LINEAR RECURSION
AND
FIBONACCI SEQUENCES

Brother Alfred Brousseau

Fibonacci Association







LINEAR RECURSION
AND
FIBONACCI SEQUENCES

Brother Alfred Broussedu

St. Mary’s College, California

A PUBLICATION OF

THE FIBONACCI ASSOCIATION

San Jose State College
San Jose, Calif. 95114

1971



Copyright, 1971, Fibonacci Association

All Rights Reserved
This book or any part thereof must not
be reproduced in any form without the

written permission of the Publisher.



INTRODUCTION

These eight lessons on Linear Recursion as related to Fibonacci se-

quences appeared originally in successive issues of the Fibonacci Quarterly

beginning with the issue of October 1968 and ending with the issue of April
1970. Apart from pagination, the correction of a few errors, and the addi-
tion of problems to some of the lessons, the material has not been changed.

The purpose of producing this booklet is to provide individuals and

groups who maynot have access to all these issues of the FibonacciQuarterly

the opportunity to pursue in some depth a fascinating bit of mathematics which

places the Fibonacci sequences in a broader and more intelligible context.

Brother Alfred Brousseau

February 1971






RECURRING SEQUENCES—LESSON 1

The Fibonacci Quarterly has been publishing an abundance of material
over the past five years dealing in the main with the Fibonacci sequence and
its relatives. Basic to the entire undertaking is the concept of RECURRING
SEQUENCE. In view of this fact, a series of some eight lessons hasbeen pre-
pared covering this topic. In line with the word '"lesson," examples of princi-
ples will be worked out in the articles and a number of '"problems'" will be
included for the purpose of providing "exercise" in the material presented.
Answers to theseproblems will be included on another page so thatpeople may
be able to check their work against them.

In this first lesson, the idea of sequence and recursion relation will be
considered in a general way. A sequence is an ordered set of quantities. The
sequence is finite if the set of quantities terminates; it is infinite if it does not.
The prototype of all sequences is the sequence of positive integers: 1,2, 3,4,

5,°*+. Other sequences, some quite familiar, are the following:

5, 7, 9, 11, 13,

, 6, 8, 10, 12, 14, 16, -

4, 8, 16, 32, 64, -

18, 54, 162, 486, -

6, 24, 120, 720, 5040, 40320, °--

, 6, 10, 15, 21, 28, 36, 45, 55, « -

» 9, 16, 25, 36, 49, 64, °--

1/2, 1/8, 1/4, 1/5, 1/6, 1/7, 1/8, -

- " -
© “

“
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For convenience of reference, the terms of sequences can be identified
by the following notation: ay, ay, ag, a4, as **+, ay, *-+. One of the common
ways of providing a compact representation of a sequence is to specify a for-
mula for the nth term. For the positive integers, a, = n for the odd inte-

gers 1, 3, 5, 7, ==, a, = 2n - 1; for the even integers 2, 4, 6, 8, <c¢



RECURRING SEQUENCES — LESSON 1

a = 2n. The nth terms of the remaining sequences given above are listed

herewith.

, 4, 8,16, 32, ***, a_ = Pl

, 18, 54, 162, 486, **+, a =2°3
, 6, 24, 120, *++, a_ = n!

, 6, 10, 15, 21, 28, **+, a = nn +1)/2
, 4, 9, 16, 25, 36, **-, a = n?

, 1/2, 1/3, 1/4, ***, a_ = 1/n .

n-1i

I T
w b oI

There is, however, a second way of specifying sequences and that is the
recursion approach. The word recursion derives from recur and indicates
that something is happening over and over. When in a sequence, there is an
operation which enables us to find a subsequent term by using previous terms
according to some well-defined methdd, we have what can be termed a recur-
sion sequence. Again, the prototype is the sequence of positive integers which
is completely specified by giving the first term a; = 1 and stating the recur-

sion relation
a =a +1 .
n+i n
This is the general pattern for a recursion sequence; one or more initial terms
must be specified; then an operation (or operations) is set down which enables
one to generate any other term of the sequence.

Going once more to some of our previous sequences, the recursion rep-

resentations are as follows:

1, 3, 5, 7, *++, a3 = 1; an+1=an-+ 2.
2, 4, 6, 8, °°°, a4 = 2; an+1=an+2.
1, 2, 4, 8, 16, **°*, a3 =1; an+1=2an .

2, 6, 18, 54, 162,°*°,a; = 2; a4 " 3an.

1, 2, 6, 24, 120, *°°, a3 =1; an+1=(n+1)an.

Is it possible in allinstances to give this dualinterpretation to a sequence,

that is, to specify the nth term on the one hand and to provide a recursion
9 .



RECURRING SEQUENCES — LESSON 1

definition of the sequence on the other? It is not wise to say in an absolute
manner what is possible or impossible in mathematics. But at least it can be
3
stated that sequences which are readily representable by their ntﬂ term may
be difficult to represent by recursion and on the contrary, sequences which
. . . th
can be easily represented by recursion may not have an obvious n"~ term.

For example, what is the recursion relation for the sequence defined by:

nt+i a

what is the expression for the nth term?
However, in most of the usual cases, it is possible to have both the nth
term and the recursion formulation of a sequence. Many of the common se-
quences, for example, have their nth term expressed as a polynomial in n.
In such a case, it is possible to find a corresponding recursion relation. In
fact, for all polynomials of a given degree, there is just one recursion rela-
tion corresponding to them, apart from the initial values that are given. Let
us examine this important case.

Our discussion will be based on what are known as finite differences.

Given a polynomial in n, such as f(n) = n®+ 3n - 1, we define
Af(n) = fo+1) - f(n)
(Read "the first difference of f(n)" for Af(n).). Letus carryout this operation.

Af@) = m+1)2+3@m+1) -1~ (?+3n-1)

Afn) = 2n + 4 .
3



RECURRING SEQUENCES — LESSON 1

Note that the degree of Af(n) is one less than the degree of the original poly-
nomial. If we take the difference of Af(n) we obtain the second difference of
f(n). Thus

A%@n) = 2 +1)+4-@Cn+4) = 2

Finally, the third difference of f(n) is A%@n) = 2 - 2 = 0. The situation por-
trayed here is general. A polynomial of degree m has a first difference of
degree m - 1, a second difference of degree m - 2,°°-, an mth difference
which is constant and an (m + 1)St difference which is zero. Basically, this
result depends on the lead term of highest degree. We needonly consider then

what happens to f(n) = n™ when we take a first difference.

Af) = @+ 1™ - n™ = n™ 4™ e g™
Af(n) = mn™ 1+ ... terms of lower degree. Thus the degree drops by
1.
Suppose we designate the terms of our sequence as Tn' Then
AT =T - T
n n+i n
2 = _ - — = -
A Tn Tn+2 Tn+1 (Tn+1 Tn) Tn+2 2Tn+1 * Tn
3 = - - -
A Tn Tn+3 2Tn+2 i Tn+1 (Tn+2 ZTn+1 " Tn)
or
3 = _ B
A Tn Tn+3 3TIl+2 + 3Tn+1 Tn .

Clearly the coefficients of the Pascal triangle with alternating signs are being
generated and it is clear from the operation that this will continue.
We are now ready to transform a sequence with a term expressed as a

polynomial in n into a recursion relation. Consider again:

T =n2+3n-1.
n

4



RECURRING SEQUENCES — LESSON 1

Take the third difference of both sides. Then
A3Tn = A%+ 3n-1)
But the third difference of a polynomial of the second degree is zero. Hence

rI‘n+3 - 3Tn+2 * 3Tn+1 - Tn =0

or

= - +
Tn+3 3Tn+:). 3Tn+1 Tn
is the required recursion relation for all sequences whose term can be ex-
pressed as a polynomial of the second degree in n.
An interesting particular case is the arithmetic progression whose n

term is
Tn = a+@n-1)d,

where a is the first term and d the common difference. For example, if

a is 5 and d is 4,

Tn = 5+4(n_1) = 4n-1,
In any event, an arithmetic progression has a term which can be expressed as
a polynomial of the first degree in n. Accordingly the recursion relation for

all arithmetic progression is:

A2T = 0
n
or
nty = 2Tpe ~ Tpo
The recursion relation for the geometric progression with ratio r is
evidently
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Tn+1 = rTn .

For example, 2, 18, 54, 162, °°° is specified by a; = 2, Tn+1 = 3Tn.
This takes care of our listed sequences except the factorial and the re-

ciprocal of n. For the factorial:

Tn+1 = (n+ l)Tn .
However, we do not have a pure recursion relation to a subsequent from pre-
vious terms of the sequence. We need to eliminate n in the coefficient to

bring this about. Now

n = Tn /Tn-—i
and
n+1 = Tn+1/Tn .
Thus
Tn+1 /Tn - Tn /Tn-i =1
so that
Tn+1 - Tn(Tn-{th—)/T -1

Again for T, = 1/n, we have
n = l/Tn, n+1 = 1/Tn+1’ 1/Tn+1-1/Tn=1

so that

Ty = To/G*T,).



1.

2,

5.
6.

10,

RECURRING SEQUENCES — LESSON 1
PROBLEMS

Find the nth term and the recursion relation for the sequence: 2, 6, 12,
20, 30, 42, 56, °°° .

Find the nth term and the recursion relation for the sequence: 1, 4, 7,
10, 13, 16, *** . , ‘
Determine the nth term and the recursion relation for the sequence: 1,
8, 27, 64, 125, 216, 343, *°° .

For ’i‘ﬁ =1, Ty =3 and Tn+1 = Tn /Tn—i’
the n* term. (It may be more convenient to do this using a number of

7

find a form of expression for

formulas. )

Find the recursion relation for the sequence With the term Tn =/n.

What is the recursion relation for a sequence whose term is a cubic poly-
nomial in n? |

If a is a positive constant, determine the recursion relation for the
sequence with the term T, = a”. ,

Find a recursion relation corresponding to Tn Wi Tn + 2n + 1 which does
notinvolve n except inthe subscripts nor a constantexceptas a coefficient.
Find an ‘expression(s) for the nth term of the sequence

the recursion relation TnTn 44 = 1, where Ty =a (a not zero).

For the sequence with term Tn = n/(n + 1), find a recursion relation with

n occurring only in subscripts.

(See page 55 for answers to problems.)

L S S 3



LINEAR RECURSION: RELATIONS
LESSON TWO

Recursion relations can be set up at will. There is, however, a pai‘-
ticular type known as the linear recursion relation which by its simplicity,
range of application, and interesting mathematical propertiesdeserves special
consideration. In this lesson, the linear recursion relation will be described
and the method of expressing its terms by means of the roots of an auxiliary
equation analyzed. These basic ideas will be applied and amplified in greater
detail in succeeding articles.

The term '"linear' in mathematics is used by way of analogy with the
equation of a straight line in the plane where the variables x and y do not
enter in a degree higher than the first. By extension, there are linear equa—
tions in more variables which characterize theplane inthree-space, the hyper-
plane in four-space, etc. By further analogy, one speaks of linear differential
equations in which the dependent variable and its derivatives are not foundin a
degree higher than one. In this context it is natural to call a recursion rela—

tion of the form:

(1) Tl’l"‘l = aiTg + aZTn—i +a3Tn_2 t e + arTn-r+y
where the a; are constants, a linear recursion relation. If a. is the last
non-zero coefficient, then this would be spoken of as a linear recursion rela—
tion of order r.

Note that there is no allowance for a constant term. This, however, is

no restriction. If, for example,

Tpry = 3Ty - 2T + 4T  +8

then since
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it follows by subtraction that

Ty = 4T, - 5T, + 6T - 4T _

so that a linear recursion relation of the standard form (1) can be obtained

from this variant.

LINEAR RECURSION RELATION OF THE FIRST ORDER
The linear recursion relation of the first order is

(2) Tn+1 = I‘Tn s

in which each term is a fixed multiple of the previous term. Evidently, this
is the recursion relation of a geometric progression. In terms of the tech-
nique that is being developed for relating the terms of the sequence with the
roots of an auxiliary equation, we set up the equation corresponding to this
recursion relation, namely:

(3) Xx-1r = 0 ,

which has the one root r. The term of the sequence can be written as a mul-

tiple of the nth power of this root, thus:
T, = @/r) "

That this term satisfies the recursion relation (2) follows from (3), since on

substituting r for x, we have:
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Note that the pdwers of the root have the same recursion relation as the terms
(2)! So if

_ n+i
Tn+1 = (a/r)r

and

_ n _

Tn+1 = r(@/r)r rTn .
Perhaps due to the simplicity of this case, the considerations are confusing!
But let us pass on to a second-order.linear relation where the operations are

not so obvious.

SECOND-ORDER LINEAR RECURSION RELATIONS

In a subsequent article, these relations will be taken up in all possible
detail to cover the various situations that may arise. But here we shall start
with a simple example to show how the method operates.

Consider then a linear recursion relation

(4) T . = 5T, -6T .

If all terms are brought to one side and equated to zero, the result is:

(5) T ., - 5T, +6T,  =0.

If now the successive terms are replaced bypowers of x one obtains the auxil-

iary equation
(6) x2 - 5x + 6 = 0
whose roots are r = 3, s = 2. Since they satisfy the equation (5), it follows

that
10



LINEAR RECURSION RELATIONS

2 = By - 6
58 - 6

g2

Since we may multiply by any power of r or s,

n+i n-1
r

= 5rn—6r

n-i

(M

n

n+i
s

58 - 6s

Note that the powers of r and s satisfythe same recursion relation (4) as the
terms of the sequence Tn’ Hence if we express these terms as linear com—
binations of ‘powers of r and s, we should obtain expressions that satisfy the

recursion relation (4). Set

Tn— = ar® !4 ptt
(8) 1 n n
Tn = ar + bs

where a and b are constants. Then

_ _ n n-i -0 n-1
Tn+1 = 5Tn - 6Tn—1 = a(br - 6r ) + b(5s 6s” )

or

n-+i
T = +
N+ ar bs

n+1

so that the form of the term persists for allvalues of n once it is established
for two initial values. '
What this implies is that given any two starting values Ty =p, Ty =q

it is possible to find a sequence

_ n n
Tn a3 + b2

satisfying the recursion relation (4). Consider the particular case p = 2
q = 7. Then we should have:

11



LINEAR RECURSION RELATIONS

a+:2+ b3
a.22 4+ b.3%

I

Solving for a and b we obtain a = -1/2, b = 1, so that in general,

T = (-1/2)2" + 3?

If the roots r and s are real and distinct with rs # 0, it will always be
possible to solve the above set of equations for the determinant of the coef-

ficients of the equations:

p = ar + bs

a = ar? + bs?
is
r s
= rs(s - 1)
r? g2

which is not zero if rs # 0 and s # r.

These considerations can be extended to relations of higher order. For
example, suppose we wish to express the terms of a sequence beginning with
3, 8. 14 in the form:

T, = a2" + b3 + c5"
It is simply necessary to set up a recursion relation with roots 2, 3, and 5.

Thus the auxiliary equation would be
x -2)x -3)&x=5 =0

or

x} = 10x% - 31x + 30
12
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so that

T, = 10T -31T  +30T

n+i
giving sequence terms as follows:

3, 8, 14, -18, -374, -2762, -16566, -

To express Tn in terms of thepowers of the roots use the initialvalues

to form equations as follows.

3 = 2a + 3b + 5¢
8 = 4a + 9b + 25¢
14 = 8a + 27b + 125¢

from which a = -5/6, b = 2, ¢ = -4/15. Thus

T, = (-5/6)2™ + 23"+ (-4/15)5" .

Evidently, there are many questions that require further study; the case
of equal roots of the auxiliaryequation; what happens if the roots are irrational;
the situation in which the roots are complex; andvarious combinations of these

cases. Such matters will receive attention in a number of subsequent lessons.
PROBLEMS

1. Find the recursion relation for the sequence beginning 3, 10 with
terms in the form

Tn=a+2nb,

and calculate the first ten terms of the sequence.
2. Given the sequence beginning with 5, 12 having a recursion relation

T, = 8T - 15T

n+i 1’

13
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express Tn as a linear combination of powers of the roots of the auxiliary
equation.

3. The sequence

5, 13, 61, 349, 2077, 12445, 74653, 447901, --

obeys a linear recursion relation of the second order. Find this relation and
express Tn as a linear combination of powers of the roots of the auxiliary
equation. ,

4. A sequence with initial terms 3, 7, 13 has an auxiliary equation

x3 - 6x2+ 11x-6 = 0,

Express the term Tn as a linear combination of powers of the roots of:this
equation.

5. A third-order recursion relation governs the terms of the sequence:
1, 6, 14, 45, 131, 396, 1184, 3555, 10661, 31986, 95954, 287865, 863589 .,
Determine the coefficients in this recursion relation and express the term Tn
as a linear combination of powers of the roots of the auxiliary equation.

6. A sequence has T; = 1, T, = 2 and each term thereafter deter-
‘mined as the arithmetic mean of the two previous terms. Find an expliéit
expression for Tn‘

7. Ty=1, T, =th3 and T ., = (Z/S)Tn + (1/3)Tn_1, what is an
explicit formula for the n™ term of the sequence?

8. If Ty =3, Ty =5, and Toe1 = 2T ;. find an explicit formula

for the nth

term of the sequence.

9. For the sequence 2, 4, 2, 4, 2, 4, 2,4, - what is the linear
recursion relation and what is the formula for the terms of the sequence
using the roots of the auxiliary equation ?

10. For the sequence 1, -1, 1/2, -1/2, 1/4, -1/4, 1/8, -1/8, ---
find the linear recursion relation and determine the formula for the nth term

of the sequence in terms of the roots of the auxiliary equation.
(See page 55 for answers to problems. )

G-

14



- LINEAR RECURSION RELATIONS
LESSON THREE-THE BINET FORMULAS

In the previous lesson, the technique of relating the terms of a linear
recursion relation to the roots of an auxiliary equation was studied and illus-
trated, The Fibonacci sequences are characterized by the recursion relation:

) Ty = Tpt Ty

ntl 1°

which is a linear recursion relation of the second order having an auxiliary

equation:

@) 2= x + 1

or

3) Z-x-17= 0.

The roots of this equation are:

() =17 V5 +2\/g and s = 2V ‘2\/5

From the theory of the relation of roots to coefficients or by direct calculation

it can be ascertained that:
() r+s =1 and rs = -1 ,

It follows from what has been developed in the previous lesson that the terms

of any Fibonacci sequence can be written in the form:

) : T = ar + bs'

15
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where a and b are suitable constants., For example, let
T, =2, T, =5 .

The relations that must be satisfied are:

2 = ar + bs
5 = ar2+bs2 .
These give solutions:
_ 15+1\/5 _ 15 -1/5
- T 10 and b = 5 g

so that

T =B+VEn, 15 -5 n

n 10 10 ¢

Let us apply this technique to what is commonly known as the Fibonacci

sequence whose initial terms are F1 =1 and F2 = 1. Then

1 = ar + bs

1= ar2+bs‘2 s
with solutions
a —1 -—1-——
V5
and
b = ..,'_1'.
\/5
so that
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(6) F =~

the BINET FORMULA for the Fibonacci sequence.
Similarly, for the Lucas sequence with L1 =1 and L2 =3,

ar + bs

fury
1l

ar2 + bs2 s

W
Il

one obtains a = 1, b = 1, so that:

n n
) L o=+t
the BINET FORMULA for the Lucas sequence.

THE GOLDEN SECTION RATIO

With this formulation it is easy to see the connection between the Fib-
onacci sequences and the Golden Section Ratio. To divide a line segment in
what is known as "extreme and mean ratio' or to make a Golden Section of the
line segment, one finds a point on the line such that the length of the entire

line is to the larger segment as the larger segment is to the smaller segment.
To produce an exact parallel with the Fibonacci sequence auxiliary equation,

let x be the length of the line and 1 the length of the larger segment. Then:
x:1 = 1:1-x,
which leads to the equation
2 -

X -x-1=20

Clearly, we are interested in the positive root
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The other root s = -1/r is the negative reciprocal of r, the Golden Section
Ratio. (It may be noted that

_ \V6-1

1 _ Vo5-1
r

is also considered the Golden Section Ratio by some authors. This is a matter
of point of view: whether one is taking the ratio of the larger segment to the

smaller segment or vice-versa,)

USING THE BINET FORMULAS

The Binet formulas for the Fibonacci and Lucas sequences are certainly
not the practical means of calculating the terms of these sequences. Alge-
braically, however, they provide a powerful tool for creating or verifying
Fibonacci-Lucas relations. Let us consider a few examples,

Example 1
If we study the terms of the Fibonacci sequence and the Lucas sequence

in the following table:

n Fn Ln
1 1 1
2 1 3
3 2 4
4 3 7
5 5 11
6 8 18
7 13 29
-8 21 47
9 34 76
10 55 123

it is a matter of observation that:

F4L4=3X7=21=F

F5L5

1l
&
]
e e )

5X11

and in general it appears that:
18



LESSON THREE — THE BINET FORMULAS

Fth = F2n °

Why is this so? Using the Binet formula for FZn s

F2n=r -85 _ (r —S)(rn+sn)=FLn
V5 V5
Example 2
n n
. _ I‘kn_skn ~ (rk) _ (sk)
kn V5 V5
has a factor
k_sk
L_ = Fk s
V5

which proves that if k is a divisor of the subscript of a Fibonacci number
F_, then F, divides F_,
m k m

Example 3

By taking successive values of k, one can intuitively surmise the

farmula:

2 _ ntk+1__2
Fook Fpoe = Fp = D) F

To prove this relation, use the Binet formula for F. This gives:

- p2o ok Sk . Ak G-k ) (" - »S-n)—2
ntk™ n-k n \/5-— \/5— 5
- I.211 n SZn _ rn+ksn—k _ I‘n—ksn+k _ rzn " 2rnsn _ S2n
5
_ rn'ksn—k(rzk - orfsK szk) _ ntk+1_2
= - = = (-1) F .

19
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LINEAR RECURSION RELATIONS

PROBLEMS
Prove that
L2 n+1
L2n Ln + 2(-1) o

Using the Binet formulas, findthe value of:

LpFor = Fplpg -
F3n = Fn( ). Determine the expression for the cofactor of Fn'
F5n = Fn( ). Determine the expression for the cofactor of Fn'
L3n = Ln( ). Find the expression for the cofactor of Ln'
L5n = Ln( ). Find the expression for the cofactor of Ln'

For the Fibonacci relation with T1 = 3, T2 = 7, find the expression for

Tn in terms of powers of r and s.

Using the binomial expansion, find an expression for Fn in terms of
powers of 5 and binomial coefficients,

Do likewise for Ln'

Assuming the relation

Ln+ Ln+2 - 5Fn+1 ’

2

N using the

determine an equivalent single Fibonacci number for F< + Fi +1

Binet formula.,

(See page 56 for answers t.- problems. )

L ave oo J
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LINEAR RECURSION RELATIONS - LESSON FOUR
SECOND-ORDER LINEAR RECURSION RELATIONS

Given a second-order linear recursion relation

(1) Top =2T, +bT 4,

where a and b are real numbers and the values Ti of the sequence are real

as well, there is an auxiliary equation:
(2) x2 —ax - b = 0 ,

with roots

a + Va2 + 4b

2

a - Va?+ 4b

2

3

«S =

As is usual with quadratic equations, three cases may arise depending on

whether

a2 + 4b > 0, roots real and distinct;
4) aZ + 4b = 0, roots real and equal;

a? + 4b < 0, roots complex numbers.

CASE 1. a%? + 4b > 0.
In previous lessons we have considered cases of this kind. It has been

noted that the roots may be rational or irrational. There seems to be nothing

to add for the moment to the discussion of these cases.
21



SECOND-ORDER LINEAR RECURSION RELATIONS

CASE 2. a2 + 4b = 0.

The presence of multiple roots inthe auxiliary equation clearly requires

some modification in the previous development. If

x2-ax-b =0

n n-1 n-2

X - ax - bx =0 .

Since the equation has a multiple root (a/2), the derivative of this equation

will have this same root. Hence
(5) o D oam - D522 - b - 22 = o

is satisfied by the multiple root also.
Thus the multiple root, r, satisfies the following two relations:

n n-1

n-2
r = ar + br

(6)
art = an - 1)1'n—1+b(n—2)1'n—2

The result is that if we formulate Tn as

Tn = A o + B rn
(7)
_ \ ol n+1
Tn+1 = An+1)r Br
it follows that
Torg = 2T 7T
(8) = Ala(n+ 1)rmLl + bn. rn“] + B [arml’i’brnl

2

A+ Z)rn-’-2 +B ™

22
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so that the form of T is maintained.

EXAMPLE
Find the expression for Tn in terms of the roots of the auxiliary equa-

tion corresponding to the linear recursion relation

Tn+1 = 6Tn - ng—l

if Ty =4, T, = 7. Here the auxiliary equation is x?-6x+9 = 0 with a

double root of 3. Hence Tn has the form

T, = Anx3® + Bx3" .

Using the values of Ty and T,

N
1]

Ax3 + Bx3

2Ax32 + Bx3?

-3
Il

with solutions A = -5/9, B = 17/9. Hence

n
v o -onx8% + 17kt _ 5
n 9

n-2

[(-5n + 17)].

It may be noted that for any non-zero multiple root r, the determinant of the

coefficients in the set of equations for T; and T; is

2r: - r?

which is not zero, so that these equations will always have a solution.
CASE 3. a% + 4b < 0.

The case of complex roots is quite similar to that of real and distinct

roots as far as determining coefficients from initial value equations is con-
23



SECOND-ORDER LINEAR RECURSION RELATIONS

cerned. However, since we have specified that the terms of the sequence and
the coefficients in the recursion relation are real, there will have to be a

special relation between A and B in the expression for Tn:

Note that r and s are complex conjugates, so that '

form P +Qi and P - Qi respectively, where P and Q are real. If Tn is

and s® are of the

to be real, then A and B must be complex conjugates as well.

EXAMPLE

Find the expression for T]{,1 in terms of the roots of the auxiliary equa-

tion for the linear recursion relation
n+l 3Tn - 4Tn—l ’
with Ty = 5, Ty = 9. Here the auxiliary equation is:

Xt -3x+4 =0

with roots

Then

(S}
Il

Ar + Bs

9 = Ar2+Bg?

from which one finds that

_ 21 - 11i A7 _ 21+ 11i A7
A= 28 » B = =g
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SECOND-ORDER LINEAR RECURSION RELATIONS

Accordingly,

_[21-11NTV n  [21+11iN7 |\ n
T, = ,(—’28—)1'*("_2_8_)5

AN ANALOGUE

Because of the similarities among second-order linear recursion rela-
tions it is possible to find close analogues among them to the Fibonacci and
Lucas sequences. Let us consider as an example the second-order linear re-

cursion relation

Tn+1 - n n-1°

The auxiliary equation is

with roots

_ 14 N13 _1- A13

= e =

2 ’ 2
If the initial terms are takenas Ty =0, Ty =1, Ty = 3, then

1 = Ar + Bs

3 = Ar? + Bs? ,
with resulting values A = 1/ /I3 and B = -1/ 13 so that

n n n
r -8 -
T _ r S

n
no T3 r-s

has precisely the same form as the expression for Fn with 13 replacing 5

under the square root sign.
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SECOND-ORDER LINEAR RECURSION RELATIONS

If the relation Vn = Tn +1

"Lucas'" sequence, the terms of this sequence are:

+ Tn—l is used to define the corresponding

Vo=2, Vy =3, Vy=11, Vg = 36,* -~
Solving for A and B from

3 = Ar + Bs

11 = Ar? + Bg?
gives valuesof A =1, B =1, so that

v, = Mo+ gt
in perfect correspondence to the expression for the Lucas sequence. As a re-
sult of this similarity, many relations in the Fibonacci-Lucas complex can be
taken over (sometimes with the slight modification of replacing 5 by 13) to
this pair of sequences. Thus:

2n n n
Tons1 = T * Thi
Ty - T = €07
Vo, = V2 4 26D
Vn + Vn+2 = 13Tn+1
Vi’;1 + V121+1 = 13(T2 + Tfﬁl) .

PROBLEMS

1. For the sequence T4 = 1, Ty = 3, obeying the linear recursion relation

Tn+1 = 3Tn + Tn—l

show that every integer divides an infinity of members of the sequence.
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2. For the corresponding ""Lucas' sequence, prove that if m divides n, ‘where
n is odd, then ‘Vm divides Vn’

3. Find the expression for the sequence T; = 2, Ty = 5 interms of the roots
of the auxiliary equation corresponding to the linear recursion relation

T =4T +4T
n n

n+1 -1°

4. Prove that the second-order linear recursion relation

T =2Tn—T

n+1 n-1

defines an arithmetic progression.

5, va Ty =a, Ty =Db, find the expression for Tn in terms of the roots of
the auxiliary equation corresponding to Tn 41 = 4Tn - 4T
6. If Ty=1i, Ty =1 and Tn+1 = _Tn—l’
Tn in terms of the roots of the auxiliary equation.

“ Ty=3, Ty=17, Tg =17, T, = 43, T = 113,°** areterms of a second-

order linear recursion relation. Find this relation and express Tn in terms

n-1"°
find the general expression for

of the roots of the auxiliary equation.
8. TFor the second-order linear recursion relation Tn +1 1 find

the particular sequences analogous to the Fibonacci and Lucas sequences and

=8T +T
n n

express their terms as functions of the roots of the auxiliary equation.

9. For Ty =5, Ty =9, T a1 = 3Tn - 5Tn—1’ find Tn interms of the roots
of the auxiliary equation.
10, If

T - <-66 +13 n\/ﬁ‘><5 + ;\/TJE)“ , {-66- 13\/?3)(5 - r\/3_3)n
n 33 Z i p

determine the recursion relation obeyed by T, and find Ty and T,

(See page 56 for solutions to problems. )
b et oo
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LINEAR RECURSION RELATIONS — LESSON FIVE
RECURSION RELATIONS OF HIGHER ORDER

The considerations applied to linear recursion relations of the second
order form a patternfor dealing with relations of higher order. Given alinear

recursion relation of the kth order:

(1) T = ayT  + a,T

n+1 n-1 o ak Tn-k+1 ?

where the quantities a, and Ti are real, there would be an auxiliary equation

(2) xk—aixk-l—azxk_z e —a, =0,
for which there could be real and distinct roots, multiple real roots or com-
plex roots conjugate in pairs. The major difficulty that arises in a relation of
this type is the problem of determining the roots which ordinarily would be
approximate in value.

As an example, consider one extension of the Fibonacci sequences,
namely, adding the last three terms, or adding the last four terms, and so on.
The recursion relations and corresponding auxiliary equations would be:

and x° - x2 -1 =0

(3)

I
=
+
|
+
=

T = Ty n-1 n-2

4) T and x¢-x°-x2-x-1=0.

|
|
+
~
+
=]
+
-

n+tl = “n n-1 n-2 n-3

(5) X =X + x4 4 x +eeetx+1,
it appears that since

6) 27 -1 =2 + 2 + 2 +eee 2+ 1,
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there should be a root near 2. The following table gives an approximation to

this root for various values of k.

k  Approximation to Root
near 2

1.83928676
1.92756198
1.96594824
1.98358285
1.99196420
1.99603118
1.99802948

© W =3 O Ul B W

Approximations, such as these, to real or complex roots can be determined,
but expressing Tn in terms of them does not seem very satisfying. Never-
theless, as will be seen in a subsequent lesson, such evaluations of roots of
the auxiliary equation provide interesting information regarding the generated

sequence.

MULTIPLE ROOTS

The case of multiple roots calls for additional consideration. If a poly-

nomial equation

(7) aoxk+a1 xk—l+a2 xk_2+...+ak =0

has a root of multiplicity s, then (7) can be written:
(8) x-1°F& = 0,

where F(x) is a polynomial of degree k - s. Clearly, this equation and the
equations formed by setting the first s - 1 derivatives equal to zero are all
satisfied by r. This provides a clue for dealing with roots of any multiplicity
when found in the auxiliary equation of a recursion relation. For concreteness,

let us consider a root r of multiplicity 3.
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Let the equation having this multiple root be:
(9) x - ax? - bx - c¢c = 0,

Multiply both sides of the equation by x" to obtain:

(10) xn+3 - axn+2 - bxn+1 —ext = 0.

Take the derivative and set the resulting polynomial equal to zero.

-1

o+l b + 1)xn - cnxt = 0.

n+2

(11) @ + 3)x - am + 2)x

Repeat this operation on (11).

1 n-2 _

(12) @+3)0+2x" _am +2)(n + Dx" - b + Dnx""1 ~ enta - Dx 0.

The multiple root r must satisfy the relations (10), (11), and (12) so that on
replacing x by r and multiplying (11) by r and (12) by r* we have the fol-
lowing three recursion relations for r.

(13) I‘n+3 _ arn+2 + brn+1 + crn ’

n+3

(14) (n+3)r n

an + 2)1'n+2 +b@n + 1)1[*][1+1 +cnr ,

(15) (Mm+3)(n + 2)x’h+3 = aln+2)@ + 1)rn+2 + b + 1)mrn+1 +cn(n - l)rn .

On the basis of these recursion relations the indicated expression for Tn is:

(16) T = An(- ) + Bnr® + ¢

We show first that this relation continues to hold for succeeding values of n if
it is true for three consecutive values. For if

n+1 n+1

+
nl+B(n+1)r +Cr .

17 Tn+1 = A(n+ nr
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and
(18) Tn+2 = Aln+2)@n + l)x'n—'-2 + B(n + 2)rn+2 + C rn+2 ,
then
Theg = 8T *bT, 5 +eT)
is equal to:
19) Th4g = An+3)@n + 2)1‘n+3 + B(n + 3)rn+3 + C rn+3

on the basis of relations (13), (14), and (15).
Given three initial values T;, Ty, and Tj3, the relations they should
satisfy on the basis of (16) would be:

Ty = Br + Cr

(20) Ty = 2Ar® + 2Br? + Cr?

6ATS + 3Brd + Crd

e
Il

The determinant of the coefficients of the unknowns A, B, C has a value of
-2r8, so that if r is not zero, there are unique solutions for A, B, and C.
Thus three initial values Ty, Ty and T3 can be expressed in the form given
by (16). It follows that this form will continue to hold for all values of n.

It may be noted in passing that if the multiple root has a value of 1, Tn
reduces to a polynomial in n.

Example. Express the terms of the recursion relation

T = 79T - 17T + 14T + 4T
n n-1 n n

n+1

in terms of the roots of the auxiliary equation:

%9 - Txt + 17x3 - 14x2 - 4x + 8 =0.
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By synthetic divisionthree equal roots, 2, are found and the residual quadratic

has the roots

1+ N5 and L= NG
2 2
Accordingly,
Toe1 = An( - 1x2" + Bnx2" + cx2" + Dr" +rEsn
where
r=1+2'\/g and s=1_2'\/-5

Example. For the recursion relation

Tn+1 - 3Tn - 3Tn—l * Tn—Z

with initial values Ty = 5, Ty = 8, T3 = 17, express T]r1 in terms of the
roots of the auxiliary equation.

This equation is
X -3%2+3% -1=0,
which has a triple root of 1. Thus
T4l = An(n - 1)+ Bn+C,

a polynomial in n. Then

5 = B+ C
8 = 2A + 2B + C
17 = 6A + 3B + C ,

- 32



LINEAR RECURSION RELATIONS

leading to the values A =3, B = -3, C = 8, so that

= 2 _
Tn+1 3n 6n + 8.

PROBLEMS

1. Find the recursion relation satisfied by

Tn=3n2-5n+4+2x5n.

2. G@Given the recursion relation

= 6T -11T +6T
n n

Th+1 -1 n-2°

and initial values
T1=8, T2=15, T3=22.

Express the general term Tn in terms of the roots of the auxiliary equation.
3. Sn is the Fibonacci sequence 3, 7, 10, 17, 27, -+, and Rn is the geo-
metric progression 5, 15, 45, 135,--:

Find the recursion relation for Tn'
4, If Tn =3n+2+ 2(—1)n + Fn’ find the recursion relation for Tn’
5 If Ty=13, Ty =15, T3=22, and rTnj-l = 4Tn - Tn-l - 2Tn—2’ express
Tn in terms of the roots of the auxiliary equation of this recursion relation.

6. If Ty=5, Ty =7, T3 =10, and T =17T +6T _, find the
n+1 n+1 n-2
explicit formula for Tn in terms of the roots of the auxiliary equation.
7. The sequence 1, 4, 6, 10, 10, 18, 10, 34, -6, 82, -84, ... is a third-
order linear recursion sequence. Find the expression for this linear recur-
sion relation.

8 If Ty=4, T,=7, Ty=13, and T, =3T  -2T .,

expression for Tn in terms of the roots of the auxiliary equation.

find the
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9. Given that '1‘n 41" Tn +3n + 2, find (1) thelinear recursion relationfor
T, . (2) With T; =4, Ty =9, Ty = 17, find an explicit expression for
T .

n
10. For the sequence 1, 3, -1, -3, 1, 3, -1, -3, 1, 3, -1, -3, -+ deter-
mine the linear r~cursion relation and find the expression for Tn in terms
of the roots of :he auxiliary equation.

(See page 58 for solutions to problems. )
e
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LINEAR RECURSION RELATIONS — LESSON SIX
COMBINING LINEAR RECURSION RELATIONS

Suppose we have two sequences Pi(l’ 5, 25, 125, 625, 3125, --+) with

a recursion relation

(1) Pl = 5P,

and Qi(S’ 10, 13, 23, 36, 59, -++), a Fibonacci sequence with recursion
relation:

@ Qn+1 - Qn * Qn—l ’

Let

(3) T, = P+ Q, -

What is the recursion relation of Tn and how can it be conveniently obtained
from the recursion relations of Pn and Qn?
Proceeding in a straightforward manner, we could first eliminate Pn

as follows:

T =P

n+1 n+1 = Qn+1

5Tn = 5Pn + SQn .

Subtracting and using relation (1),

n+1 n n

We can proceed likewise for Q. Thus
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Tn+l - 5Tn - Qn+1 - 5Qn
Tn - 5Tn—1 - Qn - 5Qn-l
Tn—l - 5Tn—2 - Qn—l - SQn—2

Now subtract the sum of thelast two equations from the first and use relation

(2). The result is:

T , - 6T, +4T , +5T , =0,

a recursion relation involving only Ti'
A much simpler approach is by means of an operator E, such that

@) ETy = Tha

The effect of E is to increase the subscript by 1. A relation

Pn+1_5Pn =0,

can be written

E - 5)Pn 0,
and a relation

Qn+1"Q _Qn—lzo’
can be written

(B2 -E -1Q, ; = 0.

It is not difficult to convince onself that these operators obey the usual alge-

braic laws. As a result, if
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(E - 5)(E2 - E - 1)'1‘n = (B - 5)(E2 - E - 1)13n + (E - 5)(}32 -E - 1DQ,.
But (E - 5)Pn =0 and (E:2-E - l)Qn' = 0, so that

I - 5)(E2 - E - 1)Tn =0
or

(E3 - 6E% + 4E +5T =0,
which is equivalent to the recursion relation

n+3 6Tn-l-kz - 4Tn+1 - 5Tn

In general, if we have linear operators such that:

:f(E)Pn = 0 and g(E)Qn =0 and Tn = APn + BQn’

where A and B are constants, then
fE)g®ET, = Af(E)g(E)Pn+Bf(E)g(E)Qn =0,

since f(E)Pn = 0, and g(E)QI1 = 0. Thus when Tn is the sum of terms of
two sequences with different recursion relations, the recursion relation for
Tn is found by multiplying Tn by the two recursion operators for the two
sequences.

Example. What is the recursion relation for T, =2x 5% +n2 - n +49
The recursion relation for 2 x 57 is E - 5)Pn = 0, and that for n® -4 +4
is (E% - 3E? + 3E - l)Qn = 0. Thus the recursion relation for the given se-

quence is
(E - 5)(E3 - 3E2 + 3E - nr, = 0,
which is equivalent to:

T = 8T

N+ - 18Tn

+ 16Tn+

n+3 +2

37
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Example. Find the recursion relation corresponding to Tn if

= - = 2 _ = ]
Poyg = P, +P _ +P and Q =3n*-4n+5 and T =P +Q.

n+1 n-2

The operator expressions for these recursion relations are:

3 2 _ - 3 _ om2 _ = 0.
(E° - E¢4 - E 1)Pn—2 0 and (E 3E“ + 3E 1)Qn_2 0

Thus the recursion relation for Tn is:
(E3 - E2 - E - 1)(E® - 3E2 + 3E - )T, =0,
which is equivalent to

= 4T - 5T +2T

Tn+6 n+5 n+4 -T +2T -T

n+3 n+2 n+l n’
It may be noted that two apparently different recursion relations may
conceal the fact that they embody partly identical recursion relations. For

example, if

P
Q

n

n 41)n—l - 3Pn-z - 2Pn—3 + Pn-4

SQn—l - ZQn—2 - Qn—3 * Qn—4 ’

and we proceed directly to find the recursion operator and corresponding re—
cursion relationfor Tn = Pn + Qn’ we arrive at a recursion relation of order

eight. However, in factored form, we have:
2 _® _ 2 _ =
(E E - 1)(E 3E + l)Pn_4 0,

and

(E2 - E - 1)(E2 - 2E + l)Qn_4 =

|
(o]

The recursion relation for Tn in simpler form would thus be:
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(B2 - E - 1)(E?2 - SE + 1)(E2 - 2E + 1)Tn =0,

which is only of order six.
If the terms of the two sequences are given explicitly, a slightly differ-
ent but equivalent procedure usingthe auxiliary equation is possible. Thus if

P

n
Q

5n+2+2x3n+Fn

p = nf-B8n+5-6x2"+L

the roots of the auxiliary equation for Pn are 1,1, 3, r, and s, while
those of the auxiliary equation for Qn are 1, 1, 1, 2, r, s. Hencethe roots
for the auxiliary equation of Tn would be 1, 1, 1, 2, 3, r, s, where r and
s are the roots of the equation x? - x -1 = 0. Thus the auxiliary equation
for Tn would be:

x -10¥x-2)x% -x-1) =0

which leads equivalently to the recursion relation

Tn+7 = 9Tn+6 - 31Tn+5 + 50Tn+4 - 33Tn+3 - 5Tn+2 + 17Tn+1 - 6Tn
PROBLEMS
1. If Pn is the geometric progression 3, 15, 75, 375, 1875, -+ and

_ R
Qn 5Fn + 2(-1)" ,
what is the recursion relation for Tn = Pn + Qn?

2. Given recursion relations

P = 4P -P
n

n+1 -6P

n-1 n-2 Qn+1 - 6Qn =10 Qn—l * Qn-z * 6Q11—3’
with Tn +1

satisfied by Tn +

= ]?rl +1 + Qn +1° determine the recursion relation of lowest order

1!
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3. Determine the recursion relation for Tn = Pn +Qn where Pn is
the arithmetic progression 3, 7, 11, 15, 19, «°* and Qn is the geometric
progression 2, 6, 18, 54, *°° .

4, Determine the recursion relation for Tn =24 F?l given that the

recursion relation for Fg is

2 = 2 2 - T2
F2,. = 2F2 +2F - F .

5. Determine the recursion relation for

T, = 512 + (D"t 4T .

6. If Pn =3%+2n-4 and Qn =2 _3n+ 2, find the linear recur-
sion relation for 4Pn + 5Qn.

7. Given the sequences 1, -1, -2, 2,1, -1, -2, 2, *° ", and 1, 3,
-1, -3, 1, 3, -1, -3, *** find the linear recursion relation for the sum of
the sequences and an explicit expression for the nth term in terms of the
roots of the auxiliary equation.

8. If P, = Ln +2n -3 and Qn =F, + n2, find the linear recursion
relation for the sum Pn + Qn.

9. Pn =2x3%+5n+4 and Qn = Fn +2n - 3. TFind the linear re-
cursion relation for the sum Pn + Qn.

10. If Pn =4 Fn and Qn = 3" +Vn, determine the linear recur-

sion relation for the sum Pn + Qn.
Vi =1, V=3, V =3V_ +V
m

(See page 58 for solutions to problems. )
e o T
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LINEAR RECURSION RELATIONS — LESSON SEVEN
ANALYZING LINEAR RECURSION SEQUENCES

Frequently one encounters problems such as the following: Find the next

three terms in the following sequences:

1, 3, 5, 7, 9, 11, ---

3, 4, 7, 11, 18, 29, .-

3, 6, 12, 24, 48, 96, °°°

As has been pointed out many times, the solution t& such problems is highly
indeterminate. It is "obvious' that the general term of the first sequence is

Tn =2n -1
But

Tn =2n-1+@0- 1@ - 2)n - 3@ - 4@ - 5 - 6)Vn

where VI1 is the nth term of any sequence of finite guantities would do just as
well. Similarly for the other cases.

Orlookingat the matter from the standpoint of linear recursion relations,
the six numbers in each case might be the first six terms of a linear recur-
sion relation of the sixth order. Hence any infinite number of possibilities
arises.

How can the problem be made more specific? Possibly, one might say:
Find the expression for the nth term of a linear recursion relation of mini-
mum order. Whetherthis is sufficient to handle all instances of this type is an
open question, but it would seem to take.care of the present cases.

The solutions in the three instances listed above are:

2T - T,
T, + T,
2T

’n

41

Tn+1 1
Tn+1

n+1

1
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If 2 sequence has terms which were derived from a polynomial expres-
sion in n, this expression can be found by the method of differences. As was
pointed out in the first lesson, if the terms derivefrom a polynomial of degree
th
k, the k

simple method ofireconstituting the polynomial is to use Newton's Interpola-

differences are constant and the (k + 1)St difference is zero. A

tion Formula:

k k-1 (k-1)
(1) t = 20,0 A T

(k)

‘where Akf(O) is the kth difference taken at the zero value and n is the
factorial n(n - 1)@ -2) »e» (n -k +1) of k terms.
Example. Determine the polynomial of lowest degree which fits the fol-

lowing set of values.

n £(n) Af(n) A(n) A3f()
0 6

1 11 5 32

2 48 37 50 18

3 135 87 68 18

4 290 185 86 18

5 531 241 104 18

6 876 345 122 18

7 1343 467 140 18

8 1950 607

Using Newton's Interpolation Formula,

-é?n(n - 1@ - 2) + i;—?-n(n - 1)+ 5n + 6

i

f(n)

f(n)

Il

3n® + 7n?.- 5n + 6,
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v Suppose that we have a sequence whose terms are the sum of the terms
of two sequences: (1) A sequence whose values derive from a polynomial: (2) A
sequence whose terms form a geometric progression, Is it possible to deter-
mine the components of this sequence ?

Ima'gine that the terms of the sequence have been separated into their
two component parts. Then on taking differences, the effect of the polynomial
will eventually become nil. How does a geometric progression function under

differencing? This can be seen from the table below.

a
ar afr - 1) a(r - 1)2

ar? ar(r - 1) ar(r - 1) a(r - 1)3
ard ar’(r - 1) art@ - 1) ar(r - 1)
ar4 ar3(r - 1) arg(r _ 1)2 arz(r - 1)3

Clearly, differencing a geometric progression produces a geometric progres-
sion with the same ratio. By examining the form of the leading term, one can

readily deduce the value of a, the initial term of the geometric progression

as well.
Example.
POLYNOMIAL AND GEOMETRIC PROGRESSION COMBINED
n T
n
1 4
2 16 12
) 42
3 70 - 58
154 100 80
4 224 238 138
5 616 392 616 378 240
6 1624 1008 -y 1098 720
7 4346 2722 1972 3258 2160
8 12040 7644 " 9738 6480
22404 710
9 34444

In the last column, onehas a geometric progression with ratio 3, but not in the

previous column. Hence the polynomial that was combined with the geometric
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progression was of degree 3. For the geometric progression, r = 3 and
ax2' = 80, sothat a = 5 .

Eliminating the effect of the geometric progression from the leading terms

gives:

58 - 23 x 5 = 18
42 - 22 x5 = 22
12 - 2x 5 = 2

4 -5 = -1

To apply Newton's Formula, we have to go back to the zero elements by

extrapolation.

A%£(0) = 18, A2(0) = 22 - 18 = 4, Af(0) = 2 - 4 = -2
f(0) = -1 -(2) =1.

Hence

18

f (n) ?;i-

n(n-l)(n—2)+%n(n—1)—2n+1

f(n) = 3n% - T + 2n + 1 .

Hence the term of the sequence has the form:

T, = 3n% - 7o + 2n + 1+ 5x 3%,
The recursion relation for this term canbe readily found by the methods of the

previous lesson.

POLYNOMIAL AND FIBONACCI SEQUENCE

If we know that the terms of a sequence are formed by combining the
elements of a polynomial sequence and a Fibonacci sequence, we have a situa-
tion similar to the previous case. For whereas the polynomial element vanishes
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on taking a sufficient number of differences, the Fibonacci element persists.
This can be seen from the following table.

n T AT A%T AST
n n n n
1 T, -
2 T, T,
3 T, T, T_, T,
4 T, T, T, T,
5 T T, T, T,
6 T, T N T,
7 T, T, T, T,
8 Tq
Example.
n T
n
1 2
6
2 8 21
3 35 27 " 23
4 106 7 61 17 -6
5 238 132 o 22 5
6 453 215 Lod 21 -1
7 772 319 129 25
448 3
8 1220 I 28
9 1825 605

The last column has a Fibonacci property, but the previous column does not.
Hence the polynomial must have been of degree three. We identify the first
terms of the Fibonacci sequence as being 3, the zero term as 4, the term with
-1 subscript as -1, etc. The effect of these terms can be eliminated from the
leading edge of the table to give: 23 -5 = 18; 21 - (-1) =22; 6 -4 = 2; 2 -
3 = -1. Calculating the zero differences as before, the final form of the term
to be found is:

T =308 -T2 +2n+1+V
n n
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where V4 =3, Vy, =7, and Vn+1 = Vn +Vn—1'
PROBLEMS

1. Determine the polynomial for which f(1) = -4; f(2) = 22; £(3) =
100; £(4) = 200; f£(5) = 532; f£(6) = 946; f(7) = 1532; f(8) = 2320.

2. The following sequence of values correspond to terms Ty, T,, etc.
of a sequence which is the sum of a polynomial and a Fibonacci sequence: 0,
4, 12, 29, 53, 87, 132, 192, 272, 391. Determine the polynomial and the
Fibonacci sequence components.

3. The values: 13, 72, 227, 526, 1023, 1784, 2899, 4506, 6839 in-
clude a polynomial component and a geometric progression component. De-
termine the general form of the term of the sequence.

4. The sequence values: 4, 14, 12, 22, 20, 30, 28, 38, 36, -+ com-
bine a polynomila and a geometric progression. Determine the general form
of the term of the sequence.

5. The sequence values: 7, 19, 45, 109, 219, 395, 653, 1017, 1515
have a polynomial and a Fibonacci component. Determine the general form
of the polynomial and find the Fibonacci sequence.

6. The following sequence has its terms the sum of corresponding
terms of a geometric and arithmetic progression: 41, 73, 150, 407, 1384,
5241, 20618, 82075, 327852, 1310909, * -+, Identify the component sequences.

7. The following sequence has its terms the sum of corresponding
terms of an arithmetic progression and a Fibonacci sequence: 8, 17, 24, 34,
45, 60, 80, 109, 152, 218, ---. Identify the component sequences.

8.. The following sequence has its terms the sum of two ‘sequences,
one geometric and the other with a general term that can be represented by a
polynomial: 10, 26, 71, 201, 584, 1724, 5133, 15347, 45974, 137878, «--,
Determine the two component sequences.

9. The sequence 7, 8, 15, 33, 61, 103, 162, 245, 362, 530, -« is
the sum of a Fibonacci sequence and a sequence that can be represented by a
polynomial. Find the two sequences. _

10. The sequence 11, 23, 40, 75, 139, 262, 497, 951, 1832, 3551, -
is the sum of a Fibonacci sequence and a geometric progression. Determine

the two component sequences.
S <
(See page 59 for answers to problems. )
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LINEAR RECURSION RELATIONS — LESSON EIGHT
ASYMPTOTIC RATIOS IN RECURSION RELATIONS

One of the marvels associated with Fibonacci sequences is the fact that
for all such sequences the limit of the ratio Tn +1 /Tn as n approaches infin-
ity is the Golden Section Ratio

1+vV5
2

The following table shows the ratio of successive terms for the Fibonacci
sequence 2, 5, 7, 12, 19, 31, °°° .

n T, Tn/Tn_l
1 2

2 5

3 7 1,4000000
4 12 1.7142857
5 19 1.5833333
6 31 1,6315789
7 50 1.6129032
8 81 1.6200000
9 131 1.6172839
10 212 1,6183206
11 343 1.6179245
12 555 1.6180758
13 898 1,6180180
14 1453 1,6180400
15 2351 1.6180316
16 3804 1.6180348
17 6155 1.6180336
18 9959 1.6180341
19 16114 1.6180339

But is this indeed so remarkable? There are many other sequences which
have limiting ratios and likewise some in which there is no limit. For exam-

ple, in the Tribonacci Sequence: 1, 2, 4, 7, 13, -+- where the last three
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terms are added together to get the next term successive ratios are as shown
in the following table.

n Tn T / Tn,—-l
1 1

2 2

3 4

4 7 1.7500000
5 13 1.8571428
6 24 1.8461538
7 44 1.8333333
8 81 1.8409090
9 149 1.8395061
10 274 1.8389261
11 504 1.8394160
12 927 1.8392857
13 1705 1.8392664

A recursion relation: Tn 41 = 3Tn - 4Tn-1 yields a sequence which does
not have a limiting ratio. For example, if F; = 5, Ty = 9, theratiosareas

shown in the following table.

n Tn Tn /Tn—l
1 5

2 9

3 7 0. 7777777
4 -15 -2.1428571
5 -73 4,8666666
6 -159 2.1780821
7 -185 1.1635220
8 81 -0,4378378
9 983 12.1358024
10 2625 2.6703967
11 3943 1.5020952
12 1329 0.3370530
13 -11785 -8,8675696

Clearly, several queétions emerge:

1. Which sequences have a limiting ratio?
2. Which sequences do not have a limiting ratio?
3. On what does the limiting ratio depend?
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These questions canbe answered conveniently on the basis of expressing
Tn in terms of the roots of the auxiliary equation

THE FIBONACCI SEQUENCE

Consider the sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, **° . Here,

A n
Fn = _._-_S_ N
V5

where

r = 1—f§l/-5—= 1.61803 ««-
and

S = 1—:2—1/—5_ — .—0.61803 e © e °

The
oo gt
nh—I&noo Fn /Fn-l - I‘n—l _ Sn-l °

Dividing the terms of numerator and denominator by the '(n—l)St power of r,

this ratio takes the form

lim I s(s/r)n—1
n —oc 1 - (S/r)n—l

Since the absolute value of s/r is less than 1, the limit of the (n—l)St power

of this ratio as n goes to infinity is zero. Thus
nh—1>noo Fy /Fn—l =T
A similar analysis can be made for any Fibonacci sequence. We have
found that for such a sequence,
T = Ar" + Bs" .
n
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Therefore,

n+1 n+1
lim T . /T =Ar % Bs
N5 n+l’ ™ n Arn+Bsn
.1+ (B/A)s(s/x)"
= lim =T .

D= g 4 (B/A)(s/v)"

One thing we can learn from this analysis is that the root with larger absolute

value, r, dominates the root with smaller absolute value, s.

REAL AND UNEQUAL ROOTS
Clearly, if
T, = At + Bs® + Ctteee

where the roots are real and unequaland r > s > t - -+ then the limiting ratio
of T .4 /Tn will be r.

EQUAL AND REAL ROOTS

If some of the roots are equal, but there is another real root which has
the largest absolute value, this latter root will dominate to give the limiting
ratio in the sequence. If the equal roots have the largest absolute value, then
(consider three equal roots, r).

Tn = (An%? + Bn + C)rn + Dst + Etteee
Therefore nli_lflw Tpt1 /Tn will equal
lim {A + 1% + Bl + 1) + c}r™1 4 D™ 4+ gL
f ~$a0 fAn? + Bn + C}r™ + D" + Et" e

e d@ + DYn? + (B/M)0 + 1/n? + C/(And)} T + Ds/An?)(s/r) 0 e
e 1 + B/(An) + C/(An?) + (D/An?)(s/z)" «--

r
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Thus the dominant real root again determines the limit of the sequence

ratio.

COMPLEX ROOTS

For the type of linear recursion relation we are considering in whichthe
coefficients are real numbers , the complex roots of the auxiliary equation
occur in conjugate pairs. Let the portion of Tn dependent on these roots be
given by

er® + c'(r')][1 ’

where c and c' are complex conjugate coefficients. Now set:

. As
c = Ce)\1 and ¢! = Ce” !

N _¢.
r = Recb1 and r' = Re  *

where C and R are the absolute values of the complex quantities ¢ and r,

respectively. Then

crt + ct@n)? = CRne('\‘-m(ﬁ)i + CRne-()\+n¢)i

2CR" cos (A + ng) .

If there is a real root with greater absolute value than R, this real root will
dominate and the sequence ratio will converge. However, if R is greater
than any of the real roots, it will dominate them. Only the cosine factor in-
volving n will not converge either directly or in ratio. Thus a sequence in
which there is a pair of complex roots whose absolute value is greater thanthe
absolute value of any of the real roots will be a sequence without a limiting

ratio.

A COROLLARY
Suppose we are seeking the roots of the cubic

x3 - Tx2 +8& -4 =20,
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From one point of view this might be looked upon as the auxiliary equation of

the recursion relation
Tn 41 = 7TI1 - 8Tn_1 + 4Tn_2 o
If we then calculate the terms of a sequence obeying this relation and find that
their ratio approaches a limit with increasing n, this limiﬁng ratio would
correspond to the largest real root of the cubic. In the present instance, this
ratio comes out to be 5.7245767,
PROBLEMS

1. Using the ratio of successive terms of a sequence, determine the
largest real root of the equation: x3-12x2+9x -7 = 0,

2. By analyzing the roots of the auxiliary equation, determine thelimit-
ing ratio of successive terms in the sequences obeying the recursion relation:
T = 8Tp1 ¥ 3Thp .

3. By analyzing the roots of the auxiliary equation, determine thelimit-
ing ratio of successive terms of sequences having the recursion relation:

T = —STn + T + 8T +4T .

n+l n-1 n n-2 n-3 ’,
4. If R = 5(-1)" and S, =Fp» what is the limiting ratio of terms of

= ?
the sequence Tn Rn + Sn 7

5. If
+S

R =2"0n?+3n+5) and S = 38
n n

n-1 n-2
with 8y = 1, S; = 5, find the limiting ratio of Tn = Rn +Sn.
6. By analyzing the auxiliary equation, show that the recursion relation

T 41 =3T, - 7Tn_1 + 10T

governs sequences which do not have a limiting ratio.
7. Find the limiting ratio of terms of a sequence governed by the re-

cursion relation

Tn+1 = 4Tn - 6Tn-l

8. If P, = 5x 3n—1 and Q, = Fn’ determine the limiting ratio of the

terms of the sequence Pn + Qn’
9. Find the limiting ratio (if it exists) of a sequence governed by the re-

cursion relation
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10. The sequence 2, 1, -2, -1, 2, 1, -2, -1, -+ evidently does not
have a limiting ratio. Determine its linear recursion relation and on the basis

of the roots of the auxiliary equation verify that this is what should be expected.

(See page 60 for answers to problems. )
h ate oo 4
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ANSWERS TO PROBLEMS

LESSON ONE
o = + e = -
1 a, n(n + 1); Tn 3 3Tn e STn+1 + Tn
2. an= 3;1—2; Tn+2 =2Tn+1_Tn
3. an=n; Tn+4 = 4‘Tn+3"6Tn+g+4‘Tn+1'Tn
4, Tepak = 1,8,38,1,1/3,1/8, for k = 1,2,3,4,5,6, respectively
5. T = V1 + T2
n+i n
6. Tn+4 = 4'Tn+3—6Tn+2+4Tn+1—Tn
7. Tn_'_1 = aTn
8. Tn+3 = 3Tn_|_2 - 3Tn+1 + Tn
9. TZn_i = aQ, T2n = 1/3
10. Tn+1 = 1/(2 - Tn)
>
LESSON TWO
1. T = -4 + (1/2) 2

First ten terms: 3, 10, 24, 52, 108, 220, 444, 892, 1788, 3580.

2. T = (13/6) 3?4+ (-3/10) 5
n
= -+ 6
3. T = 17/5+ (4/15)
Ty = TTp - 6T,
4, T, o= -2+ 3.2 + (<1/3) 3"
3 Tn+1 = 3Tn+ Tn—i - 3Tn—z

1/4 + (7/8)(-1)™ + (13/24) 3% .

~
1l

n
6. T, = 5/3 + (1/3) (-1)7/2"2
7. T, = 5/2 + (9/2) (-1/3)"
_n/2[5+3V2 ns5-3vV2
o =[2G VE L 22 ]
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: _ n
9, Tn—3+(—1)
- o no g 5\"
10. T = 2 * V2 V2) -2 -V2 V2
n 2 P 2 5 |
<T@ P>

LESSON THREE

n
2. 2(-1)
' n
+ (-
3. Lop T 1)
4 L, +¢n'L, +1
° 4n 2n
nt+l
5. Ly, * 1)

n+1
+ (- + 1
L4n -1) L2n

10. Fomt1

LESSON FOUR

1. For any modulus m, there are m possible residues (0,1,2,°°°,m - 1),

Successive pairs may come in m? ways. Two successive residues determine

all residues thereafter. Now in an infinite sequence of residues there is bound
to be repetition and hence periodicity.

Since m divides Tg, it must by reason of periodicity divide an infinity
of members of the sequence.

2. n = mk, where m and k are odd. Vn can be written
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v = (rm)k+ (Sm)k

n

which is divisible by Vm = ™y g™,

8. r=2+2iA2, s =2-2in2.

_[(2-38N2\ n [2+3iN2)n
Tn = (—————16 )r -lr<—-——————16 )s .
4, The auxiliary equation is (x - 1)2 = 0, so that Tn has the form

T = Anx1"+Bx1® = An+B.

n
n{f{ b - Za) 4a - b
5. Tn = 2 [( i ’n + T ]
6 Tn = _(_i)n
7. = -
Tn+1 5TI1 6Tn__1
_ oD n-1
Tn = 27 + 3
_ 5 +1/29 5 - /29
8 r = s s =
2 2
-
Tn = ———— with terms 1, 5, 26, 135, °°°
29
n n . .
Vn = r + s with terms 5, 27, 140, **°
9. 1d=3+1\/11 ’ S23—:1\/11
2 2
T = 33 - 16iV11 Ay 33 + 16iV11 % n
n 55 — 55 S
10. Tn+1 = 5Tn + ZTn_l; Ty =3, Ty = 7.
A
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10.

Tn+1

LINEAR RECURSION RELATIONS

LESSON FIVE

T = 8T - 18T
n n

N+l +16Tn - 5T

-1 -2 n-3

T, = -5/2 + 7x2% - (7/6) 3"
= 4T - 2T _ - 3T

T;’ﬁi n n-1 n-2

Tn+1 - 2Tn * Tn—l - 3Tn—2 i Tn—4

T o= 124 L <3+ R S (3_:\/13n
n ’\]1-3— 2 ,\/-1—3- 2

T, = (-135/20)(-1)™ + (19/10) (-2)" + 41/60) 3"

Tn+1 = 3Tn—1 + ZTn_z

T = -1/3 +4n - -2)"/6

3T - 3T +T and Tn=2+n/2+3n2/2

n n-1 n-2
T .4 =-T,; and T = ‘32‘ Lo ‘3z+i
>
LESSON SIX
Tn+l = 5Tn + ZTn_l - 9Tn_2 - 5Tn_3
Thyg = 5T, - 4T 4 - 9T+ 7T 3+ 6Th 4
Tn+1 = 5Tn - 7Tn_1 + 3Tn_2
Tn_*_4 = 4Tn+3 - 2Tn+2 - 5Tn+1 + ZTn
Tn+6 = 2Tn+5 + 4Tn+4: - 4Tn+3 - 6Tn+2 + Tn
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To4q = 7T, - 17T 4 + 17T _, - 6T, o
T, =T, and T = (-D%2 + ﬁ;_ﬁ it ‘3—251 (i)™
Tpyq = 4T, - 5T  +T o, +2T o-T ,
T 41 = 6T, - 11T ; +5T , +4T o -3T ,
Ty = 9T, - 27T ; +25T , + 18T .- 19T , - 6T .
b ai%e o 4

LESSON SEVEN

5n3 - 4n2 + 3n - 8
3n? - 8n + 4 and the Fibonacci sequence: 1, 4, 5, 9, 14, .-
7n® + 3n% - 5n + 2 + 3x2°
4n + 3 + 3(-)"

2n® - 8n? - n + 5 and the Fibonacci sequence 4L,

5x 4n-1

+ 17n + 19
The Fibonacci sequence 1,4,5,9, 14,23, and the arithmetic pro-
gression 6n +1

n-1

7x 3 +n%/2 + n/2 + 2

The Fibonacci sequence 3, 7, 10, 17, ... and the polynomial

(Tn2 - 27n + 28)/2

The Fibonacci sequence 5, 11, 16, 27, -++ and 6 x 2% L.

B ale S o
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LESSON EIGHT

1, 11.,2556550
2. The roots are 3, and

-3 +16
2

Limiting ratio is 3.

38, The roots are -2, -2, r and s. Limiting ratio is -2.

4, The roots of the combined recursion relation will be 1, r, s. Limiting
ratio is r.

5. The roots of the combined recursion relation are +2, +2, +2,

] 3 +VI13

2 L]

The limiting ratio is

?’-—’1-2—— V13 _ 33027756

6. The roots of the auxiliary equation are 2,

1 +V19i
2

The absolute value of the complex roots is greater than 2. Thus the sequences
will not have a limiting ratio.

7. The limiting ratio is 1.

8. The limiting ratio is 3.

9. The roots of the auxiliary equation are 1, 1 + i. Since the absolute value
of the complex root is greater than 1, there is no limiting ratio.

10, The recursion relation is T T with roots +i for the auxiliary

n+l = "n-1
equation. Hence, there is no limiting ratio.

— <
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