-126-

CHAPTER 4

FRACTAL PASCAL TRIANGLES AND OTHER ARITHMETIC TRIANGLES

In this chapter we use some results from Chapter 2 to form fractal Pascal, and
generalized Pascal, triangles, as well as fractal arithmetic triangles whose elements are, e.g.,
Gaussian binomial coefficients, and Stirling and Euler numbers. We also give some
interesting geometric figures containing elements of the Pascal triangle, these elements being

related to one another by various arithmetic properties.
4.1 FRACTALS AND THEIR DIMENSIONS

The objects which today we call fractals, or describe as being fractal, were first
studied in the early part of the present century, although the term "fractal” has only become
established in the last decade. The term was introduced by the French mathematician
B.B. Mandelbrot, and comes from the Latin adjective "fractus”, connoting something
fractional or cut up. The most complete descriptions of various classes of fractals in nature
are in the books of B.B. Mandelbrot [270-272], H.-O. Peitgen and co-authors [304, 305], and
in the collection of articles [51], and also in [27, 30]. The fractal property is possessed by
many geographic features, among them coastlines, mountains, and valleys. There also exist
many physical and chemical processes out of which arise complicated fractal structures.

Of considerable interest‘ is the representation of fractal constructions arising from the
Pascal triangle in the works of S. Wolfram [397,398], and O. Martin, A.M. Qdlyzko,

S. Wolfram [276], and their application to the study of cellular automata. A. Lakhtakia,
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et al,, [213, 249-254], constructed a new class of fractals, the Pascal-Sierpinski gaskets,
investigated their properties, and gave applications to various physical problems. An
interesting class of fractals, connected with the Gaussian binomial coéfﬁcients, and the
Stirling and Euler numbers, was constructed by M. Sved [368]. In [12, 16] are constructed
fractal Pascal triangles, pyramids, generalized triangles, and Fibonacci and Lucas triangles.
Fractal Pascal triangles also appear in the book of T.M. Green and C.L. Hamberg [162], as
well as in [1, 2, 94, 147, 247, 344, 403].

Fractals as geometric objects possess a variety of properties, but fundamental among
these are their fractional (non-integral) dimension and their self-similarity. Roughly speaking,
a self-similar geometric figure is one which may be represented in the form of a finite
number of figures similar among themselves. With such figures we may associate equilateral
triangles and squares, the self-similarity of which is defined in a more complicated way. As
examples, we mention the well-known self-similar geometric constructions in Figure 38,
known as (a) the Sierpinski triangle curve, and (b) the Sierpinski carpet, after the Polish
mathematician W. Sierpinski. The methods of construction are easily explained in terms of
the figures: the triangle curve is obtained by repeatedly connecting the midpoints of the sides
of the successively smaller equilateral triangles; the carpet is constructed by iterating the
process of discarding the middle square from among the nine squares of the preceding stage.
Figure 39 shows the so-called Koch triadic (snowflake) curve, whose construction begins with
an equilateral triangle, each side of which is divided into three parts, with the middle part
then replaced by two line segments of lengi:h equal to a third of the original side.

As we know, there exist various definitions of dimension, corresponding to quite

different points of view. One of these ideas of dimension is related to the minimal number of
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coordinates necessary to unambiguously define the location of a point on a line, in a plane,
and in space. Another, the concept of the topological dimension, is that the dimension of any
set should be one greater than the dimension of the cut which separates it into two
disconnected parts. We note here that these dimensions may only be integers; both
definitions imply that a line is one-dimensional, a plane is two-dimensional, the usual
geometric space is three-dimensional, and so on.

But there exist other concepts, as well, and one of these is that of the dimension of
self-similarity. Let n be the number of identical parts into which a given self-similar object is
decomposed when the size of the original parts has been reduced by a factor of m. Then the

self-similar dimension is defined by the formula

D =1In nfin m. (4.1)

Using this introduced concept, we find that the dimension of the self-similar square
obtained by successive division into four equal squares is In 4/ln 2=2, that of the self-similar
cube is In 8/In 2=3, and so on. But when we use (4.1) to calculate the dimensions of the
objects 1n Figures 38 and 39, we find for the Sierpinski triangle curve that
D,=In 3/In 2=1.5849, for the Sierpinski carpet that D,=In 8/In 3=1.8727, and for the Koch
curve that Dy;=In 4/In 3=1.2618. That is, the self-similar dimensions of these objects are
non-integral. Non-integral dimensions are usually referred to as fractional dimensions, and in

Figure 40 are some additional self-similar figures: fractals, having fractional dimensions

[270].
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Figure 40

4.2 FRACTAL PASCAL TRIANGLES MODULO p

The elements of the Pascal triangle, reduced with respect to some modulus, in
particular a prime modulus p, form various triangular geometric lattices - in fact, fractals,
“which played an early part in the analysis of these structures and processes. (In order to
discover the properties of self-similar Pascal triangles mod p, we need to use a sufficiently

large number of rows of the triangle.) A fundamental characteristic of these fractals formed
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from the Pascal triangle mod p is their fractional dimension D,. Taking into account that for

a prime p, the corresponding m and n (of 4.1) are n=p(p+1)/2 and m=p, it follows from

(4.1) that

D, =i ZEL jinp=1om & iy “2)

Then from (4.2) we find, for example,

D, = 1.585, D, = 1.631, D, = 1.683, ...

And for p-o,

limD, =1 +IlimIn+1}/lnp -limnh 2/Inp = 2. “4.3)

P P P

In Figures 41-43 we show the fractal Pascal triangles formed using the respective
prime moduli p=2,3,5, and in Figures 44,45 using the composite moduli d=4,6 (in these
latter two cases the self-similarity is of a more complicated kind, and (4.3) cannot be used to
calculate the dimension). The dark ovals indicate points of the geometric lattice
corresponding to the elements of the Pascal triangle not divisible by p=2,3,5 and d=4,6; the
blanks indicate coefficients divisible by these moduli.

Applications of fractal Pascal triangles, mentioned earlier, are discussed in [12, 213,

249-254, 276, 395, 396].
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4.3 FRACTAL GENERALIZED PASCAL TRIANGLES AND

OTHER ARITHMETIC TRIANGLES MODULO p

n
Mig

Fractal generalized Pascal triangles, with the coefficients ( ) reduced with respect to

the prime moduli p=2,3 are given in [16]. M. Sved in [368] gives the constructions for
fractal arithmetic triangles composed of Gaussian binomial coefficients, Stirling numbers of
the first and second kind, and Euler numbers.

The fractal triangles for (;)3 mod 2 and mod 3 are shown in Figures 46,47; for the
Gaussian binomial coefficients,q=2,mod 3 in Figure 48; for the Stirling numbers of the

second kind mod 2 in Figure 49; and for the Euler numbers mod 3 in Figure 50.
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4.4 GEOMETRIC ARRANGEMENTS OF BINOMIAL COEFFICIENTS WHOSE

PRODUCTS YIELD PERFECT POWERS

V.E. Hoggatt and W, Hansell [208] discovered an interesting property which can be
described as follows. Let (‘:) be an interior element of the Pascal triangle, and let this
element be located at the center of a regular hexagon whose vertices consists of the

neighboring binomial coefficients
n-1 ) n n+1Y (n-1 n n+1 J
m1 \m+s1 )\ m S\ m ) m-1) L+t )

They showed that the product of these six binomial coefficients is a perfect square (of some
number), and further that the product of the first three equals the product of the last three.
Using a notation introduced in [384], denote the first three elements by Q's and the last three
by X's. Then the coefficients listed above form the figure shown in Figure 51a, and a
specific example is shown in Figure 51b for the case n=8, m=2, where 7-5636=821-84.
V.E. Hoggatt and G.L. Alexanderson [196] extended this property to the case of
multinomial coefficients. And H.W. Gould [157] showed there are arrangements of eight,
and of ten, binomial coefficients in the Pascal triangle which also have this property; two of

these are shown in Figure 5lc, d.
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Further, if this property, for a given arrangement of binomial coefficients, does not
depend on the choice of the values of m and n, then such a figure is said to be a perfect
square pattern (PSP). Z. Usiskin [384] discussed the problem of conditions for the existence
of PSP's, and showed that if the figure contains an even number of elements in each row and
in its main diagonals then it belongs to the class of PSP's. As a result of this theorem, he
constructed new PSP figures, shown in Figure 52a-d. He also discussed arrangements of
binomial coefficients, the product of which is a third power. Thus, in Figure 52e, composed
of three rhomboids, the products of the elements at the nodes denoted by O, X, Y are equal
among themselves, and the product of all elements is a cube. This property extends also to
the case of n® powers, if the figure is composed of rhomboids whose sides consist of n

elements.
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C.L. Moore {284] extended the results of [208] and established that for the binomial

coefficients forming a regular hexagon whose sides lie along the horizontal rows and main =
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diagonals of the Pascal triangle, and which contain j+1 elements, the product yields a perfect
square if j is odd. Similar results are discussed by A.K. Gupta in [165].

C.T. Long [260], and C.T. Long and V.E. Hoggatt [264], using a lemma they
proved, generalized known results and presented new geometric figures in the lattice of points
forming the Pascal triangle (denoted by * in Figures 53, 54). They proved that the products
of the binomial coefficients at the points of these figures form perfect squares. The assertion
of their lemma is as follows: the product of the binomial coefficients at the vertices of the
pair of parallelograms oriented as shown in Figure 53, is a perfect square. (If the
parallelograms partially overlap then, in the total, vertices must be taken into account twice,
or excluded, in the corresponding product.) Using the lemma, they proved a theorem which
applies to many interesting geometric figures, some of which are shown in Figure 54. In
effect, the theorem says that the products of the binomial coefficients located at the points on

the contours of these figures, are perfect squares.

Figure 53
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B. Gordon, D. Sato, and E. Straus [152] discussed P,-sets of vertex points of the Pascal
triangle lattice. They proved that the products of the binomial coefficients located at these
points were k™ powers, and gave a description of these P,-sets and a method for determining
the minimum of f(k), where f(k) is the cardinal number of all P,-sets. They also consider the

problem of extending the results obtained to the case of the multinomial coefficients.




