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CHAPTER 35

GENERALIZED ARITHMETIC GRAPHS AND THEIR PROPERTIES

In this chapter we consider the properties of generalized arithmetic graphs, special
cases of which are graphs modeled on generalized Pascal triangles. We will look at planar
and spatial graphs of generalized Pascal triangles of order m, prove a theorem on their
isomorphisms, and give an asymptotic formula for the number of paths in these graphs as

k-, We also prove a theorem on the cross sections of spatial arithmetic graphs.
5.1 GENERALIZED ARITHMETIC GRAPHS

A technique often used in the solution of combinatorial problems is to interpret or
reformulate the problem in the form of a graph, which provides a visual interpretation of the
combinatorial object and may make possible the discovery of new properties. We might cite,
for example, the use of the Ferrers graph for the representation of partitions [41], and the use
of graphs in the study of partially ordered sets [39].

The interpretation in the form of a graph, of objects essentially combinatorial, allowed
H. Hosoya [219, 220] to discover connections between the elements of the Pascal triangle and
the Fibonacci seq'uence, and a number of forms of chemical structures. In [19] the possibility
of using the Pascal triangle in building models of genetic codes is considered. The graph
interﬁretétion is also used in [29], in which a study of the properties of the graph suggests

new ways and algorithms for the solution of combinatorial problems.
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S.K. Das, N. Deo, and M.J. Quinn [113-116], and B.P. Sinha et al. [353], introduced
and studied the properties of the Pascal graph; the adjacency matrix of the vertices of the
graph coincides with the Pascal triangle mod 2. In particular, they introduced the Pascal
matrix, which is a symmetric matrix with zeros on the main diagonal, and below (and above)
it the Pascal triangle mod 2. They also studied and determined the properties of the Pascal
planar graph.

We will introduce the idea of the generalized arithmetic graph and prove a theorem on
the number of its paths; special cases of these graphs are the graphs modeled on various
modifications of the Pascal triangle.

A generalized arithmetic graph G(F,X) (Figure 55) is a regular Berge graph [26] with
a set X of vertices and mapping F which associates with each vertex xeX a subset (possibly

empty) of X, i.e.,

F, = {ylyeX/\} (x,y)},

where J(x,y) is the edge running from the vertex xeX to the vertex yeX.
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Figure 55

Definition 5.1. The notation

0 1 1 1 2 2 2 k k E
B0={0c0}, B'l ={cc0, QLogy ey am1_1}, Bz={a0, L S PR amz_1}, vy .Bk'_“{ao, Oy oy amk_1}

will denote a basis (set) for the generalized arithmetic graph, with the cardinality of the

indexed sets given by

|By| =1, ]B1| =my, |By| = My, .., |B| = my.

Definition 5.2. A generalized arithmetic graph is an oriented graph, for which the

following conditions hold:
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k
(a) X =UX, and X N X, = @, i.e., subsets of vertices at different levels have
i=0

no commen vertices;
(b) 3!x, GX[FX0=X1 A X =B, AF™'x, =e], i.e., there exists a unique vertex x,€X
for which the assertion is true, and this vertex is the root of the graph G(F,X);
(c) Vx €X. | [FX’C}(I—'FXS = {X. o, X e, ., X,"‘“L.-l}}s i.e., from each vertex

x,€X,., there issue exactly |B;| edges;
(d) VX, rst[Fxs =@], i.e., any vertex x,€X, at level k is terminal, and the subset X,

is terminal.
Lemma 5.1. In the graph G(F,X), if the vertex x,€X; is reachable from x;€X, then
these vertices are joined by a path of length (j—i).
Proof. Since the graph is a Berge graph it contains no loops or inconsistently oriented

edges, i.e.,

Vx,€X[Fx €X, 4 Ax €Fx,).

If x€X,, then the edge J(x,y) connects the vertex x€X; with the vertex yeX,,,, and this edge

is uniquely determined (Definition 5.2(c)), and, we may assert that the graph G(F,X) is of
increasing character. Thus if the vertex x,€X; is reachable from the vertex x,€X;, then the
vertices are connected by a path of length (j—1i), which is what was to be shown,

It is known that any graph is completely determined, up to isomorphisms, by the
adjacency matrix of its vertices. We will discuss below a number of properties of the graph

G(F,X) in terms of the properties of its adjacency matrix.
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Theorem 5.1. The number of paths connecting the vertex x,€X, with the reachable
vertex x,€X, of the generalized arithmetic graph is determined by the relations

o

Troxe = 1>
1 1, if x,eX,
r =
Xou¥g . —_
0, If x,eX,,
k k-1 k-1 k-1
Yoz =T 1 P g1 Foe T PR
0%s *ga ¥y = &g Xy~ X0 X C g1

where rifj is the (i,j) element of R’, the £* power of the adjacency matrix, £=0,1,2,...,k;

b

1=X,; j=x,€X,.

Proof. By Lemma 5.1, the paths joining x,€X to x,€X, have a unique length k, and
their npmber may be calculated with the help of the adjacency matrix R of the graph G(F,X).
To do this we need to calculate the k™ power of the matrix R={r;], where we impose on the
semi-ring K generated, the conditions [26] £n=1, nE=6>={=0. The distributivity condition
must be fulfilled for elements of the form n=1+41+--+1, where the number is composed of
units, and so k contains as a sub-semi-ring k' the nonnegative whole numbers with ordinary
addition and multiplication.

The construction of the matrix R of the graph G(F,X) takes the following form: we
consider the subsets in the order X,,X,...,X,, and the elements within a subset in order of
increasing element number, and then index the rows and columns in the corresponding order.
From Definition 5.2(b) it follows that

1 1 1
F i 1 1
*or%p X0y 0 fmy

]
~
1l
1
~
It
—h

G-1)
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i.e., the vertex x, (the root) is connected to the vertices of X, =B, by paths of length one.

We adopt the convention that x, is joined to itself by a path of length one, i.e., rxt% =1.

Then we can write (5.1) in the form

rxo,x‘

1 1, if xSEXT,
0, if x,€X,.

The elements of the matrix R? =rfj are defined as the number of paths of length two,

connecting x,€X, with j€X,. To determine the elements of R? we use the formula

r.2. = 2 r-1 r1 (5'2)

Since the vertex jeX,, by Definition 5.2(c), is reachable only from the vertices

j—e2, j-e2, ., j-eZ _, and not from the remaining vertices of X,

my~1?

1 1 I i
rij—cc1 ) rj a1j =
-t g, 1 . 1
rFr 4 = 0 and r [ O, lf (] C!i,)GX.i
I~ : i
Thus, (5.2) may be written as
P _— P . 5.3
i L1 L1 L.
WJ i,j-eg i, j—ay :.j—am1_1

Setting 1=x, and j=x, in (5.3), and using Theorem 5.1 for the case k=2, we get

1
rx2 =7 1‘*‘7“I 1+t F . -4
N X0~ 4
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Now, we assume that the conditions of the theorem are true for the (k-1)* power of the

matrix R, and use induction to show their correctness for the k™ power, R* =[r}]. The
elements 1\ are determined by the formula

e X 65

geX

If we take into account that the vertex jeX, is reachable (by paths of length one) only from

the vertices

(-8 =l o ek o) € X,

we must have that the corresponding elements rql,j equal one for the subscript J, and equal

zero for other vertices. Then, (5.5) may be written as

k k-1 k-1 k-1
Fig =0, g TV g T T F g,
J i,j-aq I,f-ty !,,r—tz,nk_.,

and from this it follows, setting i=x,€X, and j=x,€X, that

k k-1 k-1 k-1
r =7r g1 BT g1 T T 1 3 (5.6)

X - et
o %s Ton X5~ G0 A Xsm 2y FouXs™ Uyt

which is the assertion of the theorem.

Of particular interest in the solution of many combinatorial problems and complicated
system design problems is the special case of the generalized arithmetic graph - the
generalized m-arithmetic graph, with the basis <eg,e,,...,e,;>. It follows from Definition

5.2 that the generalized m-arithmetic graph may be obtained from the generalized arithmetic

graph G(F,X) if the following conditions are satisfied:
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- the generalized m-arithmetic graph has a unique basis B={«,,a,,...,&,,,}, where

B1=Ba='”=Bk=Band |B|=m,

- the elements of the subsets X, X,..., X, X, of vertices of the m-arithmetic graph are

related among themselves by

szeX‘._1[Fxsr;X‘.—-Fxs = {x; "o, Xty xs+ocm_1}].

The number of paths joining the (root) vertex x,€X, with the reachable vertex x.e€X,

of the generalized m-arithmetic graph with the basis <a,,...,u,. > satisfies the recurrence

relations

0 =1

Trorg = 1 (3.7)
1, if x,€X,,

o 5.8)

o ¥p . —
0, if x,eX,,

rk o= ¢ pE! . (5-9)

X%, Txgremag T Txgx-ey RS Rl S

where (5.7) - {5.9) are obtained from the corresponding relation in Theorem 5.1, if we

consider that the graph in this case has a unique basis B={«,,...,o_}.

5.2 THE SPECIAL CASE OF THE GENERALIZED m-ARITHMETIC GRAPH

The graph interpretation of the generalized Pascal triangle of order m is discussed in

[3, 33-37]. Graphs of this type have been successfully used in decision problems arising in

multi-stage discrete processes. Using the properties of the generalized arithmetic graph to
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construct interactive systems for technological decision making, it is possible to treat decision
problems involving choices of equipment to achieve flexible industrial systems. References
[33-35] give some algorithms for recognizing paths in the generalized arithmetic graph.

We consider now the special case of the generalized m-arithmetic graph with the basis
<@g, 0y,..., &, >, which is a widely used model in recent studies of analogs of the Pascal
triangle.

Let the elements of the basis <ay,...,a, ;> of the generalized arithmetic graph be

defined in the following way:

2
]

@, 1 tP =0y +mp=m,
where a,=0, «,;=1.
lllll Definition 5.3. The generalized m-arithmetic graph with the basis <0,1,...,m—1> is
said to be a graph model of the generalized Pascal triangle of order m.

The recurrence formulas determining the number of paths in the m-arithmetic graph
(Theorem 5.1), taking into account the properties of the basis, coincide with the recurrence

formulas for the elements of the triangle of order m:

0

Taoso = 1,
1 1, If x,€Xy,
) , _
Xy . —
_ 0, if x.eX,,
- k k-1 k-1 k-1
’ -

- + v+ )
tox, T Txoxy T Tag, Tt Xymet”
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Example. Let m=3 and k=2, so that X,={0}, X,={0,1,2}, X,={0,1,2,3,4}. In this
case the elements of the adjacency matrix, r:;‘x , coincide with the coefficients generated by

the function A(Y)=(1+t+t%)?, i.e.,

2 x
A=) 1ot

xSEXZ

The geometric interpretation of the m-arithmetic graph corresponding to the generalized

Pascal triangle of order 3 is shown in Figure 56a.

Figure 56

Definition 5.4. The generalized m-arithmetic graph with the basis <0,1> is said to

be the graph of the Pascal triangle.

Theorem 5.2. The number of paths connecting the (root) vertex x,€X, to the vertex

x,€X, in the graph of the Pascal triangle is given by the binomial coefficient (:)

Proof. From Theorem 5.1, we have Ix?,-xoz(:,) =1. For k=1 the vertices in the subset

X,={0,1} are connected with x, by paths of length one; the numbers of paths are given by
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1, If x eX,
P (5.10)
Tor%, Lo

0, if x,eX,

It follows from (5.10) that for x,=0 the formula rxt,0=1 is correct, and we may write here (;)

in place of unity. For x,=1, we obtain rxlmxl=1 , which we write as (i) That is, the
statement of Theorem 5.2 is true for k=0,1. Suppose that the assertion of the theorem is

satisfied for vertices in the subset X, ,, i.e., numbers of paths connecting x,€X, with the

vertices x,€X,,={0,1,...,x,—0,x,—1,... . k—1} are given by

-1y (k-1 k-1 k-1 k-1
0 /U1 ) T x0) \x-1) Tk
Now, from Theorem 5.1 we find for the Pascal triangle graph

E k- k-1 511
Trgxe = Trg,-0 ¥ Trp-19 ©-1D

and by the induction hypothesis we can substitute (:ﬁi) for the first term, and (:' ) for the

1
-1
o I Bl B -
% | x,~0 x,—1 x, )’

and so the result is true for k also, and the theorem is proved. The graph of the Pascal

second, whence

triangle with basis <0,1> for k=3 is shown in Figure 56b.
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5.3 AN ASYMPTOTIC FORMULA FOR THE NUMBER OF PATHS IN THE

GENERALIZED m-ARITHMETIC GRAPH

The method of determining the number of paths connecting x,eX, with x,€X, by
means of the adjacency matrix of the graph G(X,F) is convenient for small k, but involves
computational difficulties if k is large. This situation can be avoided if it is possible to find
an asymptotic formula to estimate the number of paths connecting x, withrx‘,eXk as k-oo,

From the definition of the generalized m-arithmetic graph with the basis
<ttg,..., 0> it follows that from each vertex, independent of its value (except terminal
vertices), there originate exactly m edges, and each of these corresponds uniquely to one of
the basis values. On the other hand, the graph G(X,F) consists of a set of paths of length k
of the form s=(x,,X,,...,%,), where x,€X,,x,€X,,...,X,€X,. As a simple example, take the

value of the root to be x,=0, for which we then have

X =X+ By Xy =X+ By o X=Xy + B,

where B.e{ag,a,,...,a,,}. With x,=0, we can write x,=8;+8,+~+5,.

Lemma 5.2. In the generalized m-arithmetic triangle with the basis <a,,...,a_ >,
the number of all possible paths of the form s is N=m".

Proof. The component 8, of the path s may take on any of the m basis elements as
value. The component B, may take on the same values independently of 8,, and so on for

each B;€B. Using the "product rule” of combinatorial analysis [44], we have

N = ' {61!62!---!Bk}! BjEB | = mk- o
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In terms of the elements of the adjacency matrix, it follows from the lemma that the

number of paths of the form s may be written as

ko_ ok
Y res =mh
xSEXk

Then each vertex x,€X, may be assigned the probability

k

plx) = pl, = By + By + - + By) = ’::,,

where

E plx) = 1.

x’EXk

The individual terms of the expression x,=08,+--+8, may be considered independent random
variables taking on as values the basis elements. The expected value of the sum of

independent random variables equals the sum of the expected values, and so we have

a, = kay = k(a0+p m] ) (5.12)

where a, is the expected value of B,€X,.

The variance in this case is determined by the formula

2
o2 = ko? + Jplm+1) (5.13)

where o, is the variance of B,€X,.
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Using a known limit theorem [38] from probability theory for k-, and (5.12) and
(5.13), we obtain the asymptotic formula for the number of paths connecting x,6X, with

X, EX

k (x,-a)*

2
2015

k. _ om

T =
Xor¥s Gk\[é‘;

exp [, + o(’"“]. (5.14)

vk

The result (5.14) could also be used to obtain approximate values of the elements of the

generalized Pascal triangle of order m, for large values of k.
5.4 GENERALIZED m-ARITHMETIC GRAPHS AND SPATIAL ISOMORPHISMS

We consider now the spatial representation of the m-arithmetic graph with the basis
< @p,..., 8, >, and a theorem on the isomorphism of this graph with the planar graph.

Definition 5.5. The module-graph of the generalized m-arithmetic graph with the

basis <eg,...,,,;> is the graph G (X',F’) defined in the following way:
@) X/=X/UX/ and X/NX/ =2, where X/ ={Xp}, X/ ={xp+a0,xp+a1,...,xp+am_1};
(b) B!XPGXJ[FX’ =X1"/\(F")“xp = ra], i.e., the vertex xpeXO" is the root of the
graph G (X',F');

(c) Vx €X/[Fx =o].
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It follows from the definition of the module-graph G_(X’,F’) that this graph is a

subgraph of G(X,F), i.e.,

? pr(X L FcG(X,F).
The module-graph G_(X’,F’) with x,=0 and X/={e,a e} is shown in Figure 57a.
The notion of orientedness of a graph need not be arbitrarily imposed on the edges

and vertices of the graph G, _(X’,F’) generated here. That is, the edges may have any
geometric length and direction without violating the properties of incidence and

connectedness. Further, without violating the conditions of Definition 5.5, in the graph

pr(X’,F’) we may:
(1)  identify the root xpeXo’ with the origin of coordinates in m-dimensional space;

(2)  take each edge J(x ,x), where x €X/, to have the direction and magnitude

- -

corresponding to the unit vectors €, €, .., €_ of m-dimensional space.

‘m~

If in fact these identifications are made, we obtain the spatial representation of the

module-graph G, (X',F’), coinciding, up to isomorphisms, with the usual m-dimensional
coordinate space. The vertex X, 1s at the origin, and the edges J (x,,x,+ag),..., T (X, %, + o ;)

coincide with the unit vectors. Such a representation for x,=0 and X/={e,« e} is shown

in Figure 57b.
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Figure 57

In what follows, when we speak of a module-graph we will be referring to its spatial

representation,

Lemma 5.3. The generalized m-arithmetic graph with the usual basis may be

represented by means of its module-graphs in m-space, i.e.,

G(X,F) = UGxP(X’, F,

(4

where x, X UX,UX,U-UX, ;.

Proof. For k=1, the assertion is easy to show, i.e.,
G(X,F) = UGxP(X’,F’) = G (X".F"),
x
where X =X/ ={x} and X =X/.

As for the mappings F and F', F'=F will fulfill the condition, It follows, then, that
for k=1 the generalized m-arithmetic graph G(F,X) with the basis < a,,...,«_,> coincides,

up to isomorphisms, with its module-graph.
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Now suppose the assertion of the lemma is valid for the m-arithmetic graph with the

set of vertices X" =X ,UX,U-UX, , (path lengths k—1), and denote this graph by G ,(X",F").

For this graph, (5.15) has the form

G, (X", F"y = UGxP(X’,F’),
X

P

where x,eX,UX U-UX, ,.

Then, we will have for the graph G(X,F)

GX,F) = G,(x",F") U pr(Xl’F ),

xpEXk‘-1

and from Definition 5.2 and Definition 5.5 it follows that

Vx, €X, 4[Fx, ={x, +0g, X, 4 0gy .y X, v, (JAF %, =Fx |

And for the subset of vertices X, we have that

X=U F ’xp,

Xp€Xg

(.16)

according to which, if G ;(X",F") may be represented by its module-graph, then for G(X,F)

in (5.16) it follows that

Gx.F) = UG (x\F) U G (x,F) = UG, X\F),

xpEQ xPEXk_.‘ xpED

where Q=X UX,,...,X,, and D=X,UX,U-UX, ,, which is the assertion of the lemma.
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Definition 5.6. The graph obtained as the union of module-graphs by (5.15) is said to
be the spatial representation of the generalized m-arithmetic graph with the basis
L Ugyee,Eyy >, OF the spatial‘ arithmetic graph, and is denoted by Gs(X,F).

Figure 58 shows the spatial arithmetic graph with the basis <1,3,5> and k=3: the

vertices are shown as points, and the edges are not oriented.

Sy

Figure 58

Theorem 5.3. The spatial arithmetic graph G3(X,F) is isomorphic to the generalized
m-arithmetic graph G(X,F).

Proof. The spatial graph may be obtainéd as the union of the module-graphs

G, (X',F’), the edges of which have defined directions, and coincide with the direction and
magnitude of the unit vectors. This last condition does not violate the properties of incidence
and connectedness of the vertices of G(X,F), and by a known theorem [32] this is a necessary

and sufficient condition for the isomorphism of G(X,F) and G¢(X,F).
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5.5 PROPERTIES OF THE CROSS SECTIONS OF THE

SPATIAL ARITHMETIC GRAPH

We discuss now some properties of the cross sections of the spatial m-arithmetic
graph, from which we might derive some general methods for obtaining recurrent sequences
from vartous analogs of the Pascal triangle.

For each vertex x,€X, of the spatial arithmetic graph G;(X,F), we have the valid
representation x,=x,+0,+B8,+-+8,, where B,6{e,,~, .}, and if we take x,=0, then

x,=B,+-+B,. On the other hand, we can also represent x, by the linear expression

Xg = Polg * Pq®yq + =+ B 4 & 4

where u; is the number of components B; taking on the value «;.

Definition 5.7. The numbers g, 1t,,~, o are said to be the coordinates of the vertex

X EX,.

5

The number of paths connecting x,€X, with x,€X,, i.e., r* , may be determined by

H)
XgaX,

the multinomial formula

JEL (Wot i gt FHpg)!
X9,
oltqlpy, o

(5.18)

where py+-+ 1., =k.

Definition 5.8. By a cross section of the spatial arithmetic graph G(X,F), we will
mean the sum of the numbers of paths connecting the origin of coordinates x,€X, with the
vertices x, of this graph which lie in the hyperplane

AgYp * Gy * 0 T 8y Vg TN (5.19)

where the a, are positive whole numbers.
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Denote this cross section by T,. Then, since the coordinates (i,,..., 1, ) of the
vertices x,€X of the graph G((X,F) must satisfy (5.19), i.e.,

Gplg + @qPq + = * Gy qBpq = (5-20)

T, 15 determined by the equation

Ly et I
Tn = E (IJ'O IJ'1 I‘Lm—‘]) . (5-21)

X PoliqlBpaq!

Theorem 5.4. The cross section T, of the graph G (X,F) satisfies the recurrence

formula

T =T . +T,, +~+T._ (5.22)

where Ty=1 and T, =0, if k<0.

Proof, Subtracting a, from each side of (5.19) we have

aO(yD_‘i) tay, te t a4y Yy T R4

From (3.20) and (5.21), the cross section Two is given by

(Hotpytetp, s~
x,6X (90_1)!|~£1!"'|‘Lm~1!

Ty, =

Likewise, for a, we will have

(oo 1)
nex Bl D, !

n-ay
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and so on, up to a,:

Ly et -1)!
Wy (Bo*pt iy~
" g Bolpyl(R I
Substituting these expressions for the T's on the right side of (5.22), we have

(P'o““l-'-ﬁ""“}imq—-l)! . (RotHq*+i,— T .
x,€X (I~'-0'1)!IL1!"'H,,,..1! Ilo!(i-lr.*)!"'limq!

(5.23)

e (Bo*py*+Ryg 1!
olbql (i1 1)}

But after an elementary transformation, (5.23) may be written in the form

(RotRqt*R )
x,eX Bolkql iyl

which is just T,, and this completes the proof.

For n=0, the plane (5.19) passes through the origin of coordinates; in this case we
take To=1. For values of n<0, T,=0, since Gi(X,F) has no vertices in the negative half-
space. Theorem 5.4 says, in effect, that among the cross sections by parallel planes we have
the recurrence relation (5.22). Thus, we can think of the spatial graph of the generalized

Pascal triangle of order m as the source of an infinite number of recurrence relations of the

type (5.22).



