A PRIMER FOR THE FIBONACCI NUMBERS: PART VIII

Marjorie Bicknell
A. C. Wilcox High School, Santa Clara, California.

SEQUENCES OF SUMS FROM PASCAL'S TRIANGLE

There are many ways to generalize Fibonacci numbers, one way being to
consider them as a sequence of sums found from diagonals in Pascal's triangle
(1], [2]. Since Pascal's triangle and computations with generating functions
are so interrelated with the Fibonacci sequence, we introduce a way to find

such sums in this section of the Primer.

1. INTRODUCTION

Some elementary but elegant mathematics solves the problem of finding

the sums of integers appearing on diagonals of Pascal's triangle. Writing

Pascal's triangle in a left-justified manner, the problem is to find the
infinite sequence of sums p/q of binomial coefficients appearing on diagonals
p+q21l,a> O, where we find entries on a

p/q for integers p and q,
-most column.

diagonal p/q by counting up P and right q, starting in the left
intuitive idea of "slope" is useful in locating the

1/2, for example, is not the same as 2/4 or 3/6.)
As an example, the sums 2/1 on diagonals formed by going up 2 and right 1 are
1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, ... , as illustrated below:

(Notice that, while the
diagonals, the diagonal
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Some sequences of sums are simple to find. For example, the sums 0/1

formed by going up O and right 1 are the sums of integers appearing in each

row, the powers of 2. The sums Q/2 are formed by alternate integers in a row,
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also powers of 2. The sums 1/1 give the famous Fibonacci éequence l, 1, 2,

3 5, 8, 13, 21, ..., defined by F) =F, = 1, Ff, = F,_, + F 5. The sums

-1/2, found by counting down 1 and right 2, give the Fibonacci numbers with
odd subscripts, 1, 2, 5, 13, 34, 89, ..., FZn#l’ ese o While the problem is

not defined for negative "slope'" less than or equal to =1 nor for summing
columns, the diagonals =1/1 are the same as the columns of the array, and
the sum of the first J integers in the nth column is the same as the jth
entry in the (n + 1l)st column.

To solve the problem in genefal, we develop some generating functions.

2. GENERATING FUNCTIONS FOR THE COLUMNS OF PASCAL'S TRIANGLE

Here, a generating function is an algebraic expression which lists terms
in a sequence as coefficients in an infinite series. For example, by the
formula for summing an infinite geometric progression,

3

(1) T i — =a+ar+ ar2 + ar” + eeey lr] <1,

we can write the generating function for the powers of 2 as

(2) T—_;§§ 21 4 2x + bxZ 4 BxD 4 wee + 2%+ oll |x] < 1/2 .
~ Long division gives a second verification that 1/(1 - 2x) generates
powers of 2, and long division can be used to compute successive coefficients

of powers of x for any generating function which follows.
We need some other generating functions to proceed. By summing the

geometric progression,

& rk
(3) lix=l+x+x2+x3+...= Z(O)xk’ x| <1 .

By multiplying series or by taking successive derivatives of (3), one finds

22 [k
(4) 1 2=1+2x+3x2+...-hkxk'lnl-...= Z(l)xk’ | x| <1,
(1 - x) k =0
S (k
(5) S S 3x + 6x‘2 + Zl.Ox3 + 15xl+ 4 eee = Z(z)xk ’ [x] < 1.
(1 - x)3 k =0
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Computation of the nth derivative of (3) shows that

1 AR
k=0

is a generating function for the integers appearing in the nth column of
Pascal's triangle, or equivalently, the column generator for the nth column,
where we call the left-most column the zero-th column. As a restatement,
the columns of Pascal's triangle give the coefficients of the binomial

)-n-l' n=0,1,2, eo.y [x]|<1, or of (1L + x)"2"1 ;¢

taken with alternating signs.

expansion of (1 - x

3. SOME PARTICULAR SUMS DERIVED USING COLUMN GENERATORS

It is easy to prove that the rows in Pascal's triangle have powers of 2

as their sums: merely let x =1 in (x + l)n, n=20,1,2, ... « But, to
demonstrate the methods, we work out the sums O0/1 of successive rows using
column generators.

First write Pascal's triangle to show the terms in the expansions of

(x + 1)®., Because we want the exponents of x to be identical in each row
so that we will add the coefficients in each row by adding the column

generators, multiply the columns successively by 1, x, xa, x3, .oy making

1

1x 1x

1x° 2x° 1x°

lx3 3x3 3x3 lx3

lxh bt 6xh #xk 1x4
generators: 1 x x> x> xt

1= .02 A-x° Q1-0% @-x9°

Then the sum S of column generators will have the sums 0/1 of the rows
appearing as coefficients of successive powers of x. But, S is a geometric

progression with ratio x/(1 - x), so by (1),
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1
T -
s = N : =7 -12x . for !i_§-; '( 1 or |x|<1l/2,
I :

the generating function for powers of 2 given earlier in (2).

If we want the sums 0/2, we sum every other generating function, forming

s‘ =-—1—- + —L + x‘+ #..',
1-x (1 - x)> (1 - x)°

and again sum the geometric progression to find

s* = A =-x 1 - X
Tl-2x 1 - 2x l - 2x

(1 + 2x + #xa + 8x3 +eee +2%% 4 L)

- (x + 2x2 + 4x3 + eee + 2n-lxn + eee)

1+ (x + 2x2 4 bxo + cee + 22712, I

which again generates pawers of 2 as verified above.
We have already noted that the sums 1/1 give the Fibonacci numbers.
To use column generators, we must multiply the columns successively by

I, xz, xh, xs, eesy 80 that the eiponents of x will be the same along each

diagonal 1/1. The sum S** of column generators becomes

2 4 6
S** = 11 + X > + X - + _,-"_E + seey
T* a-x (1-x)° 1 - x)

again a geometric progression, so that

1.
l - x 1
s“ = 2 =
1 - l = x -x
l-x
for
‘ .2 -1
| T-§—; <1 or [x} < (l—g—iz) .

This means that, for | x| less than the positive root of x2 +x-1=0,
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5. vee + F xn-l+ oo
n
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(6) 5 =1+ 1x+ 2x2 + 3x
l -x=x

+ 5x4 + 8x

For generating functions, we are concerned primarily with the coeffi-
cients of x rather than values of x, but a particular example is inter-
esting at this point. Both series (4) and (6) converge when Xx = 1/2; let

x = 1/2 in those series to form

#:1+2-%+3-%+4-%+5-%€+6031§+...+noznil+...,
. 1, .,,1 1 1 i 1
'-I'-l+102+2 E#B.E*S.R"s.}a*‘0no+Fn.2n_l+o.o 'Y

the same result whether we use the natural numbers or the Fibonacci numbers

as coefficients of the powers of 1/2 !
Also, x = 0.1 in (6) gives, upon division by 100,

-515 = 0.0112358

13
21
34
55
89

the reciprocal of a Fibonacci number with successive Fibonacci numbers

making up its decimal expansion.
We are now in a position to solve the general problem of finding the

sums p/q.

4, SEQUENCES OF SUMS p/q APPEARING ALCNG ANY DIAGONAL

To find the sequence of sums appearing along the diagonals p/1,

p+l x2(p+l)'

multiply the columns of Pascal's triangle successively by 1, X '

x3(p+l)' ese, 50 that the exponents of x appearing on each diagonal p/1

will be the same, giving

1

ix lxP+l

lx2 axp¢2 1x2p+2

1%° 3xP*2 35 2P*3 1xoP*3

lxh hxp+4' 6x2p+h ux3p+h lx4p+4
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p+l xZP*Z_ £ OP*3 x.’-I»pd»h
B -xd

X
1-x .x% - 1Q-x> @1-=x

generators:

The sum S of column generators is a geometric progression, so that

1
- l -x _ 1 xp+l
(7 §s= 1 xp+1 = 7 - x - xp+l y P21, ,1 s <1,
- 1 -x
p+l

with S convergent for [ x| less than the positive root of x +x=-1=0.,

Then, the generating function (7) gives the sums p/l as coefficients of

successive powers of x. [Reader: Show |x| < 1/2 is sufficient. Editor.]
In conclusion, the sequence of sums p/q are found by multiplying'

pra_ ,2(pra)  3(p+q)

successive qth columns by 1, x eeey making the sum of

column generators be

P+q x2P+2a < P*+3a

+ eee .

+

1 x
+ + )
-x (1 - x)%* (1 - x)29*1 (1 - x)°9t

| -
§* =7

Summing that geometric progression yields the generating function

5% = Q- x)e?

"o lafa 0 Trazh a2

which converges for |x| less than the absolute value of the root of smallest

absolute value of x¥'% - (1 - x)? = 0 and which gives the sums of the

binomial coefficients found along the diagonals p/q as coefficients of

successive powers of x . [Reader: Show [x| < 1/2 is sufficient. Editor.]

Some references for readings related to the problem of this paper
follow but the list is by no means exhaustive. We leave the reader with

the problem of determining the properties of particular sequences of sums
arising in this paper.
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