A PRIMER FOR THE FIBONACCI NUMBERS: PART IV

V. E. Hoggatt, Jr., and I. D. Ruggles San Jose State College, San Jose, Calif.

FIBONACCI AND LUCAS VECTORS

1. INTRODUCTION

In the primer, Part III, it was noted that if V = (x, y) is a two-dimensional vector and A is a 2 x 2 matrix, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then V' = AV is a two-dimensional vector, V' = (x', y') = (ax + by, cx + dy). Here, V and consequently V', are expressed as column vectors. The matrix A is said to transform, or map, the vector V onto the vector V'. The matrix A is called the mapping matrix or transformation matrix.

2. SOME MAPPING MATRICES

The zero matrix, $Z = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, maps every vector V onto the zero vector $\emptyset = (0, 0)$. The identity matrix, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, maps every vector V onto itself; that is, IV = V. For any real number k, the matrix $B = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ maps vectors V = (k, -k) onto the zero vector \emptyset . Such a mapping as determined by B is called a many-to-one mapping.

If the only vector mapped onto \emptyset is the vector \emptyset itself, the mapping is a one-to-one mapping. A matrix A determines a one-to-one mapping of two-dimensional vectors onto two-dimensional vectors if, and only if, det $A \neq 0$. If det $A \neq 0$, for each vector U, there exists a vector V such that AV = U. Note, however, that for matrix B above, $B\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + y \\ 2x + 2y \end{pmatrix}$. There is no vector V such that BV = (0, 1).

3. GEOMETRIC INTERPRETATIONS OF 2x2 MATRICES AND 2-DIMENSIONAL VECTORS

As in Primer III, the vector V = (x, y) is interpreted as a point in a rectangular coordinate system. Thus the geometric concepts of length, direction, slope and angle are associated with the vector V.

A non-zero scalar multiple of the identity matrix, kI, maps the vector U = (a, b) onto the vector V = (ka, kb). The length of V, |V|, is equal to

|k||U|. There is no change in slope but if k < 0 the sense or direction is reversed.

The matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ maps a vector onto the reflection vector with respect to the line through the origin with slope one. Note that different vectors may be rotated through different angles!

The matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ preserves the first component of a vector while annihilating the second component. Every vector is mapped onto a vector on the X-axis.

The matrix $R = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ rotates all vectors through the same angle θ (theta), in a counterclockwise direction if theta is a positive angle. There is no change in length. This seems to contradict the notion of a matrix having vectors whose slopes are not changed, but in this case, the characteristic values are complex; thus, there are no real characteristic vectors.

4. THE CHARACTERISTIC VECTORS OF THE Q-MATRIX

The Q matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ does not generally preserve the length of a vector U = (x, y). Also, different vectors are in general rotated through different angles.

The characteristic equation of the Q matrix is

$$\lambda^2 - \lambda - 1 = 0$$

with roots $\Lambda_1 = (1 + \sqrt{5})/2$ and $\Lambda_2 = (1 - \sqrt{5})/2$, which are the characteristic roots, or eigenvalues, for Q.

To solve for a pair of corresponding characteristic vectors consider

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \qquad x^2 + y^2 \neq 0.$$

Then

$$(1 - \lambda)x + y = 0$$
.

Thus, a pair of characteristic vectors are X_1 and X_2 with slopes m_1 and m_2 ,

$$X_1 = (\lambda_1 x, x), |X_1| \neq 0, m_1 = (\sqrt{5} - 1)/2,$$

$$X_2 = (\lambda_2 x, x), \quad |X_2| \neq 0, \quad m_2 = -(\sqrt{5} + 1)/2$$

What happens when the matrix q^2 is applied to the characteristic vectors X_1 and X_2 of matrix q^2 . Since

$$Q^2X_1 = Q(QX_1) = Q(AX_1) = AQX_1 = A^2X_1$$
,

clearly X_1 is a characteristic vector of the matrix \mathbb{Q}^2 as well as a characteristic vector of matrix \mathbb{Q} . The characteristic roots of \mathbb{Q}^2 are the squares of the characteristic roots of matrix \mathbb{Q} . In general, if λ_1 and λ_2 are the characteristic roots of \mathbb{Q} , then λ_1^n and λ_2^n are the characteristic roots of \mathbb{Q}^n . But the characteristic equation for \mathbb{Q}^n is

$$0 = \chi^2 - (F_{n+1} + F_{n-1}) \chi + (F_{n+1}F_{n-1} - F_n^2) = \chi^2 - L_n \chi + (-1)^n,$$

recalling that $L_n = F_{n+1} + F_{n-1}$ and that $F_{n+1}F_{n-1} - F_n^2 = (-1)^n$.

Applying the known identity $L_n^2 = 5F_n^2 + 4(-1)^n$, it follows that

$$\lambda_1^n = [(1 + \sqrt{5})/2]^n = (L_n + \sqrt{5}F_n)/2 \text{ and } \lambda_2^n = [(1 - \sqrt{5})/2]^n = (L_n - \sqrt{5}F_n)/2.$$

5. FIBONACCI AND LUCAS VECTORS AND THE Q MATRIX

Let $U_n = (F_{n+1}, F_n)$ and $V = (L_{n+1}, L_n)$ be denoted as Fibonacci and Lucas vectors, respectively. We note that

$$|V_n|^2 = F_{n+1}^2 + F_n^2 = F_{2n+1}$$
,
 $|V_n|^2 = L_{n+1}^2 + L_n^2 = (5F_{n+1}^2 + (-1)^{n+1}4) + (5F_n^2 + (-1)^{n}4) = 5F_{2n+1}$.

It is well-known that the slopes of the vectors $\mathbf{U_n}$ and $\mathbf{V_n}$ (the ratios $\mathbf{F_n/F_{n+1}}$ and $\mathbf{L_n/L_{n+1}}$) approach the slope $(\sqrt{5}-1)/2$ of the characteristic vector $\mathbf{X_1}$.

Since $Q^{m}Q^{n} = Q^{m+n}$, it is easy to verify that

$$F_{m+1}F_{n+1} + F_mF_n = F_{m+n+1}$$

by equating elements in the upper left in the above matrix equation. In a similar manner it follows that

$$F_{m+1}F_{n+2} + F_{m}F_{n+1} = F_{m+n+2}$$
,
 $F_{m+1}F_{n} + F_{m}F_{n-1} = F_{m+n}$.

Adding these two equations and using $L_{n+1} = F_{n+2} + F_n$ it follows that

$$F_{m+1}L_{n+1} + F_{m}L_{n} = L_{m+n+1}$$
 .

From the above identities it is easy to verify that

$$Q^{n+1}V_{O} = QV_{n} = V_{n+1}$$
,
 $Q^{n+1}U_{O} = QU_{n} = U_{n+1}$,
 $Q^{n}V_{m} = V_{m+n+1}$,
 $Q^{n}U_{m} = U_{m+n+1}$.

6. A SPECIAL MATRIX

Let
$$P = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$
; then from
$$L_{n+1} = F_{n+1} + 2F_n , \qquad L_n = 2F_{n+1} - F_n ,$$

$$5F_{n+1} = L_{n+1} + 2L_n , \qquad 5F_n = 2L_{n+1} - L_n ,$$

it follows that

$$PU_n = (F_{n+1} + 2F_n, 2F_{n+1} - F_n) = V_n$$

 $PV_n = (L_{n+1} + 2L_n, 2L_{n+1} - L_n) = 5U_n$

Also

$$PQ^{n} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{pmatrix} = \begin{pmatrix} L_{n+1} & L_{n} \\ L_{n} & L_{n-1} \end{pmatrix}$$

$$P^{2}Q^{n} = 5Q^{n}$$

Notice that det $(PQ^n) = (\det P)(\det Q^n) = 5(-1)^{n+1} = L_{n+1}L_{n-1} - L_n^2$.

We now discuss two geometric properties of matrix P. Let U = (x, y), $|U|^2 = x^2 + y^2 \neq 0$. Now, PU = (x + 2y, 2x - y) and $|PU|^2 = 5(x^2 + y^2) = 5|U|^2$; thus matrix P magnifies each vector length by $\sqrt{5}$.

If $\tan \alpha = y/x$, we say $\alpha = \operatorname{Tan}^{-1} y/x$, read " α is an angle whose tangent is y/x." Let $\tan \alpha = y/x$ and $\tan \beta = (2x - y)/(x + 2y)$. From the identity $\tan(\alpha + \beta) = (\tan \alpha + \tan \beta)/(1 - \tan \alpha \tan \beta)$ we may now see what effect P has on the slope of vector U = (x, y).

Now, recalling that $x^2 + y^2 \neq 0$,

$$\tan (\alpha + \beta) = \tan \left(\tan^{-1} \frac{y}{x} + \tan^{-1} \frac{2x - y}{x + 2y} \right) = \frac{2(x^2 + y^2)}{x^2 + y^2} = 2$$

What does this mean? Consider two vectors A and B, the first inclined at an angle α with the positive X-axis and the second inclined at an angle β with the positive X-axis when the angles are measured positively in the counter-clockwise direction. The angle bisector γ of the angle between vectors A and B is such that $\alpha - \gamma = \gamma - \beta$ whether or not α is greater than β or the other way around. Solving for γ yields

$$\Psi = (\alpha + \beta)/2.$$

Thus Ψ is the arithmetic average of α and β . Also we note that $\alpha+\beta=2\Psi$. The tangent of double the angle is given by $\tan 2\Psi=(2\tan\Psi)/(1-\tan^2\Psi)$. If we let $\tan\Psi=(\sqrt{5}-1)/2$, then it is an easy exercise in algebra to find that $\tan 2\Psi=2$. But, $\tan (\alpha+\beta)=2$; therefore, we would like to conclude that the angle bisector between vectors U and PU is precisely one whose slope is $(\sqrt{5}-1)/2$, which is the slope of X_1 , the characteristic vector of Q. Can you show that X_1 is also a characteristic vector of P?

We have shown

Theorem 1. The matrix $P = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ maps a vector (x, y) onto a vectorPU such that

(1)
$$|PU| = \sqrt{5}|U|;$$

(2). The angle bisector of the angle between the vector U and the vector PU is X_1 , a characteristic vector of Q and P. Thus matrix P reflects vector U across vector X_1 .

Theorem 2. The vectors U_n and V_n are equally inclined to the vector X_1 whose slope is $(\sqrt{5}-1)/2$.

Corollary. The vectors $\mathbf{V_n}$ are mapped onto vectors $\sqrt{5}~\mathbf{U_n}$ by P and the vectors $\mathbf{U_n}$ are mapped onto $\mathbf{V_n}$ by P.

7. SOME INTERESTING ANGLES

An interesting theorem is

Theorem 3.

$$Tan(Tan^{-1} L_n/L_{n+1} - Tan^{-1} L_{n+1}/L_{n+2}) = (-1)^n/F_{2n+2}$$

Theorem 4.

$$Tan(Tan^{-1} F_n/F_{n+1} - Tan^{-1} F_{n+1}/F_{n+2}) = (-1)^{n+1}/F_{2n+2}$$

Theorem 5.

$$Tan^{-1} F_n/F_{n+1} = \sum_{m=1}^{n} (-1)^{m+1} Tan^{-1} 1/F_{2m}$$

We proceed by mathematical induction. For n = 1, it is easy to verify that $Tan^{-1} l = Tan^{-1} (l/F_2)$.

Assume that Theorem 5 is true for n = k; that is, that

$$Tan^{-1} F_k/F_{k+1} = \sum_{m=1}^{k} (-1)^{m+1} Tan^{-1} 1/F_{2m}$$

But, by Theorem 4,

$$Tan^{-1} F_{k+1}/F_{k+2} = Tan^{-1} F_{k}/F_{k+1} + Tan^{-1} (-1)^{k}/F_{2k+2}$$

Thus, if the induction hypothesis is true, then

$$Tan^{-1} F_{k+1}/F_{k+2} = \sum_{m=1}^{k} (-1)^{m+1} Tan^{-1} 1/F_{2m} + Tan^{-1} (-1)^{k}/F_{2k+2}$$

$$= \sum_{m=1}^{k+1} (-1)^{m+1} Tan^{-1} 1/F_{2m}$$

because $Tan^{-1}(-x) = -Tan^{-1}x$ and $(-1)^k = (-1)^{k+2}$ and the proof is complete.

8. AN EXTENDED RESULT

Theorem 6. The series

$$A = \sum_{m=1}^{\infty} (-1)^{m+1} \operatorname{Tan}^{-1} 1/F_{2m}$$

converges and A = Tan⁻¹ $(\sqrt{5} - 1)/2$.

Proof: Since the series is an alternating series, and, since $\tan^{-1} x$ is a continuous increasing function, then

$$Tan^{-1} 1/F_{2n} > Tan^{-1} 1/F_{2n+2}$$
 and $Tan^{-1} 0 = 0$.

The angle A must lie between the partial sums S_N and S_{N+1} for every N>2 by the error bound in the alternating series, but by Theorem 5, $S_N = Tan^{-1} F_N/F_{N+1}$. Thus the angles of U_N and U_{N+1} lie on opposite sides of A. By the continuity of Tan^{-1} x, then,

limit
$$Tan^{-1}(F_n/F_{n+1}) = A = Tan^{-1}(\sqrt{5} - 1)/2$$
.
 $n \to \infty$

Comment: the same result can be obtained simply from

Tan [Tan⁻¹
$$F_n/F_{n+1}$$
 - Tan⁻¹ $(\sqrt{5} - 1)/2$] = $(-1)^{n+1}$ $[(\sqrt{5} - 1)/2]^{2n+1}$

Which slope gives a better numerical approximation to $(\sqrt{5}-1)/2$, F_n/F_{n+1} or L_n/L_{n+1} ? Hmmm?

SOME MORE ELEMENTARY PROBLEMS

B-4 (Proposed by S. L. Basin and Vladimir Ivanoff) Show that

$$\sum_{i=0}^{n} \binom{n}{i} F_{i} = F_{2n}$$

and generalize.

B-5 (Proposed by L. Moser) Show that, with order taken into account, in getting paid an integral number n dollars, using only one-dollar and two-dollar bills, that the number of different ways is \mathbf{F}_{n+1} where \mathbf{F}_n is the nth Fibonacci number.

B-9 (Proposed by R. L. Graham) Prove that

$$\sum_{n=2}^{\infty} \frac{1}{F_{n-1}F_{n+1}} = 1 \quad \text{and} \quad \sum_{n=2}^{\infty} \frac{F_n}{F_{n-1}F_{n+1}} = 2 .$$

B-10 (Proposed by Stephen Fisk) Prove the "de Moivre-type" identity

$$\left(\frac{L_n + \sqrt{5} F_n}{2}\right)^p = \frac{L_{np} + \sqrt{5} F_{np}}{2}$$

where L denotes the nth Lucas number and F_n denotes the nth Fibonacci number.