-57-

CHAPTER 2
DIVISIBILITY AND THE DISTRIBUTION WITH RESPECT TO THE MODULUS p,
AND ITS POWERS, OF BINOMIAL, TRINOMIAL, AND MULTINOMIAL

COEFFICIENTS

In this chapter we discuss questions of the divisibility of binomial, trinomijal, and
multinomial coefficients by a prime p and its powers for the Pascal triangle, pyramid, and
hyperpyramid. We also consider the number and distribution of these coefficients with
respect to the modulus p and its powers 1n a row, triangle, or cross section of a pyramid.

A. great number of works have been devoted to the study of the divisibility of these
_____ coefficients. Fundamental in these investigations are the theorems of Legendre, Lucas, and
Kummer, and other important results are those of L. Carlitz [99-105], P. Erdds [131-133],
N.J. Fine [139], H. Harborth [172-181], F.T. Howard [221-225], D. Singmaster [346-352],
M. Sved [366-369], and the present author [11, 12, 14-16]. A survey of early divisibility

results may be found in L.E. Dickson [122], and work from more recent decades is reviewed

in the detailed article of D. Singmaster [352].

2.1 DIVISIBILITY OF BINOMIAL COEFFICIENTS

References containing material on the divisibility of binomial coefficients by a prime p
and 1ts powers are [11, 103, 109, 139, 148, 149, 176, 221-223, 233, 238, 256, 263, 297,
325, 365, 369, 401]. In dealing with the arithmetic properties of binomial coefficients and

other coefficients containing factorials, it is convenient to have Legendre's Theorem:
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Theorem 2.1. Let p be a prime, and s the highest power of p such that p* divides n!.

Then

L T ..?—1.-:-.9.. . (2'1)
p-1

where the p-ary representation of n is n=(aa,; — 2,3,),, and a=a,+a, +- +ar

it

To obtain the residue mod p of the binomial coefficients we have\L‘ufs's Theorem:

T

Theorem 2.2. Let p be a prime, n and m nonnegative integers (m=0,1,2,...,n), and
let the p-ary representations of these be n=(aa,_,~a,), m=(bb_,-by), where a =0, and

0<a, <p, O<b, <p. Then

ny _ ao 01 Clr ]
ERRINECISRE

where (b) - 0 if b >a, .

L

Using Theorem 2.1, E. Kummer [246] obtained a formula for determining the highest

ower s of the prime p for which ("} is exactly divisible by p* (and not by p**'):
P P i y

Theorem 2.3. Let p, m, n and the p-ary representations be as in Theorem 2.2, and let

n—m = (CC,,~Cg),. Then (m) is exactly divisible by p’ if and only if

r

=Lzb+ck—ak) (2.3)
-1 i3
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Let us denote by h(n,p) the number of binomial coefficients in the n® row of the
Pascal triangle which are divisible by p, and g(n,p) the number of these coefficients not
divisible by p. Also, denote by g;(n,p) the number of these coefficients which when divided
by p have the remainder j<p—1, and by h{(n,p) the number of these coefficients exactly

divisible by p*. Then we have

g(mp) = g(np) + g(mp) + -~ + g,4(n,p)
h(n,p)

where q,=max{s} in the n® row. Since row n has n+1 entries, we have

h1(n,p) + hz(",P) o F hqn(n,p),

h(np) = (n+1) ~ g(n,p).

Theorem 2.4. Ietp be a prime, and n a row number of the Pascal triangle, with

n=(aa,;-ay),. Then

glnp) = (a,+1)a,_+1) -~ {(ay+1)(ay+1).

The proof of this theorem based on Lucas's Theorem 2.2 was first given in [139].
For the calculation of h,(n,p), L. Carlitz [103, 104] introduced the functions 6,(n,p)

n
m

and ¢,(n,p), where the first is the number of binomial coefficients ( ) exactly divisible by p°,

and the second is the number of products {(n+ 1)( ) divisible by p°, with p a prime and

m
m=0,1,...,n. For these functions he derived a system of recurrence relations and found the

generating functions. He proved that for s=1,

r-1

hy(n,p) = g (ap+1)(ay+1) ~ (a1 +1)P-a,-Dag.(ap+1) -~ (a,+1) 2.5)
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and for s>2 established a formula for h,(n,p) when n has the form(s)

n =ap +bp™', Oca<p, 0<b<p; .
n=a(l+presp™),  O<a<p
n=a(l+p+-+p™)-1.

F.T. Howard [221, 222] found a formula for h,(n,p) when $=0,1,...,4; in the case of
s>4, the formula requires further conditions. In [223] he found an exact formula for h,(n,p)

and for s> 2 values of h (n,p) valid when n is of the form(s):

=
1

= gp*+bp" , O<a<p, 0<b<p, k<r,

c1pk1 +...+Cmpk"', O<c‘.<p, k1 28, ki

=
il

1 —kf>S'

+

The extension of the divisibility results noted here to the trinomial case will be
discussed in 2.3 and 2.4. We mention two examples of the application of Theorem 2.4 to the
enumeration of the number of binomial coefficients not divisible by p. Let p=2 and n=13;
we write the binary representation 13=(1101), and find g(13,2) = (1+D{1+DO+F1D1+1D)
= 8. And if p=3, n=14 we write the ternary representation 14=(112), and find g(14,3) =
(1+DHA+DH2+1) = 12.

We now turn to the Pascal triangle whose base is the row numbered n. Denote by
H(n,p) the (total) number of coefficients divisible by p in this triangle, and by G(n,p) the
number not divisible by p. Also, let Gi(n,p) denote the number of coefficients in this triangle

whose remainder after division by p is j<p—1, and let H,(n,p) be the number exactly divisible

by p°. Then
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G(np) = Gy(np) + Golmp) + ~ + Gp—‘i(n’p)l

H(np) = Hi(np) + Hy(mp) + ~ + H, (n,p),

where q, = max{s} over the triangle. We note also that the triangle contains

N(n)="%(n+1){(n+2) entries; thus H(n,p)=N(n) —G(n,p).

Theorem 2.5. ILet n be the row number of the base of the Pascal triangle, and let p

be a prime. Then

where n+1 = (bb,;~by),.

Proof: For any n, we have

G(n+1, p) = G(np) + gln+1, p),

and so

G{np) = Gn+1, p) - gln+1, p).

From (2.4), we can write

n+l r
Gn+1,p) = ¥, (B,;+1)
k=0 j=0

2.6

@.7

2.8)

2.9)

where k = (BB, ;~y),. If we now pass from the single sum with index k to a multiple sum

with indices 8,,--,8, and take into account the implied limits of summation we have
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b1 p-1 p-1 r

G-y T -5 S 11 (B,+1)

B0 B0 Py=0 f=0 ;=0

B4-1 p- -1 p- r

VDD I DY

Pr1=0 PB,.p=0 B1=0 Bg=0 j=

b1 p-1 -1 r

-1
* [ 1] 2 Y Y Y6

B,2=0 B, =0 B4=0 By=0 j=2

b1 -1 p—-1 r

(BB +1) - B+ 1)] 3 Y [ (B, 1)

Bi=0 Bg=0 j=r-1

by=1
+ [(B,+1) (B, +1) = (By+1)] BEO (Bo+1)
+ (B, +1)(B,4+1) ~ (By+1)(By+1) . (2.10)

Each of the sums in (2.10) is an elementary calculation. It follows that

br—'l (br-'l +1 ) (p +1 )r-'!

b(b +1 r
G(n+1’ p) = .L(..f.j_.l (p+1 3 .

(P ) - (B+1)

r-2
v (b1, y+1) 22l (P*‘) ‘

2 2

by(b;+1) p+1\!
+ (B4 1) (B4 +1) -~ (Bp+1)] = 5 ( 2 )

b-(b.+1 +1\0
+ [, B+ 1) - (By+1)] 0(5 ) (p21)

+ (B, +1)(b, 1 +1) ~ (by+1)(Bp+1)
_ _I r i p+1
g e )

j=0

* (5,05, 4+1) - (by+1)(bo*1) = Glnp) + gln+1, p) ,
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which proves the theorem. From Theorem 2.5 it follows that if n=p*—1, then

2 2

r_ = P+'f d r_ = a+1 p+1 ’
Gp’-1, p) (ZJ,G(ap 1, p) ( )( ) 2.11)

Glap™+b-1, p) = Glap™-1, p) + (a+1)G(b-1, p) ,

where O<sa<p—1, 1<bxp". If czp, then

Glep™1, p) = (P: ]rG(c-‘l, » .

Let p=2. Then n+1 may be written in the form

n+l = 5,2" + 5 2% + .. + b 27,

and it follows from Theorem 2.5 that
q
G(n2) = Y 2137, (2.12)
i=1
If n=2"—1, then{ G(2'—1,2) = 37, G(2'+b—1,2) = G(2*—1,2) + 2G(b—1,2), and
G(c2'—1,2) = 3G(c—1,2).

It also follows that if we subtract G(n,p) from the total number of elements, we have

H(np) = N(o) - Glnp) = [";2] - Glnp) - (2.13)

For each p, from some n onward H(n,p) > > G(n,p). Thus, for p=3 we have
G(26,3) = 216, H(26,3) = 162; G(80,3) = 1296, H(80,3) = 2025; G(242,3) = 7776,

H(242,3) = 21868; G(728,3) = 46656, H(728,3) = 485514. We need to clarify this order
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of increase of H(n,p) and G(n,p). For this, it is sufficient to consider, rather than {n}, the

subsequence {p"—1} for r—e.

Theorem 2.6. For p22, lim G(n,p)/H(n,p)=0.

Proof: Since G and H are nondecreasing functions of n, then for p'—l<n<p™!—1,

using the first equation in (2.11) and equation (2.13), we have

G(np)[Hinp) s Go™ -1, p)/Hp"-1, p)
JONIESR )
i p(p+1)/ p+1 19‘31 ] i 2] '

Since for p=2, 2” >1, =<1, then as r~ (i)r—*oo, (ﬁ_])r—-O, and it follows that

pl

im G(np)/H(np) = 0, (2.14)

n-es

which proves the theorem.

We give below a short survey of some basic works on the divisibility of the binomial
coefficients.

J.W. Glaisher [148, 149] discussed questions of exact divisibility of the binomial
coefficients by powers of a prime and established a formula for the numbers of entries not
divisible by p in the rows of the Pascal triangie.

N.J. Fine [139] obtained a formula for the number of binomial coefficients

(;), O<msn, not divisible by p, and gave necessary and sufficient conditions for divisibility
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by p and for non-divisibility by p. He also proved that as n—« almost all binomial
coefficients are divisible by p.

1.B. Roberts [325] discussed the problem of obtaining the number 8,(n) of binomial
coefficients in the Pascal triangle congruent to j, O<j<p—1, modulo the prime p. He reduced
the problem to the solution of a linear difference equation with constant coefficients, and gave
a formula for 6,(n) for p=2 and any n, and also for p=3,5 and n=p*—1, k0.

In [177], H. Harborth studied the problem of the number A(n) of binomial coefficients (:)
in the Pascal triangle which are divisible by their row number n, as n-«, He proved that
almost all binomial coefficients are divisible by their row number; the distribution of
divisibility by the row number is also considered in section 3.2,

N. Robbins [323, 324] looked at the connection between the function A(n) mentioned
above and Euler's function ¢(n). In [323] he proved that A(n)=¢(n) for all n, and A(n)=¢(n}
if n=p*(s21) or if n is twice a prime Mersenne number. In [324] he found necessary and
..... sufficient conditions for the equality A(n)=¢(n), when n is square-free, and also discussed the
case when n is a product of three distinct primes.

Consider the number of binomial coefficients (:;)’ for 0<ms<n<N, not divisible by the
product (n){(n—1)-(n—s+1), s=1. H. Harborth [1807 proved that for fixed sz1 and N~
almost all binomial coefficients are divisible by this product. From this, he concludes that
almost all binomial coefficients are divisible by (:), and for s=1 this is the row number.

L. Carlitz [99] proved that if n=(aa,,~a,),, o(n)=a,+a,,+~+a, and (p—1) is
divisible by k>o(n), then all binomial coefficients (k‘:“), O<.l'<m<n, are divisible by p. He

n

mn

_ also considered in [100] the number of binomial coefficients ( ) satisfying the conditions:
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(1) = ) # et 1m0 .

(n) = ( ﬁ_{) =0 (mod p), m=1,2,...,n.

In [360, 362, 363] K.B. Stolarsky studied various problems connected with the
function B(n) defined as the number of ones in the binary representation of n. In [360] he
discussed the recurrence relation y,,;=y,+B(n), n=1,2,..., and established the asymptotic

behavior y,,~ (m log m)/2 log 2. In [362], he studied the function r,=B(m")/B(m), where h

h-1
is positive. He showed that the maximal order of magnitude of r,(m) is c(h) (log m) *

where c(h) >0 depends only on h; the minimal order of magnitude of r,(m) is not greater than
c(log log m)¥/log m, where ¢>0 is an absolute constant. In [363], he compared the behavior
of the functions B(kn) and B(n), and called n "strong" if B(kn) > B(n); he also studied the
question of the number of solutions of B(3n)~B(n)=a for 2°sn<2*'. If we denote by F(n)
the number of odd binomial coefficients in the first n rows of the Pascal triangle, Stolarsky

also studied [361] the asymptotic behavior of F(n), using the expressions

o = lim sup F(n)/n® B = lim inf F(n)n?®,

n-teo oo

where 8 = log 3/log 2 = 1.58496.... He established that & and B satisfy the conditions
1<e<1.052, 0.72<B<0.815, and that n®/3 <F(n) <3n".

These results._were sharpened by H. Harborth [176], who showed that a=1,
B=0.812556....

In a series of papers [346-352], D. Singmaster studied various properties of the

binomial and multinomial coefficients. In [346] he discussed the problem of the number of
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ways a whole number a may be represented as a binomial coefficient, and showed that
N(a)=0(log a). In [347] he introduced the functions E(n) and F(n), where E(n)=s if p’/n

and F(n)=n/p* (mod p); on the basis of the properties of these functions, he determined E(u!),
F(n!y, E((:)), F((:)), and so generalized the results of Lucas, Legendre, and Kummer. In

[348], he obtained the least n for which the multinomial coefficient (n; n,,n,,...,n,),
n,,n,,...,Nn given, is divisible by p*. In [349] he showed that "almost all” binomial
coefficients are divisible by any positive whole number d. The notion of "almost all" appears
in four versions, using the definitions: A(a,m) is the number of pairs (j,k) for which Ogj,

k<m, p*} (j:‘); B(«,m) is the number of pairs (j,k) for which O<j+k<m, p*| (j*k"); Cla,n)

is the number of values of k for which O<ks<n, p*] (:), D(e,k) is the density of j's for which

p*| (j;k); s=«. He showed, then, that

lim A(e,m)fm? =0, lim B(a,m)/(m(m+1)[2) =0,

e =

i

lim E Cle,d)/(i+1) = 0, Iim k—“T ZL: D{a,i) = 0.
A B

e R op k-

In [350] he discussed the greatest common divisor of corresponding triples of binomial
coefficients in the Pascal triangle, and in [351] he considered the equation (::) = (L"’) and
showed there are infinitely many solutions of the form n=F,, ,F,.,;— 1, k=F;F,;,.;—1, where
F, is a Fibonacci number. Finally, [352] is a.systematic review of more than seventy papers
by various authors, and also contains some new results on divisibility of binomial and

multinomial coefficients by a prime p and its powers.

R. Fray [143] posed the problem of determining the least positive number ¢ tor which
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(W] (;) (mod p7) 2.15)

for all m=0,1,...,n, r=1,2,.... He showed that if p’<n <p"*!, the least a satisfying (2.15)

for all m is a=p™*, and if p*sm <p°*!, the solution is again a=p"**.

H. Gupta [167] solved the problem of determining the smallest positive n so that for a

given positive m the binomial coefficient (:1) will have at least m prime divisors.

In [234, 235] G.S. Kazandzidis worked on a method for obtaining the highest power
of a prime p which will divide () and (;1; )

H.B. Mann and D. Shanks [274], using the Pascal triangle, established a criterion that

a natural number m be prime: m is a prime if and only if for Z<n<Z, n divides ( " )
)

In [175, 178] H. Harborth, with the help of the Pascal triangle, generalized the
criterion of [174], showing that m is a prime if and only if for :’“_1 <n sic’i, n divides (m‘_’c n);
here, for fixed c<2, m>2, n is not a multiple of a prime less than or equal to ¢>—c~1. The
details for ¢=3 are given in [175], and for c=4 in [178].

J. Bernard and G. Letac [67] proved that if a and b are whole numbers satisfying

n+m

|la] <p, |b| <p, where p is prime, (a-b)=0, and ( ) is divisible by p°, then

m

(pn+pm+;z+b] = 0 (mod p¥). (2.16)
pm-+

n

Lastly, E.F. Ecklund [127] proved that (;) has a prime divisor psmax {;, %}, with
the exception of (;’) for n=2m,

The question of the divisibility of the binomial coefficients by powers of a prime p is

discussed in the following section.
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2.2 THE DISTRIBUTION OF THE BINOMIAL COEFFICIENTS IN THE PASCAL

TRIANGLE MODULO p AND ITS POWERS.

Here we consider problems associated with the number and distribution of the
binomial coefficients in the Pascal triangle with respect to their remainder, or residue, after
division by the prime p, and also the distribution of these coefficients strictly divisible by a
power of p. These problems are also connected with the quantities Gy(n,p), H,(n,p)
introduced in section 2.1.

C.T. Long [261, 262] introduced two triangular forms composed of binomial

coefficients:
mp*
' @.17)
np *+p*-1 . nptap*-1) o e
mp* mp *+p *-1
and
np* ) . np*
mp *+1 mp *+p *-1
' 2.18)

kypp ke
(np pt-2 ,n2l, Osmsn-1,
mp*+p k-1

where m, n, k are whole numbers, and k>1. If we replace the elements in (2.17) by their

residues mod p, and denote the result by A, the author discusses the triangle of triangles



' (2.19)

"isomorphic" to the usual Pascal triangle. He shows that for practical purposes the triangle

A, .. may be taken to be the triangle

(2.20)

Rl

consisting of the residues mod p, which by Lucas's Theorem are congruent mod p to the
corresponding elements of the triangle (2.17). It is also shown that the triangle A, , satisfies

the recurrence relation

A+ A (2.21)

atl,m+1 = “pm n,m+1

A

"isomorphic" to the ordinary one, (“*1) = (“) + (m'il). On the right side of (2.21), addition

m+l m

is carried out mod p.
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Between each pair of adjacent triangles A, ,, and A .., m=0,1,...,n—1, in (2.19), we
may place (the elements of) a triangle V, , consisting of the residues mod p of the binomial
coefficients in (2.18). By Lucas's Theorem the residues of each of the binomial coefficients
in (2.18) are all zeros, and so all the elements of V,  are null.

First Problem. Let p be a prime, k>0, n=0,1,...,p—1, and m=0,1,...,n. Then

among the p(p+1)/2 triangles A, ,, constituting p* rows, as in (2.19), there will be only p—1

distinct types. Their general form, which we denote by A”, k20, i=1,2,...,p—1, is

(2.22)

The interior elements of the triangle are calculated by the usual rule as the sums of two
elements in the preceding row, except here mod p. Also, the elements of the triangle V, ,, are

zeros independently of n and m, and for a given k compose p“—1 rows, these triangles are all
the same and we denote thém by V.

Using the "geometric” (Pascal rule) interpretation, we can establish that each triangle
AP is itself a "geometric” sum of p(p-+1)/2 triangles A® and p(p—1)/2 triangles VY.

Thus, we can write out the "geometric" equations
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1 1 2 -1 -1 o
AP = a A v g AP g AT p(p2 ) v
2) 1) 2 -1 -1) o
AP = ap AL + 0,508, + v gy AL 4 p(p2 ) vO

(-1 (1) 2)
A 7 = Gy qqBpy 12A1c-1 o
-1 1
T Gpgpe1Ben (p pe-1) Vih,

where a;; is the number of triangles AP occurring in A®. These coefficients a;

> (2.23)

= a®
(8

depend on p but not on k, and their values coincide with the numbers of ones, twos, ..., up

to (p—1) inclusive, contained in the triangles AP, AP,

of (2.22), and which have p rows.

, &7V whose general form is that

Let P2(r) be the number of occurrences of r in the triangle A?. Thus, P(1) is the

number of ones in AP, P (3) is the number of threes in A®, and so on. Using (2.23) and

taking into account that the VA” contain only zeros and may be neglected, we can form the

k-1

system of first order recurrence relations

1 1 2 1

p i . 2 -1
()(r) ‘12,1P1£-%(r) * az,zplg—%(?') ot az,qu& )(r),

----------------------------

— ol = )
where I—I,Z,.-.,P l’ai,j_aifj?'

> (2.24)
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The solution of the system depends on the initial data, which are determined by the
occurrences of r in the triangles AP, I<j<p—1. Since each of the AY contains but one

element equal to j, and does not contain 1#j, the data take the form of (p—1) groups:

~

Py =1, PRW) = 0, P(1) = 0, -, PEV(1) = 0,

PP@) =0, PP =1, PP@ =0, -, PF@) =0, } (2.25)

0, P (p-1) = 0, P (p-1) = 0, -, PF (p-1) = 1.

P{(p-1)

From (2.24) and (2.25) we may determine the number of occurrences of r in any triangle

AP, 1<igp-1. The triangle AV itself represents the Pascal triangle mod p, and so B(r)
gives the value of G(p*-1,p); the values of BY(r), 2<j<p-1, are the number of occurrences

of rin AE), as shown schematically in (2.22).

The matrix of the system (2.24) is

A1 G2 T Gypy
a a a
2,1 2.2 2.p-1 - "
Ay =0 P 4y = Gy
Ap11 Gpq2 a,_1,p-1

which, except for p=3, is not symmetric. The element ga, ., as indicated before, is the number

i

of occurrences of i in AP for a given value of p. We give below some examples.
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Let p=3. Then

and so

all =5,af) =1,a% 1,48 = 5.

The system corresponding to (2.24) is

2
P’ = 5P (0 + B,

(2.26)
PO = POE) « 5PA0),
where r=1,2, and the matrix is
5 1
4 = {1 5}
The initial data are obtained from A" and AP, and we have
PN =1, PE() = 0, P’ = 0, PP @) = 1.
The solution of (2.26), with these initial values is
PO(1) = 16+4), P2 - 1(e--4)

Q.27

PE() = L6"-44, PP() - 1(e+4.
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It follows from (2.27) that for p=3 the number of ones in the Pascal triangle whose base is
row 3*—1 is

Gy(3*-1,8) = P (1) = 1(6*+4¥),

and the number of twos is

G,(3-1,3) = PV (@) = (6~ 4H.

It also follows that the total number of coefficients in this triangle which are not divisible by
31is

G(3-1,3) = G, + G, = &,
which agrees with Theorem 2.5. If 3*<n<3*¥"!, then for the enumerations G,(n,3), G,(n,3)

we need to use the appropriate "geometric” equations and the formulas for P (1), P®(2),

where £ <k and k and £ must be specified.

Let p=5. Then
1 2
1 11 \ 2 2
Al = 1 2 1 A® - 2 4 2
1 3 38 1 2 1 1 2
1 4 1 4 A 2 3 2 3 2
3 4
3 3 4 4
A® - 3 1 3 A - 4 3 4
3 4 4 3 4 2 2 4



and so we have

&) _

-76-

{5)

a11 10 a1(52} = 1, a1'3 = 2, 1(:54)_ = 2;
aa(? = 2, = 10, aésg =2, aéa =1;
a:ﬁ) =1, aﬂ = 2, a33 =10, aﬁ =2;
al =2, a3 =2 a =1, af =10,
and the matrix A,
10 1 2 2
2 10 2 1
Ag
1 2 10 2
L2 2 1 10|
In vector form the system is
P £1) " 10 1 2 2 (1) ) ()
PR 2 10 2 1 |pB©»
PPl 11 2 10 2 P&
0] |2 2 1 10 [BA0)
for r=1,2,3,4, and the initial conditions are
(1] [0 ] [0 ] 0]
0 1 0 0
0 0] 1 0
| O | | O | 0 ] 1
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The solution of this system with the given initial data has the form

P(1) = PP@ = PP@) - PP @)
= L1155 + &) + JH(1,8),

P2 = PB4 = PP(1) = PP (3)
= 115" - 99 - 1H(1,8),

P@) = PP(1) = P8 - PP

= 1(18* - 9 + 1H{(1,9),
PP@ = PP - 2@ - PR()

= (15" + 9 - ZH{(1.8),

where
ko
k [T] 1 k 2i k-2i 0
H . - _4yi i+, k= -a, = 0, -[,
D Sl P

is itself known to be a harmonic polynomial in two variables [6]. With this information we

can find the distribution of the residues 1,2,3,4 mod 5 in the Pascal triangle whose base is the

row numbered 5%—1:

G,(8* - 1,5) = 1(15" + 99 + 1H,(1,8),

n
w——
an
b
t

15) = J(18" - 9) - ZH{(1,8),

L)
-
a
x

f

1,5) = 2(15F - 99 + %Hfﬁ 8),

Gy(5* - 1,5) = 2(15* + 9 - %H§(1,8).
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In like fashion for p=7,11, the matrices will be

27 5 5 4 3 3 2 4 4 9]
3 27 2 5 4 5 4 4 9 3
15 2 2 1 4 4] 4 4 27 3 4 5 3 9 5 2
1 15 4 2 4 2 5 3 4 27 4 2 9 5 3 4
4 2 15 4 1 2 4 2 3 5 27 9 4 3 4 5
4; = dyy =
2 1 4 15 2 4 5 4 3 4 9 27 5 3 2 4
2 4 2 4 15 1 4 3 5 9 2 4 27 4 3 5
4 4 1 2 2 15 2 5 9 3 5 4 3 27 4 4
3 9 4 4 5 4 5 2 27 3
9 4 4 2 3 3 4 5 5 27]

These matrices for any prime p, as here for p=3,5,7,11, have a property which we

might call quasi-symmetry, in which the elements satisfy three types of conditions:

A4 = Qgp = g3 =~ =8, 4, 1
Ap1 = Gapp T Q353 = = = 4y 1,
ai_j = apui,p_j, 15*_], l+]9"-'p.

The first and second of these require the equality of the elements on the main diagonal, and
of those on the counterdiagonal, respectively. The third requires, in effect, the equality of
elements in positions above and below the main diagonal, related to one another by a 180°
rotation about an axis perpendicular to the center of the array. Without going into the matter
here, we mention that these quasi-symmetric matrices which arise in coﬁnection with the

Pascal triangle mod p have a number of interesting properties.
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Questions connected with the distribution in the Pascal triangle of the binomial
coefficients mod p are discussed in papers by A. Fadini [137], J.B. Roberts [325], M. Sved
and J. Pitman [369], among others. In particular, [137] uses a triangle of triangles like that
of Long [2621; [325] gives the distribution of the binomial coefficients mod 3 and mod 5; in
[3609] are tables of the distribution mod 3 up to the 50" row, and also for the composite
modulus 9=37 up to the 60® row. In the last, there are also tables of values «,8 for the
expression of the binomial coefficients in the forms «-3>+8-3 and «-7*+5-7, and other
tables.

As examples of the properties mentioned in this section, we show the distribution of

the binomial coefficients mod 2 in Figure 18, and mod 3 in Figure 19 (the dots stand for

ZET0S).

------
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0 1 -
TN LN ..11\
v AAW T\, 7 N
11"_\2111T71111‘711
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11V

................

------

.\.1 .

) . . e « - o
-,W-;\. TN\ N N\ A N, N DA A
1 1\:"; 1"\."1, ':‘-\.71 1V ﬁ;ﬁ 1\-( 1.1 1V 1vs 1\V{'$71 i | m ™Y 1YL

Figure 18
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Figure 19

Second Problem. Here again we are interested in the distribution of the binomial

coefficients in the Pascal triangle, but now the criterion (for forming the distribution) is that

of strict divisibility by a power of the prime p. That is, using the notation introduced by

m

Long [261], we denote by Lﬁ] the exponent of the highest power of p which divides (“) , and

consider the friangle whose elements are the values

11111}’ O<mxn, called the p-index Pascal
triangle, This triangle has a number of interesting properties, and was first discussed by
K.R. McLean [277].

We list some of these properties, formulated and proved in [261]. Let p be a prime,

and N and n natural numbers; then
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k
[npm-'l] =0, if T<sn<p, Osm<np*-1;

k 2 E
[pm] > 1, if t<m<p¥, [p()} = Ek] = (0;

[Npk+np"‘1—1] _j0for rp*<m<rp*+np*i-1, O<ren,
m 1 for rp*+np* T <m<(r+1)p% O<r<y,

where 1<n<p, 1<N<p.

Let p be a prime, k a natural number, and n,m integers, 0<ms<n. Denote by T,f?, the

p-index triangle formed from the triangle (2.17), and which will be of the form
np* }
mp*

np*+p "—1} R AT ]
mp mp *+p k-1

(2.28)

In [261] it is shown that T.%, =

rr;] + éﬁ)), where the symbolic addition on the right-hand

side indicates that the element Lﬂ 1s added to each entry of Té{%. Thus, 1t follows that if we

know the distribution of elements in the triangle TD(%, we can easily find the distribution in

the triangle Tﬂ:, and moreover we obtain the distribution of the binomial coefficients

according to the criterion of the strict divisibility by a power of the prime p in the triangle

(2.17). From the triangles T,f?" we can form an indefinitely increasing triangle.

We introduce the p-index triangle R corresponding to the triangle (2.18):

n,m
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(2.29)

where nz1, O<ms<n—1.

It is not difficult to show that the correct equation for this triangle is

® = L[;l] + R, 1t follows that if we know the distribution of the entries in the triangle

Rfi)), we can find the distribution of the elements in (ﬁl for any n,m, and moreover we will

obtain the distribution of the binomial coefficients strictly divisible by a power of p in the
triangle (2.18) for any n,m.
Consider the Pascal triangle whose base is the row numbered N=p*—1. The

corresponding p-index triangle Té{% consists of p(p+1)/2 p-index triangles T,fi;”, where
n=0,1,...,p—1, and O<m=<n. The distributions of the elements in all the triangles T,ff‘:) are
e (k1) . . E-1)
identical, and so we may replace each of them by Tgqo °. Besides the triangles T, ", Tgp

also contains p(p—1)/2 p-index triangles R,ff;), where n=1,2,...,p—1, O<m=<n—1., The

distributions in these are also identical, and so we may replace each of them by the triangle
(-1}
R1 .0 .

Consider now the p-index triangle (2.29) for n=1, m=0, i.e., Rf%. It may be shown

that Rf’% itself consists of p(p—1)/2 triangles TED 1<ngp—1, O<sm<p—n—1, and p(p-+1)/2

nm 7

(k-1

n,m

R

triangles R, "7, 1snsp, O<sm<p—n. As before, each of the T may be replaced by
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Tg‘f;‘), and each of the -R-,(,’f:) may be replaced by R(k 1). Figure 20 shows Té% and Rf’%,

denoted by T, and R,, and the arrangement of the triangles To(koj), Rffo' B ?S’f;", 'ﬁﬁ’f;”,

denoted by T,_,, R, 4, T(I%. Rm

% ./\." AV
2ok A;/\ T

/\\%W\ 7
mw”’!

A%\ _____ ,
//W VAV/\ \ A e

I
; 2p%r

Figure 20

Using the equation given earlier and taking in account that n<p, we find that

—f‘,([k;‘l) = 1 + T(k 1), '}_egka'l) - 1 R(k"")‘

It follows that we can form the "geometric" equations

1 -1) -
Top = +1)Tg5 " + p(p-1)RE",

il

R = DT + Lo 1)RE".
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Denote now by P,(s) and Q,(s) the number of occurrences of the value s in the
respective triangles 7% and RS, where s is the greatest exponent of p such that p* divides

the corresponding binomial coefficient. From the geometric equations above, we can write

the recurrence relations

Pk(S) —;~p(p+1)Pk_1(S) * %P(P'1)Q;c_1(s)s

(2.30)
Qk(s)

2@-10)Pys=1) + Zp(p+1)Q;4(s-1),

where k=2,3,..., and s=0,1,...,k—1 in the first equation and s=1,2,...,k in the second. For
the initial conditions (P,(s), Q,(s) for s=0,1), we enumerate the numbers of zeros and ones in

70 RO

0,0? 1,0°

and find that

Py0) = pp+1)2, P,(1) =0
Q(0) = 0, Q,(1) = plp-1)/2.

The system (2.30) is a special case of the system

X

5 = an-1,S + bYk—1,.S"

(2.31)
Yk

s = DXt Al

1,s-1?

which we solve by the method discussed in {6]. If we further choose

Xo=a X3=0 Y,=0 Y,=5b,

]

then it may be shown by complete induction that the solution takes the form
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where k=23,...; pk,s)=min{s—1, k—s—1}; v(k,s)=min{s—1,k—s}.

It follows then that
.| k p&s) _1 242 S_-I k-5
P _{P* P ’
CH AR

oo (7S (2T () ()

> 2.32)

In particular,

(13 - wn 23 ()5

o = 0. am = (2] (72']".

Here P,(0) is the number of binomial coefficients not divisible by p in the Pascal triangle up
through row p*—1, i.e., the quantity G(p*-1,p) discussed previously in 2.1. The value of
P,(s) is the number of coefficients exactly divisible by p*, i.e,, the quantity H,(p*—1,p).
Consider the Pascal triangle up through row N, where p*<N<p**!'—2. Then, putting
N=np*+¢ for O<nsp—1, 0<f<p*—2, if we know the distribution of the p-index triangle for
the given n,f{ in the part of the triangle above row p*—1, we can find the number of binomial

coefficients exactly divisible by p*, 1sssk.
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The determination of the number of coefficients exactly divisible by p’ in the Pascal"

triangle up through row p'—1 is discussed in [103, 349, 369]. Let

p-1 , p-1
5,(r) = Zﬂ 8;(@, S0 = Z(:) ;(a),

where 6;(a) is the number of binomial coefficients (:) exactly divisible by p/, and ,(a) is the
number of products (a+1)(:) exactly divisible by p’. L. Carlitz [103] has shown, using

generating functions, that

so = > ()2 E 5 e

io- 2 (1) P2 e

Q<2k<r

By a simple transformation, S;(r) and Sj (r) may be written in the form (2.32).

Analogous expressions for the number exactly divisible by p' were introduced by
D. Singmaster [349], who used the notations A(«,m), B(a,m); it can be shown, for example,
that B(j,p) = Si(r). The problem was also studied by M. Sved and J. Pitman [369], who
obtained the formulas

D(a,m) = n;v:"j E (ocT‘I) (m—i.t—oc) (g)&'” (p; JM*h-(Ei+1) [p;]’

J

w5 (475 2
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where, in the Pascal triangle up through row p™—1, D(a,m) is the number of binomial
coefficients divisible by p®, and E(a,m) is the number exactly divisible by p®. These formulas
can be transformed into the form of S;(r) or Py(s).

The distribution of binomial coefficients exactly divisible by 2° is shown in Figure 21,
and that for 3° in Figure 22. It is interesting to represent the p-index Pascal triangles by
colors of various shades for s=0,1,2,...; a fragment of a colored p-index triangle for p=2

appears in C.K. Abachiev [1,2].

2434
2 3 371

3
o\3 32
4 32 4/
g

Figure 21
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Figure 22

2.3 DIVISIBILITY OF TRINOMIAL COEFFICIENTS AND
THEIR DISTRIBUTION MODULO THE PRIME p,

AND ITS POWERS, IN THE PASCAL PYRAMID

To study divisibility questions for the trinomial coefficients (n; m,,m,), discussed in
1.5, we need to extend some theorems established for the binomial coefficients in 2.1. We
first note the analog of Lucas's Theorem, the generalization of which to the multi-dimensional
case is given in [121].

Theorem 2.7. Let p be a prime, n,m,,m, nonnegative whole numbers, m,;<n, m,<m,,
and let the p-ary representations of these be n=(aa,;~ay),, m,={'d}, by), m,=(bb?, ~bd),,

where a,#0, O<a, <p, 0<b!<p. Then
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o) = o B3] o 610 fog 817 (o ), @39

r

where (&; b'b?) =0if b'>a or b>>b', O<ksr.

Consider now the Pascal pyramid (cf. Fig. 15). We denote by g(n,p,3) the number of
trinomial coefficients not divisible by p in the n® cross section, and by h(n,p,3) the number
divisible by p. Also let gi(n,p,3) denote the number of these coefficients for which
(n; m;,m,)=j (mod p), 1<j<p—1, and let h,(n,p,3) denote the number of coefficients exactly
divisible by p*; again, these are for the n® cross section. When the whole pyramid down to
the n® cross section, inclusive, is considered, the total numbers of coefficients satisfying the
corresponding divisibility conditions will be denoted by G(n,p,3), H(n,p,3) G;(n,p,3), and
H,.(n,p,3).

Theorem 2.8. Letn = (aa,,-a), be the number of a cross section in the Pascal

pyramid, and p a prime. Then

-1
¢mp3) =[] (k*zf*, (2.34)
=\ 2

where f, is the number of digits k, 1<k<p—1, among a,,a,,...,4,.

The proof of Theorem 2.8 follows from Theorem 2.7. Note that if the cross section
number n=p‘, r=1,2,..., then it follows from Theorem 2.8 that in this cross section only the
three coefficients (n; 0,0), (n; n,0), (n; n,n) are ones, and not divisible by p.

Theorem 2.9. With the same hypothesis as Theorem 2.8, we have

1y p+2Y7 1 b,_.+2J 2.35
G ’ 13 ey b i / ’ ( . )
rp.3) = 35 X (3] Q( 2
where n+1=(bb,_,by),.
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This theorem is proved in the same way as Theorem 2.5. From Theorem 2.9, if

n=p'—1, we note that

61,03 = (72, (2.36)

Since the total number of coefficients in the n® cross section is (“;2), we have that

h(mp,3) - [";2) - (10,9,

and, since the total number of coefficients in the pyramid down through the n® cross section

is (“;3), by the same token,

H(n,p,3) = (";3) - G(n,p,3).

Theorem 2.10. Let p be a prime. Then for n—e
lim[G(n,p,3)/H(n,p,3)] = 0.

The proof of this theorem uses (2.36), and is like the proof of Theorem 2.6. As for the
binomial coefficients, we may formulate two principal problems for the trinomial coefficients.
The first is to obtain the value of gi(n,p,3), the number of trinomial coefficients in the n®
cross section with residue j (mod p), and the value of Gy(n,p,3), the total number of
coefficients with residue j (mod p) in the whole pyramid down through the n® cross section.
The second problem is that of obtaining the distributions of the coefficients with respect to
strict divisibility by p*, for both the cross section and the pyramid, as above.

The solution of the first problem we may think of as depending on determining the
residues of the three elements in the corners of the triangular elements in the (n—1)* cross

section. Obtaining g;{(n,p,3) and Gj(n,p,3) then reduces to the formulation of the
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corresponding recurrence relations and their solutions. As examples, we show the
distributions of the trinomials mod 2 in Figure 23, and mod 3 in Figure 24, through the 12"
€ross section.

An algorithm for constructing the distributions of the trinomial coefficients with
respect to strict divisibility by p¥ for any cross section is as follows. Let n be the cross

section number, and construct the Pascal triangle for ( ), Osm,<n. Using the algorithm of

section 2.2, construct the "triangular distribution” of the binomial coefficients (for strict
divisibility by p*) for this triangle. Then, based on the equation (n; m,,m,) = (: ) (;‘ ), add

to each of the elements of the rows of the "triangular distribution” the elements of the base

row rotated counterclockwise by 90°. The result is the desired distribution.

Figure 23
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Figure 24

We note that the distribution of the trinomial coefficients with respect to divisibility by
P’ in the cross section n=p'—1 coincides with the corresponding distribution of the binomial
coefficients in the Pascal triangle whose base is row n==p’—1, for any r.

As examples we show the distributions of the trinomial coefficients with respect to

strict divisibility by 2" in Figure 25a, and by 3* in Figure 25b, for the 20" cross section of

the Pascal pyramid.
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Figure 25
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2.4 DIVISIBILITY OF THE MULTINOMIAL COEFFICIENTS

BY THE PRIME p AND ITS POWERS

Questions of divisibility specifically for the multinomial coefficients, the determination
of the number divisible, or not divisible, by a prime or power of a prime, in a cross section
of the hyperpyramid or the whole hyperpyramid, and problems related to these topics are
treated in [14-16, 18, 67, 121, 225, 275, 348]. The discussion of these results again begins
with the extension of Lucas's Theorem [266] to the multinomial case, which is given in L.E.
Dickson [121]; it will also be useful to represent the multinomial coefficients in the form
(1.41), and denote them by (n; n,,n,,...,n,).

We write the p-ary representations

n = (a8, a), n =0 ! bri-I bg)., (2.37)

where a,#0, O<a, <p, O<b! <p, Osksr, 1<ixs.

Theorem 2.11. ILet p be a prime, n and n; nonnegative whole numbers with p-ary

representations (2.37). Then

r

T1 (ag b/B7-B;) (mod p), (2.38)

k=0

(75 nysnoy )

in which (3; b'bZ-b?) = 0 if b'+bZ+-+h*=#a.
It follows from Theorem 2.11 that (n; n,,...,n,)=0 (mod p) if and only if

bk1 +bk2 +--+b?=a for all values of k.
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Known and new methods for determining the highest power of the prime p which
divides a multinomial coefficient are presented in detail in the article of R.J. Martin and
G.L. Mullen [275].
Theorem 2.12. If p is a prime, the multinomial coefficient (n; n,,...,n,) is divi;ible by
p' if and only if
s
E@n) - Y E@n)) > v,
i=1
where E(p,n!) denotes the highest power of p which divides n!.

Let n and n; be written in p-ary form (2.37), and form the system of equations:

1
by + -+ b = egp * 4y,

1 s
g + by * - + by = &4 + ay,

| (2.39)

+ b+ + b, = +
€2 r-1 -1 = €.4P a1

1 5
€g,4 +b +- +b’ =a.

Then R.D, Fray in [143] proved the following result.

Theorem 2.13. The highest power of the prime p which divides (n; n,;,n,,...,n,) 1s

given by

v = eo +81 + o o+ 8!‘—1'

where the values e ,...,e_, are chosen from among 0,1,...,s—1 so as to satisfy (2.39).
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If we put S(n) = a,+a,+-+a, and S(n) = b, +b]+-+b’, then it ‘may be shown [225]

that

v = p—i? [S(n) +S () +-- +S{n) - S (n)]. (2.40)

In [275] Martin and Mullen worked out a new, more effective method for calculating

v, based on obtaining the residues of ny,n,,...,n, modulo distinct powers of p. Denote by n/
the residue of n, ( mod p), for i<iss, 1gj<h, where p"<n<p"*!, h=[log n/log p]. Then the
following theorem is from [275].

Theorem 2.14. The multinomial coefficient (n; n,,n,,...,n,)=0 (mod p*) if and only if

h - -
3 1 wland v en?

— gt -t Ho) 2 V.
i1 p’

it follows from Theorem 2.14 that for v=1, (n;n,,...,n,)=0 (mod p) if and only if for some
value of j, (nj+nj+-+nl)yzpi.

D. Singmaster [348] discussed the question of the least value of n for which
(n; n,...,n,) is divisible by p*, and obtained the following theorem.

Theorem 2.15. Let the power v of the prime p>s be represented in the form
v=3a(s—1)+b, where 0 <b<s—1. Then the least value of n for which (n; n,,...,n,) is
divisible by p* is n=bp**'.

He also considered [352] various properties of the multinomials and proved the

following result.




-97-

Theorem 2.16. The multinomial coefficient (n; n,,...,n,} in which n is strictly
divisible by p*, and n; is strictly divisible by p", is divisible by p** if t<v, where t=min{t}.

The problems of determining the number of multinomial coefficients not divisible by
p, or divisible by p*, are discussed in {15, 16, 18, 2251; in these problems it is sometimes
convenient to use the form (1.43) for the multinomial coefficients.

Let g(n,p,s) be the number of multinomial coefficients (n; n,,...,n,) not divisible by p
in the n™ cross section of the Pascal hyperpyramid, and h(n,p,s) the number divisible by p.
Also, let gi(n,p,s) be the number congruent to j (mod p); then we have

g(n,p,s) = g1(n,p,S) + g2(nlp!S) o F gp_1(n,p,s).

Likewise

h(n,p,s) = h‘i(n!p!s) + h2(n,p,s) toee ¥ hq(n,p,s),

where h,(n,p,s) denotes the number of multinomial coefficients (n; m;,m,,...,m_,) in the n®
cross section divisible by p*, and g=max{v}. For the total numbers of coefficients in the
hyperpyramid satisfying the corresponding conditions we use the notations G(n,p,s), H(n,p,s),

Gy(n,p,s), and H,(n,p,s). Then

G(n,p,s) = G1(”!P’S) o p—‘t(n’p’s)!

H(np,s) = Hy(np,s) = ~ + Hnp.s).

Theorem 2.17. Letn = (aa,,...a,), be a cross section number in the hyperpyramid,
and p a prime. Then
p-1 WUNIRY ‘
gnps) = I1 (“S 1]1, 2.41)

k=1 s-1
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where f, is the number of digits k among a,,...,a,. In the proof of Theorem 2.17 we use
Theorem 2.11 and a corresponding transformation; as a result, (2.41) differs from the
representation obtained in [18, 225].

In {225], F.T. Howard extended the results in [100, 103, 222, 223] and obtained
formulas for the quantities 684(s,n), 6,(s,n), 0,(s,n), where these are the numbers of
multinomial coefficients strictly divisible by p°, p', p*. For 6,(s,n), v >2, he constructed the
corresponding generating function and found explicit expressions for 8,(s,n) for certain values
of n.

Denote by C(i) the coefficients in the expansion of (1+x+x*+-+x"1)® in powers of x,
where p is a given prime, and s is the "dimension” of the multinomial (n; n,,...,n). Howard
proved that

Clasbp) - g 3 () 2.42)
In (2.42), which is analogous to (1.16) for generalized binomial coefficients, a and b satisfy
O<a<p, O<b. Using only the coefficients C(i) and the p-ary representation n=(a,a.;~a),,

Howard [225] proved a theorem containing the following formulas:
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0y(s,m) = Cl(ay)Cla,)..Cla,),

r-1

On5) = 3 Clag)-Cla)ClarPIC e —1)Claa) - Cla),

r2 r-1
B, (5m) = Z; Clp+a)Cp+a;,~1)Cla,~1)4; + Z; C(2p+a)C(a;.1~2)B,

r-1

-3
+ Y. Y Clp+a)Cla,~1)Clp+a)Cla,. - 1)H,;.

=0 k=j+2

The values A;, B, H;,, mentioned in [225], may be written in the form

A,‘ = PleiC(ai+2)l Bi = Plei’ Hi,k = Pleka’

where

P, = ! c(aj)l Q; = C(a)C(a,4), Q, = ClapClay.q).

.
2
=]

Also given is 9,(n) for the values n=a-+bp, n=a-+p?, n=a+2p?, n=a-+bp-+p’.

N.A. Volodin [18] developed a formula for the number of multinomial coefficients not
divisible by p, and for the number divisible by p, in the form of a sum of products of
binomial coefficients. Methods for obtaining the number of multinomial coefficients not
divisible by p in the Pascal hyperpyramid, are given in [15, 16, 18].

Theorem 2.18. Let the base of the Pascal hyperpyramid of dimension s be the n®

cross section, and p a prime. Then

r _qyi d b .+s-1
G(np,s) = % : b _. (p s 1) [ r*S ]’ (2.43)

where n+1=(bb, ;-by),.
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~ The proof of Theorem 2.18 is analogous to the proofs of Theorem 2.5 and Theorem
2.9, If n=p"—1, rz21, from (2,43) we find that

Gp'1, p, 5) = (p+z-1] (2.44)

The total number of multinomial coefficients in the n® cross section of the Pascal

hyperpyramid of dimension s is (‘“‘f) . Thus,

8

h(np.s) = (n+s-1) - g(n,p,s).

s-1
Likewise,
H(np,s) = ("“) - G{n,p,s),
S
since (“:") is the total number of coefficients in the Pascal hyperpyramid of dimension s and

whose base 1s numbered n.

Theorem 2.19. If p is a prime, then for n-e,

lim{G(n,p,s) [ H(np,s)] = 0.

The proof of Theorem 2.19 is like those of Theorem 2.6 and Theorem 2.10, and uses (2.44).

The problems of determining G;(n,p,s) and H,(n,p,s) (using the usual notation) may

also be formulated for the multinomial coefficients.
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2.5 GREATEST COMMON DIVISORS AND LEAST COMMON MULTIPLES OF

BINOMIAL COEFFICIENTS. FACTORIZATION

We consider here some questions associated with the greatest common divisor (GCD)
and the least common multiple (LCM) of those binomial coefficients which are arranged in
some definite pattern in the Pascal triangle.

On the basis of the known equation
[n-—1 ( n n+1) _ (n-1 n n+1
m m-1) \m+1 m-1/\{m+1 m
H.W. Gould [159] stated the conjecture that
GCD n-1 , n , n+i - GCD n-1 ’ n ’ n+1 ’
m m-1 m+1 m-1 m+1 m

which was proved in various ways by A.P. Hillman and V.E. Hoggatt [187], D. Singmaster

[3501, and E.G. Straus [364].

C.T. Long [262] discussed the triangle V, of binomial coefficients of the form

VIR

=2)
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If we denote the GCD of all elements in this triangle by d, and the GCD of the three corner
elements by D, he proved that: d=D=p if n=p; d=p, D=p* if n=p° (s> 1); d=1, D=n for
all n#p°, where p is a prime and s is a whole number,

Let n=p/'p,*-p" and k be whole numbers satisfying 1sksmin{pi°‘}, 1<i<r, and
denote by m the product of all divisors of n of the form p*, where p*<sk<p**!. T. Tonkov

[49] proved that

oo (3} (- ()} -

In [345] G.J. Simmons showed that there are infinitely many values of m for which
m! is a divisor of (;), but m!p for p<m does not divide this coefficient. He further proved
that for given N,m, there exist infinitely many n such that GCD {(:), N} =1.

J. Albree [56] proved that for 1smsn—1, if GCD{m,p}=1, then GCD{(:)}=p’,

where s is the highest power for which p® divides n.

=)l e Gk el ()
) () GRG0

Then H.M. Edgar [128] proved that

LCM{a,b,c} = LCM{d,e,f}.
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In [393], 1.S. Williams showed that for powers of primes p, where p"<n+1 spi“i” ,

(1) - )

where the product is taken over all primes p;sn+1.

R. Meynieux {280] discussed questions connected with the LCM of binomial
coefficients, and with determining the powers of primes which occur in the factorizations into
prime factors of binomial coefficients. A typical result is as follows. Let A, be the power of
the prime p in the factorization of (:1), let p.p(n) = sm;p lp; for m<n/2 let p (n) be the largest
prime such that A,=u_; and let p(n)=inf p (n) for p belonging to the set of primes occurring
in the factorization. Then p(n)z(n--1)/3 and lim[p(m)/n]=1/3 for n-e,

Problems connected with the factorization into prime factors of the binomial
coefficients, asymptotic estimates, and other topics are treated in the works of P. Erdos [132,
133], P. Erdds and R. Graham [134], P. Erdos, H. Gupta, and S.P. Khare [135], H. Gupta
and S.P. Khare [168], and S.P. Khare [237], among others. Omitting details, we summarize
three of these papers. Khare [135] proves a theorem on the factorization of binomial
coefficients and gives tables of such factorizations for special conditions imposed on n and m.

Included also is a discussion of the case where (;) has m prime factors, e.g., (:) =723,
(‘40) =2-3-57, and so on. In [168] it is shown that (’f) is greater than the product of the

first n primes for 2<n< 1794, and less than this product for n>1794. And [237] gives tables
of factors of n! for n<1000. '
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The factorizations of the binomial coefficients ( ) up through n=>54 are given in the

book of T.M. Green and C.L. Hamberg [162]. Matters related one way or another to this

topic are also cfliscuss'ed in [108, 130, 140, 166, 169, 279].




