ly = 3,... yAnyo2 = Any1 + Gy,

the sequence a, is a generalized Fibonacci sequence whose sum is
ay+ay+az+ -+ a,=a,42— 1.

Thus, this theorem can be proved by mathematical induction as Theorem 11

was proved.

Is the Lucas number sequence complete if any single term is missing?
Clearly. without a, = L, we have no representation for 2, and without
a, = L, we have no representation for L Itis as yet an unanswered question
as to which Lucas numbers can be left out without destroying completeness.
For example, we can see that Lz = 4 can be left out:

1 =1 4 =341 7=1 10=743
2=72 5=3+2 8=T7+4+1 11 =11
3=3 6=3+2+1 9=7+2 12=1141

It would seem that if any Lucas number Ly, k > 1, is omitted, the resulting
sequence is still complete. One would expect that if any two Lucas numbers
were missing, the resulting sequence would be incomplete.
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We now ask: If each integer m is to be represented by the Jeast number
of Fibonacci numbers what are the conditions for this minimal representation?

Certainly, we would never need both F , and F in any minimal representa-
tion, and so we choose to use F as the 1.

If, for a given integer m, the Fibonacci numbers in any representation
are arranged in order of size, let us direct our attention to the largest, say, F,.
Clearly, if the representation has more than one Fibonacci number, then it
cannot contain both F, and F,_; and be a minimal representation because
we could replace F, + F,_1 by Fryt1 and thereby reduce the number used.

Now, if we have F, but not F,_,, then we could have F,_5 but not both
F,_» and F,_3 because then we could replace F,_o 4+ F,_3 by F._1 and
next F,_; + F, by F,41, thereby getting a double reduction. We can see,
therefore, that any minimal representation cannot have two adjacent
Fibonacci numbers.

These restrictions are precisely the conditions imposed by the following
interesting theorem, which we state without proof.

THEOREM VI (E. Zeckendorf)*

Each positive integer m can be represented as the sum of distinct numbers
in the sequence defined by a, = Fn41 (n > 1) using no two con-
secutive Fibonacci numbers, and such a representation is unique.

From this we see that each positive integer has a minimal representation
‘as described above, and such a representation is unique.
If in a representation of a positive integer /m using the terms of the sequence

1a2:335:8:"'3Fn+la’

we desire to use the maximum number of these Fibonacci numbers, thus ob-
taining a maximal representation, we should replace Fiy by Fi_i1 + Fi_»
whenever possible (avoiding repetitions, of course). This process results in
the conditions described in the following theorem, which we state without
proof.

THEOREM VIIt

Each positive integer m can be represented as the sum of distinct numbers in
the sequence defined by a, = F, (n > 1) with the condition that
whenever F; (k > 4)is used, at least one of each pair F;, F, 1 (3 <qg <Kk
must be used, and such a representation is unique.

* John L. Brown, Jr., “Zeckendorf’s Theorem and Some Applications,” The Fibonacci
Quarterly, Vol. 2, No. 3 (October, 1964), pages 163-168.

t John L. Brown, Jr., “A New Characteristic of the Fibonacci Numbers,” The Fibonacci
Quarterly, Vol. 3, No. 1 (February, 1965), pages 1-8.
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From Theorem VII we see that each positive integer has a maximal rep-
resentation as described on page 74, and such a representation is unique.

[t turns out that all positive integers have both a unique minimum and a
unique maximum representation (while some have only one representation,
which satisfies both conditions) from the sequence:

Fo F3 Fy Fs F¢ F; Fg
12 3 5 8 13 21

We have the following representations (using each term in the sequence at
most once) for 1-21:

Minimal Same Maximal
I = Fy
2 = Fs
3=F, Fs 4+ F,
4 = Fy+ Fy
5 = Fj4 Fy + Fg
6 =Fs+ F, ‘ Fg+ F3 + F,
7 = F5+F3
8 = Fs Fs+ F3+ F,
9 =F¢+ Fs . Fs+ Fq4 + Fy
10 = F¢ + F3 Fs+ Fq4 + F3
11 = Fg + F4 Fs+ Fy + F3 + F,
12 = Fo+ Fy + Fo
13 = F, Fg+ F4 + Fs
14 = F; + F, Fe+ Fy+ Fs + F,
15 = F; + F3 Fe+ Fs + F3
16 = F; + F,4 Fo+ Fs+ F3 + Fy
17=F; + Fys+ F, Fe+ Fs + Fy + Fy
18 = F; + F5 Fe+ Fs+ Fy + F3
19 = Fy 4 Fs + Fo Fs+ Fs+ Fy + F3 + F,
20 = F74+ Fs+ F3
21 = Fyg F;+ Fs+ F3 + Fy

Notice that each integer F,, — 1 (k > 3) has a single representation satis-
fying both minimal and maximal conditions, and these are the only positive
integers for which this is true.*

* David A. Klarner, “Representations of N as a Sum of Distinct Elements from Special
Sequences,” The Fibonacci Quarterly, Vol. 4, No. 4 (December, 1966), pages 289-306.
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A standard puzzle problem is to determine the number of separate weights
needed to weigh any given integral number of pounds, supposing that the
thing to be weighed is placed on one side and the weights are to be placed
on the other side of the balance system. You can see that the solution is
related to the idea of completeness of a sequence of positive integers as

defined at the beginning of this section.
For example, any integral number of pounds from 1 to 31 can be weighed

with one l-pound weight, one 2-pound weight, one 4-pound weight, one
8-pound weight, and one 16-pound weight, because of Theorem I.

Now suppose, as a fairy tale, that Fibonacci was a professional weigher
with weights F,, Fa, F3, Fyq, - . -, F,, ... pounds, traveling from place to
place weighing things for people. He had to be able to weigh any positive
integral number of pounds.

Theorem 1I tells us that Fibonacci could always do his job if he had all
of his weights with him.

Theorem III tells us that Fibonacci could still do his job if he somehow
lost one of his Fibonacci weights.

Theorem 1V tells us that Fibonacci could not do his job if he somehow
lost any two of his Fibonacci weights.

Theorem VI (Zeckendorf) states that if Fibonacci did not use his F; weight
and lined up the rest of his weights in order of size, then any job he might
be given would have just one solution if he did nor choose any two weights
which were adjacent in the lineup.

Theorem VII states that if Fibonacci did-not use his F; weight and lined
up the rest of his weights in order of size, then any job he might be given
would have just one solution if whenever he used his F; weight (k > 4), he
also used at least one of each pair of weights, F, and Fy_, B < g<k).

Theorems for Lucas numbers corresponding to Theorems VI and VII
on page 74 are the following.

THEOREM VIl

Each positive integer m can be represented as the sum of distinct numbers
in the sequence a, = L,_1 (n > 1) with the conditions that no two con-
secutive Lucas numbers are used in the same representation and that L
and Ls are not both used in the same representation, and such a repre-

sentation is unique.
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Each positive integer m can be represented as the sum of distinct numbers
in the sequence a, = L[,_; (n > 1) with the conditions that whenever
L (k > 2) is used, at least one of each pair L, L,_1 (1 < q < k) must
be used and L; and L3 are not both to be used unless Ly or Ly is also in
the same representation, and each such representation is unique.

From the sequence

L,
1

Ly
2

Ly Ly Ly
3 4 7

Ls
11

L
18

we have the following representations (using each term in the sequence at
most once) for 1-18:

Theorem VIII Same Theorem IX
1 = L,
2 = Ly
3=1L, L,+ L,
4 = Ly Ly+ Ly
5=L3+ L, Ly + Lo
6 Lz + L,
7 =1L, Ly + Ly + Ly
8 =Ly+ L, Ly + Ly, + L,
9= L+ L, Ls+ Ly + Lo
10 =L+ L, Ly + Ly + Ly + Ly
Il = L; Ly+ Ly + L,
12 =Ls+ L, Ly+ Ly, + L
13=1Ls+ Ly Ly+ L3+ Ly
14 = Ls+ L, Ly+Lz+ L, + Ly
15=Ls+ L; Ly+ L3+ Lo+ Ly
16 =Ls+ Ly + L, Ly+ L3+ L, + Ly
17 =Ls+ Ls + Lo Ly+ L3+ Ly + L, + L
18 = Lg Ls+ L3+ L, + Loy

Notice that the representation according to Theorem VIII is the minimal
representation and the representation according to Theorem IX is the

maximal representation.
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EXERCISES

1. Find a representation of each integer 1, 2,3, ..., 20 using Fibonacci numbers
with distinct subscripts, including F; = 1 but omitting F5 = S.

2. Find the first integer not representable in terms of Fibonacci numbers with
distinct subscripts if you are denied use of Fibonacci numbers Fy = 3 and

Fg = 8.

3. Express 27 as the sum of three distinct Fibonacci numbers. In how many
ways can you do this?

4. Express 1966 in Zeckendorf form. The available Fibonacci numbers are:
1, 2, 3, 5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, and 1597.

5. Find the minimal and maximal representations of 32 using distinct terms of
the sequence Fo, F3, . . .

6. Find the minimal and maximal representations of 32 using distinct terms of
the sequence L1, Lo, L2, L3, . . .



