ANSWERS TO PROBLEMS

LESSON ONE

1.
$$a_n = n(n+1);$$
 $T_{n+3} = 3T_{n+2} - 3T_{n+1} + T_n$

2.
$$a_n = 3n - 2$$
; $T_{n+2} = 2T_{n+1} - T_n$

3.
$$a_n = n^3$$
; $T_{n+4} = 4T_{n+3} - 6T_{n+2} + 4T_{n+1} - T_n$

4.
$$T_{6n+k} = 1, 3, 3, 1, 1/3, 1/3$$
, for $k = 1, 2, 3, 4, 5, 6$, respectively

5.
$$T_{n+1} = \sqrt{1 + T_n^2}$$

6.
$$T_{n+4} = 4T_{n+3} - 6T_{n+2} + 4T_{n+1} - T_n$$

7.
$$T_{n+1} = aT_n$$

8.
$$T_{n+3}^{-1} = 3T_{n+2}^{-1} - 3T_{n+1}^{-1} + T_n$$

9.
$$T_{2n-1} = a$$
, $T_{2n} = 1/a$

10.
$$T_{n+1} = 1/(2 - T_n)$$

^^>**^**>

LESSON TWO

1.
$$T_n = -4 + (7/2) 2^n$$

First ten terms: 3, 10, 24, 52, 108, 220, 444, 892, 1788, 3580.

2.
$$T_n = (13/6) 3^n + (-3/10) 5^n$$

3.
$$T_n = 17/5 + (4/15) 6^n$$

$$T_{n+1} = 7T_n - 6T_{n-1}$$

$$T_n = -2 + 3 \cdot 2^n + (-1/3) 3^n$$

5.
$$T_{n+1} = 3T_n + T_{n-1} - 3T_{n-2}$$

$$T_n = 1/4 + (7/8)(-1)^n + (13/24)3^n$$
.

6.
$$T_n = 5/3 + (1/3)(-1)^n/2^{n-2}$$

7.
$$T_n = 5/2 + (9/2)(-1/3)^n$$

8.
$$T_n = 2^{n/2} \left[\frac{5+3\sqrt{2}}{4} + (-1)^n \frac{5-3\sqrt{2}}{4} \right]$$

9.
$$T_{n} = 3 + (-1)^{n}$$
10.
$$T_{n} = \frac{-2 + \sqrt{2}}{2} \left(\frac{\sqrt{2}}{2}\right)^{n} + \frac{-2 - \sqrt{2}}{2} \left(-\frac{\sqrt{2}}{2}\right)^{n},$$

LESSON THREE

2.
$$2(-1)^{n}$$
3.
$$L_{2n} + (-1)^{n}$$
4.
$$L_{4n} + (-1)^{n}L_{2n} + 1$$
5.
$$L_{2n} + (-1)^{n+1}$$
6.
$$L_{4n} + (-1)^{n+1}L_{2n} + 1$$
7.
$$T_{n} = \frac{10 + \sqrt{5}}{5} r^{n} + \frac{10 - \sqrt{5}}{5} s^{n}$$
8.
$$F_{n} = 2^{-n+1} \left[n + 5 \binom{n}{3} + 5^{2} \binom{n}{5} + 5^{3} \binom{n}{7} \cdots \right]$$
9
$$L_{n} = 2^{-n+1} \left[1 + 5 \binom{n}{2} + 5^{2} \binom{n}{4} + 5^{3} \binom{n}{6} \cdots \right]$$
10.
$$F_{2n+1} .$$

LESSON FOUR

1. For any modulus m, there are m possible residues $(0,1,2,\dots,m-1)$. Successive pairs may come in m^2 ways. Two successive residues determine all residues thereafter. Now in an infinite sequence of residues there is bound to be repetition and hence periodicity.

Since m divides T_0 , it must by reason of periodicity divide an infinity of members of the sequence.

2. n = mk, where m and k are odd. V_n can be written

$$V_n = (r^m)^k + (s^m)^k ,$$

which is divisible by $V_m = r^m + s^m$.

3. $r = 2 + 2i \sqrt{2}$, $s = 2 - 2i \sqrt{2}$.

$$T_n = \left(\frac{2 - 3i \sqrt{2}}{16}\right) r^n + \left(\frac{2 + 3i \sqrt{2}}{16}\right) s^n$$
.

4. The auxiliary equation is $(x - 1)^2 = 0$, so that T_n has the form

$$T_n = An \times 1^n + B \times 1^n = An + B$$
.

$$T_n = 2^n \left[\left(\frac{b - 2a}{4} \right) n + \frac{4a - b}{4} \right] .$$

$$T_n = -(-i)^n$$

7.
$$T_{n+1} = 5T_{n} - 6T_{n-1}$$
$$T_{n} = 2^{n} + 3^{n-1}$$

8.
$$r = \frac{5 + \sqrt{29}}{2}$$
, $s = \frac{5 - \sqrt{29}}{2}$

$$T_n = \frac{r^n - s^n}{\sqrt{29}}$$
 with terms 1, 5, 26, 135, ...

 $V_n = r^n + s^n$ with terms 5, 27, 140, ...

9.
$$r = \frac{3 + i\sqrt{11}}{2} , \qquad s = \frac{3 - i\sqrt{11}}{2}$$

$$T_n = \left(\frac{33 - 16i\sqrt{11}}{55}\right) r^n + \left(\frac{33 + 16i\sqrt{11}}{55}\right) s^n$$

10.
$$T_{n+1} = 5T_n + 2T_{n-1}; T_1 = 3, T_2 = 7.$$

LESSON FIVE

1.
$$T_{n+1} = 8T_n - 18T_{n-1} + 16T_{n-2} - 5T_{n-3}$$

2.
$$T_n = -5/2 + 7 \times 2^n - (7/6) 3^n$$

3.
$$T_{n+1} = 4T_n - 2T_{n-1} - 3T_{n-2}$$

4.
$$T_{n+1} = 2T_n + T_{n-1} - 3T_{n-2} + T_{n-4}$$

5.
$$T_{n} = 12 + \frac{1}{\sqrt{13}} \left(\frac{3 + \sqrt{13}}{2} \right)^{n} - \frac{1}{\sqrt{13}} \left(\frac{3 - \sqrt{13}}{2} \right)^{n}$$

6.
$$T_n = (-135/20)(-1)^n + (19/10)(-2)^n + (41/60)3^n$$

7.
$$T_{n+1} = 3T_{n-1} + 2T_{n-2}$$

8.
$$T_n = -1/3 + 4n - (-2)^n/6$$

9.
$$T_{n+1} = 3T_n - 3T_{n-1} + T_{n-2}$$
 and $T_n = 2 + n/2 + 3n^2/2$

10.
$$T_{n+1} = -T_{n-1}$$
 and $T_n = \frac{-3 - i}{2} i^n + \frac{-3 + i}{2} (-i)^n$

LESSON SIX

1.
$$T_{n+1} = 5T_n + 2T_{n-1} - 9T_{n-2} - 5T_{n-3}$$

2.
$$T_{n+1} = 5T_n - 4T_{n-1} - 9T_{n-2} + 7T_{n-3} + 6T_{n-4}$$

3.
$$T_{n+1} = 5T_n - 7T_{n-1} + 3T_{n-2}$$

4.
$$T_{n+4} = 4T_{n+3} - 2T_{n+2} - 5T_{n+1} + 2T_n$$

5.
$$T_{n+6} = 2T_{n+5} + 4T_{n+4} - 4T_{n+3} - 6T_{n+2} + T_{n}$$

6.
$$T_{n+1} = 7T_n - 17T_{n-1} + 17T_{n-2} - 6T_{n-3}$$

7.
$$T_{n+4} = T_n$$
 and $T_n = (-1)^n/2 + \frac{-3 - 5i}{4}i^n + \frac{-3 + 5i}{4}(-i)^n$

8.
$$T_{n+1} = 4T_n - 5T_{n-1} + T_{n-2} + 2T_{n-3} - T_{n-4}$$

9.
$$T_{n+1} = 6T_n - 11T_{n-1} + 5T_{n-2} + 4T_{n-3} - 3T_{n-4}$$

10.
$$T_{n+1} = 9T_n - 27T_{n-1} + 25T_{n-2} + 13T_{n-3} - 19T_{n-4} - 6T_{n-5}$$
.

LESSON SEVEN

1.
$$5n^3 - 4n^2 + 3n - 8$$

2. $3n^2 - 8n + 4$ and the Fibonacci sequence: 1, 4, 5, 9, 14, \cdots

3.
$$7n^3 + 3n^2 - 5n + 2 + 3 \times 2^n$$

4.
$$4n + 3 + 3(-1)^n$$

5. $2n^3 - 3n^2 - n + 5$ and the Fibonacci sequence $4L_n$

6.
$$5 \times 4^{n-1} + 17n + 19$$

7. The Fibonacci sequence $1, 4, 5, 9, 14, 23, \cdots$ and the arithmetic progression 6n + 1

8.
$$7 \times 3^{n-1} + n^2/2 + n/2 + 2$$

- 9. The Fibonacci sequence 3, 7, 10, 17, \cdots and the polynomial $(7n^2 27n + 28)/2$
- 10. The Fibonacci sequence 5, 11, 16, 27, \cdots and $6 \times 2^{n-1}$.

LESSON EIGHT

- 1. 11.2556550
- 2. The roots are 3, and

$$\frac{-3 \pm \sqrt{5}}{2} \quad .$$

Limiting ratio is 3.

- 3. The roots are -2, -2, r and s. Limiting ratio is -2.
- 4. The roots of the combined recursion relation will be 1, r, s. Limiting ratio is r.
- 5. The roots of the combined recursion relation are +2, +2, +2,

$$\frac{3 \pm \sqrt{13}}{2} .$$

The limiting ratio is

$$\frac{3 + \sqrt{13}}{2} = 3.3027756 .$$

6. The roots of the auxiliary equation are 2,

$$\frac{1 \pm \sqrt{19} i}{2} .$$

The absolute value of the complex roots is greater than 2. Thus the sequences will not have a limiting ratio.

- 7. The limiting ratio is 1.
- 8. The limiting ratio is 3.
- 9. The roots of the auxiliary equation are 1, $1 \pm i$. Since the absolute value of the complex root is greater than 1, there is no limiting ratio.
- 10. The recursion relation is $T_{n+1} = -T_{n-1}$ with roots $\pm i$ for the auxiliary equation. Hence, there is no limiting ratio.