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CHAPTER 3
DIVISIBILITY AND DISTRIBUTION MODULO p IN GENERALIZED PASCAL

TRIANGLES, AND FIBONACCI, LUCAS, AND OTHER SEQUENCES

n
ma

In this chapter we consider divisibility of generalized binomial coefficients ( ) . We

give the analog of Lucas's Theorem, and prove some theorems on the divisibility by a prime
p of generalized binomial coefficients in a given row of the generalized Pascal triangle of
order s for s=3 and p=2,3. We also discuss the distribution of these coefficients for the
moduli 2 and 3, and the situation for n-e.

Divisibility and distributions for a prime modulus are also considered for Fibonacci,
Lucas, and other sequences, as well as periodicity of these sequences with respect to a prime

modulus.

3.1 DIVISIBILITY AND THE DISTRIBUTION MODULO p OF GENERALIZED

BINOMIAL COEFFICIENTS

In section 1.3 we discussed generalized Pascal triangles of order s, the elements of

which are the generalized binomial coefficients (m) , and considered their recurrence and

other relations analogous to those of the binomial coefficients. Not a great deal of work has
appeared on questions of divisibility and distribution of these coefficients, but we first turn to
the analog of Lucas's Theorem, and some related results, given by R.C. Bollinger and

C.L. Burchard [81].
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Theorem 3.1. Let p be a prime, and n and m nonnegative whole numbers,
Osmsn(s—1) with p-ary representations n=(aza, ,~a,),, m=(bb,,-b,),, where a»0,
O<ay, b, <p. Then

n T (%

where the summation is carried out over all indicies i, for which i,+i,p+i,p*+-+ip'=m,
O<i <(s—1a,.

We note that if the latter two conditions are not satisfied, then (:) = () (mod p). The
authors prove this theorem and give some related examples in [81]. They also discuss the

n
Mg

question of the number N,(n,p) of generalized binomial coefficients ( ) # (0 (mod p) for the
two cases s=p and s=p", where p is a prime.

Theorem 3.2. Let (p—1)n have the p-ary representation (c.C,.;~C,),. Then in the
generalized Pascal triangle of order p, the number of coefficients in row n which are not
divisible by p is

N,(np) = I1 (1+c,). (3.2)

From Theorem 3.2 it also follows that if s=p*, then

Np" (n’p) = Np[n(pv—1)lp—1’p] = Nz[n(pv“.])!p]- G-3)

and, further, that for n—~e almost all coefficients ( ) are divisible by p.

n
m
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Theorem 3.3. Let r be a natural number. Then in row n=p" of the generalized

Pascal triangle of order s, we have

(n] = 1{(mod p), m = ip”, (n) = O(mod p), m = ip™. 3.4
m 8 m g

The proof of this theorem is based on the analog of Lucas's Theorem in polynomial form,
and the result is used in the construction of fractal generalized Pascal triangles.

Theorem 3.4. Let p be a prime. In the multinomial coefficient (n; m,,m,,...,m, ) let

n and m, be written as

_ (@ ® &, &
n = (arar"1 ...a1 ao)P, my = (br br_-‘ b1 bo )P,

where a+0, O<a <p, 0<b®<p. Then

where the summation is over all b® satisfying

b + p® w o  BETN =y,

Unlike the Pascal triangle, in which the rule for forming the binomial coefficients mod
p, and their distribution, depends only on p, the distribution of the generalized binomial
coefficients depends on both p and s. Thus, we will only consider here the-distribution Qf
these coefficients for s=3, p=2,3; the method itself may be used for other values of s and p.

Let p=2. We introduce the following definition.
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Definition 3.1. Let the natural number n be written in binary form. We will say that
n contains a block of type k - denoted by <1>, - if its binary form contains a string of k
consecutive ones which has at least one zero on both the left and the right.

Clearly, any natural number n written in binary form consists of q,>0 blocks of type k
for k=1,2,...,t, where t=t(n). For example, the binary form of n=315837 is
1011001000110111101, which contains q,=3 blocks of type 1, q,=2 of type 2, q;=0 of type
3, and g,=1 of type 4. We note also that the binary forms of distinct natural numbers may
contain identical numbers of the same kinds of blocks.

Theorem 3.5. In the generalized Pascal triangle of order 3, let the row number n be
written in binary form, in which there are g, >0 blocks of type k, 1<k<t. Then the number of

odd trinomial coefficients in row n is given by

P(n) = U U UM, U, = 1[2¥2-(~1)1). (3.5

1
3

The proof of this theorem follows from Theorem 3.4 and the solution of the recurrence
relation U, =U, ,+2U,, with the initial conditions U,=1, U,=3; it is not difficult to show
that the solution is given by the expression for U, in (3.5).

The total number of coefficients in row n is 2n+1, so that the number of even
coefficients is Py(n) =(2n+1)—P,;(n). And, if there are N rows in the generalized Pascal

triangle, there will be a total of (N+1)* coefficients, and the total number of even coefficients

will be given by

N
Qu(n) = (N+1)% - X_; Py(n).
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If we apply the elementary rule defining evenness/oddness to the sums of three ferms
occurring in the recurrence relation for the trinomial coefficients, and write out the triangle,
we will have the distribution of even and odd coefficients in the Pascal triangle of order 3.

. We show this in Figure 26 for N=2°+1=17 rows, where the odd coefficients are denoted by

ones and the even coefficients by dots.

1
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Figure 26 Figure 27

Let us denote by A, the isosceles triangle (Figure 27a) whose altitude, measured by
the number of rows from base to vertex ihclusive, is h,=2"; the length of whose base is
d,=2""'—1; and the number of whose base row is n=h,~1=2"—1, r=0.

Also, denote by B, the isosceles trapezoid (Figure 27b) whose altitude is h,=2"";
whose upper and lower bases have lengths d,=2"'+1 and d, =2"+2""—1; and the number of
whose base row is n=2""—1, r>1.

In Figure 26, it is not difficult ‘to see the triangles A,,...,A,, and the trapezoids

B,,...,B..
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For the following theorem, we will need the Fibonacci numbers, which may be
calculated by the known formula of Binet,

|
— ’ !
\ \/g 2 2 \*\
\
R — . e =)
or expressed by means of the binomial coefficients

(3.6)

We note that the Binet formula [392] may be extended to the case of the sequence
{G,}, where

and

Theorem 3.6. Let the row number of the base of the generalized Pascal triangle of

order 3 be n=2"—1. Then for any natural number r, the number of odd trinomial
coefficients in this triangle is given by

Q1 (2?‘_1) = 27’Fr+2.

3.7




-111-

Proof: It follows from Theorem 3.3 that in row n=2"!, which lies inside A_, there are

three odd coefficients: (“) for m=0,2"* 2°. Each of these .gives rise to a triangle A_,, the
mj3

base of which has length 2°*—1-and lies on the row n=2"'+2"2—1. The following row,
27'+2%%, according to Theorem 3.5, has five odd coefficients: for m=0, 272, 214272,
274272, 2°+27", From this, we can establish that the coefficient for m=2"1+2"2 gives rise to
a triangle A, and each pair of coefficients for m=0, 2% and m=2"+2"%, 2°4+2", gives rise
to a trapezoid B, ,. Thus, the triangle A can be written as a "geometric" sum of the triangle
A, with base row 2* —1, four triangles A,,, and two trapezoids B, (Figure 27a). Likewise,
B, is the geometric sum of two trapezoids B.; and two triangles A, (Figure 27b).

If we denote by a, the number of odd coefficients in A, and by b, the number in B,,

we can, on the basis of the arguments given above, write the system of recurrence relations

a, =a,.q +4a,, + 2b 4 3.8)

b, = 2b, ¢ + 2a,,
where r>2 and the initial data is a,=1, a,=4, b, =2, determined by the number of odd
coefficients in Ay, A,, and B,. The solution of (3.8) may be expressed in terms of the
Fibonacci numbers as

a, =2F., b =27F,. 3.9

Substituting (3.9) in (3.8), and using the fact that F.,=F,.,+F,, it is easy to show that (3.9)
1s correct. Thué, Qy=a,=2F_.,, and the proof is complete.
If n=2"—1, then the total number of trinomial coefficients in triangle A, is 2%, and

thus the number of even coefficients, using (3.7), is given by
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Q2 -1) = 2¥-2°F, . (3.-10)

Then, using (3.7) and (3.10) we can show that from some r onward Q,(2°—1)> > Q,(2"—1).
Thus, Q,(2*—1)=128, Q,(2*—1)=128; Q,2"—1)=12032, Q,(2"—1)=4352;
Q,(2"°—1)=1048576, Q,(2'°—1)=147456.

Theorem 3.7. For n~e, lim {Q;(n)/Q,(n)]=0.

Proof: Since Q;(n) and Q,(n) are nondecreasing functions of n, then for

27— 1<n<271—1,

Q)] Qalm) < Q(27-1)/Qx(27-1).

Consequently,

im Qy(n)/Qy(n) < lim Qy(2""1-1)/Qy(2'1).

Using (3.7) and (3.10) we find that
QU2 -1)[ Q1) = 2'F, 4/ (2 -2F,.,)
= 2F, /(@' -F,.,)
< Fo 5l (2"-F,.5)

= 1/((2rlFr+3)—1)'

But for r—~ee, lim 27/F, ,; =, and so

M Qy(m)/ Qyr) < lim Qy(2"-1)/Q,(2"-1) = O,

which proves the theorem.
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We consider now the distribution of the trinomial coefficients in the generalized Pascal
triangle of order 3 with respect to the modulus p=3.

Definition 3.2. Let the natural number n be written in ternary form. We will say that
n contains a 1-block —of type k - denoted by <1>, - if its ternary form contains 2 string of k
consecutive ones which is bounded on the left by at least one zero or one two, and on the
right by at least one zero.

Definition 3.3. With n in ternary form, as above, we will say that n contains a 2~
block of type i - denoted by <2>, - if it contains a string of i consecutive twos, ignoring
imbedded ones, which is bounded on the left and right by at least one zero or by ones.

In connection with definition 3.2, note that strings of consecutive ones which precede
twos are not considered. Thus, in n=(211122), we ignore the three ones, and count what
remains as a block of type <2>,. |

Example: Suppose n in ternary form is n=2012210211202221101221. To count
blocks in n we first exclude ones which precede twos. As a result, we find the block form of

n to be

<n> = <202210220222110221 >,

and say that n contains two <12, blocks, one <1>, block, one <2>, block, three <2>,
blocks, and one <2>, block.

Theorem 3.8. In the generalized Pascal triangle of order 3, let the row number n
when written in te¥‘nary form consist of p,20 blocks <1>,, 1<kxs, and ¢; blocks <2>,

1<i<t. Then in row n the number of trinomial coefficients not divisible by three is



-114-

s t )
Nio) =TT Ve TT W v =85 w, = 3.3 (3.11)
k=1 in1
To prove Theorem 3.8, as in Theorem 3.5 we use the three-dimensional analog of
Lucas's Theorem, and find the expressions for V, and W, as the solutions of the
corresponding recurrence relations.

In Figure 28 we have written out, using the modulus p=3, the rows of the triangle up

through row N=15, in which the coefficients not divisible by three appear as 1's and 2's, and

those divisible by three are represented by dots.

Ay
8y, Ep;
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Figure 28 Figure 29

Denote by A, the isosceles triangle (Figure 29a) whose height, width of base, and row

number of the base are, respectively,

ho= 1@+, d-9, n=594L r=0.
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