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GENERATING FUNCTIONS FOR THE FIBONACCI SEQUENCES
1. INTRODUCTION

We shall devote this part of the primer to the topic of generating func-
tions., These play an important role both in the general theory of recurring
sequences and in combinatorial analysis. They provide a tool with which

every Fibonacci enthusiast should be familiar.

2. GENERAL THEORY OF GENERATING FUNCTIONS

Let 851 879 85y oo be a sequence of real numbers. The ordinary

generating function of the sequence‘{an} is the series
> oo
. n
A(x) = By + 81X + 85X + eee = ES a x .
n=0

Another type of generating function of great use.in combinatorial problems

involving permutations is the exponential generating function of {an} ’
O
E(x) = a, + a,x/1! + a x2/2' + = ZZ a_x"/n!
0 1 2 L] LN n L] L]

For some examples of the two types of generating functions, first let

a, = a® . The ordinary generating function of {an} is then the geometric

e_6e .

series

o
1 n_n
(2.1) A(x) = T = zz ax .,
n=20
while the exponential generating function is

oo
E(x) = e®* = 2 a®x%/n!¢ .

n=20
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Similarly, if a, = na® s then
oo
A(x) = 2x 5 = Z na®x®
(1 - ax) n=0
(2.2)
o0
E(x) = axe®* = nanxn/nz ,
n=0

each of these being obtained from the preceding one of the same type by
differentiation and multiplication by x. A good exercise for the reader to
check his understanding is to verify that if a, = na s then

A(x) - x(x_+]') = naxn N
(1 - x)° Z
n =
-}
E(x) = x(x + 1)e* = nzxn/n! .
11250

(Hint: Differeniate the previous results again., )

For the rest of the time, however. we will deal exclusively with
ordinary generating functions.

We adopt the point of view here that x is an indeterminate, a means of
distinguishing the elements of the sequence through its powers. Used in this
context, the generating function becomes a tool in an algebra of these
sequences (see [3]). Then formal operations, such as additioen, multiplication,
differentiation with, respect to x, and so forth, and equating equations of
like powers of x after these operations merely express relations in this
algebra, so that convergence of the series is irrelevant.

The basic rules of manipulation in this algebra are analogous to those
for handling polynomials. If {an} . {bn} , and {cn} are real sequences with

(ordinary) generating functions A(x), B(x), C(x) respectively, then A(x) +
B(x) = C(x) if and only if a, + b, =c , and A(x)B(x) = C(x) if and only if

e, = anbo + an-lbl + eeo + albn-l + aobn .
Both results are obtained by expanding the indicated sum or product of gener-
ating functions and comparing coefficients of like powers of x. The product
here is called the Cauchy product of the sequences {an} and {bn} y and the
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sequence {cn} is called the convolution of the two sequences{:an} and {bn} .

To givé an example of the usefulness and convenience of generating func-
tions, we shall derive a well-known but nontrivial binomial identity. First

note that for a fixed real number k the generating function for the sequence

k k(k<l)eee(k = n + 1)
an = ( ) = n!

is
Ak(x) = (1 + x)k

by the binomial theorem. If k is a nonnegative integer, the generating func-

tion is finite since

(2.3) (k)=o ifa>k>0 or n<o0
: n

by definition. Then
A = (L+0%= @+ 0@+ 0% =20 .

Using the product rule gives

2.7
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so that equating coefficients of xn shows that

n

()=, 2,030

i3=o

This can be found in Chapter 1 of [8].
If the generating function for -{an} is known, it is sometimes desirable

to convert it to the generating function.{an¢k} as follows. 1If
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A(x) = i aﬁnx’:l ’

n=20

‘then

A(x) - a, hand a
ot St
x n+l

n=20

This can be repeated as often as needed to obtain the generating function
for {an+k} .

Generating functions are a powerful tool in the theory of linear recur-
ring sequences and the solution of linear difference equations. As an example
we shall solve completely a second-order difference equation using the tech-
nique of generating functions. Let {cn} be a éequence of real numbers which

obey

c qe_ = 0 , n>o0,

n+2 ~ PCps1 * n

where o and c1 are arbitrary. Then by using the Cauchy product we find

Co
2 n 2
(1 - px + qx") zz: e X =cgy+ (c1 - pco)x + 0ex” 4 to0 = ¢y + (cl - pco)x
=0

so that

= c. + (e, = pec)x
(2.4) z n 0 1 0

c_X = .
l -px + qx2

Suppdse a and b are the roots of the auxiliary polynomial x2 - px + qQ , SO
the denominator of the generating function factors as (1 - ax)(l - bx). We

divide the treatment into two cases, namely, a # b and a = b.

If a and b are distinct (i.e.,p2 -‘Qq # 0), we may split the generating

function into partial functions, giving

co * (c1 - pco)x co *+ (cl - pco)x A B

(2.5) = = - + -
1 - px + qxa (1 = ax)(1 = bx) T -ax T 1= bx

for some constants A and B. Then using (2.1) we find
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o° oo [ocd i Oo
z cnxn = A Z ax® + B Z 2% = Z (aa” + BM)x® ,
n=20 n=20 n=0 n=20
so that an explicit formula for cn is
(2.6) c_ = Aa® + BOV" .

Here A and B can be determined from the initial conditions resulting from

assigning values to o and €y

On the other hand, if the roots are equal (i.e., p2 - 4q = 0), the
situation is somewhat different because the partial fraction expansion (2.5)
is not valid. Letting ¢, + (cl - pco)x = r + sx, we may use (2.2), however,

to find

co ' oo
z cnxn = .r__‘.’._si—a = (r + sx) Z (n + 1)a®x"
o (1 - ax) n=o0

= :E: [r(n + 1)a” + snan'l]xn = :E: [(r + s/a)n + rla®™x" ,
n=20

n=20
showing that

c, = (An + B)a® ,

where
A=r+8/a, B=r

are constants which again can be determined from the initial values o and cq.

This technique can be easily extended to recurring sequences of higher
order. For further developments, the reader is referred to Jeske (6], where
a generalized version of the above is derived in another way. For a discus-

sion of the general theory of generating functions, see Chapter 2 of [8] and

Chapter 3 of [2].
3. APPLICATIONS TO FIBCNACCI NUMBERS

The Fibonacci numbers Fn are defined by Fo = 0, Fl = 1, and Fn+2 - Fn+l

- Fn =0, n>0. Using the general solution of the second-order difference

e ie Y N X
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equation_given above, where p =1, q = -1, ey * (cl - pco)x = x, we find

that the generating function for the Fibonacci numbers is

(- -]
x n
ERY o) s 2 S
l «-x =-x
n=20

The reader should actually divide out the middle part of (3.1) by long
division to see that Fibonacci numbers really do appear as coefficients,
Since the roots X = (1 +415)/2 and A= (1 -4/5)/2 of the auxiliary

polynomial x2 - x =1 are distinct, we see from (2.6) that
1 n
(302) Fn = A“ + Bﬂ o

Putting n = 0, 1 and solving the resulting system of equations shows that
A=1/45 =1/(x-43), B=-1/45 |,

establishing the familiar Binet form,

n n
o -/
. F = —— .
(3.3) u =
We shall now turn around and use this form to derive the original generating
function (3.1) by using a technique first exploited by H. W. Gould [5].

Suppose that some sequence {an} has the generating function

oo
n
A(x) nzoanx .
Then
. - n o
(3.4) ““)a.'.}w") - ‘n('“L«%ﬂL)"n = Zoanann .
n=20 n =

In particular, if a = 1, then A(x) = 1/(1 - x), so that

1 1 L = =
F(x)=¢,(_/_;(1.a(x-1-/?")-1-x-x2 .

Next we use (3.1) to prove that the Fibonacci numbers are the sums of

terms along the rising diagonals of Pascal's Triangle. We write
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o oo

n x x n n

F x = = =XZX(1+X)
Zn 1-x-x° 1= (x+x%) =

n (o] k n=0k
o= [(m=1)/2]
- jz 28 ( m-3 - 1) 2,
m'=1 3=o0 3

where [m] denotes the greatest integer contained in m. . The inner sum is the
sum of coefficients of x= in the preceding sum, and the upper limit of
summation is determined by the inequality m - j - 1 < j, recalling (2.3).
The reader is urged to carry through the details of this typical generating

function calculation. Egquating coefficients of x® shows that

[(n-1)/2]

ne-j-1
(3.5) F_ = Z ( )
i=o .

linking the Fibonacci numbers to the binomial coefficients.

It follows from (3.1) upon division by x that

oo
1 n
(3.6) 60 = —E—s - S -
= = n=20
Differentiating this yields
o .
6V (x) = 2x+122___( 1 2)( 1 + 2x 2)= Z (“*1)Fn+a"n .
(L - x=x") l = x =X l -x=-x n=o

Now

' (%]
1l + 2x _ n
-x - n=0

where Ln are the Lucas numbers defined by Ll =1, I..2 = 3, Ln+2 = Ln+1 + Ln '

n > 0. Hence

TTOOee
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[d Os » Qe O
n n n
G'(x) = Z Fra* z LpaX® = Z Z Fokerlxar | X 0
n=0 n=0 n=0\k=20
so that h
n
Z Froksilicer = 8+ DFp o0
k=20
a convolution of the Fibonacci and Lucas sequences.
We leave it to the reader to verify that
-]
x - x - Z (F - .
(1 - x)(1 - x - xa) 1 -2x + x> n+2
n=20
Also
o0 o
X — = 1., x s = z <8 z ann
(1 = x)(1 = x = x7) 1 -x 1=-x=2x n o nzo
hiad n
n
= F X .
2 [ 2
n=0\3J=0

Equating coefficients shows

which is really the convolution of the Fibonacci sequence with the constant
sequence {1, 1, 1, eeo } o

Consider the sequencev{Fkn}°b , where k # O is an arbitrary but fixed
n=20
integer. Since

. =akn _Akn
kn «=-A

‘'we have
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oo = <
Z Pt - «iﬂ( Z«knxn ) Zﬁknxn) {A( 11 )
n=20 n=20 n=0 1-ax 1-4x
(3.7) = 1 R («k -ﬂk)x = Fkx
XA 1@ x e («%5%)x2 1-Lx+ (-1)%x?

where we have used «/f = -1 and the Binet form Ln =" +,yn for the Lucas

numbers. Incidentally, since here the integer in the numerator must divide

all coefficients in the expansion, we have a quick proof that Fk divides. Fnk

for all n. A generalization of (3.7) is given in equation (4.18) of Section 4.

We turn now to generating functions for powers of the Fibonacci numbers.

First we expand

2
n n
F o= (“ =£ ) = —2 P - 2axg)? s,
a=-4 (« = 4)
Then
‘ag Oo oo oo >
2
Zann =(a( ) z -2 z (d/})nxn + Zﬂnxn
n=0 -ﬂ = n=20 n=0

1 ( 1 - 2 . 1 )
( -ﬂ)2 l-o(ax 1 -a4x l-ﬂzx

_ x - x° _ X - X _
(2 -1 -0gx) (1 =-g%%)  1-2x-2x° +x°

This also shows that {Fi} obeys

2 2 2 2
n+3-2Fn+2-2F + F_ =0 .

F n+l n

We remark that Gould's technique (3.4) may be applied to F(x), leading to
exactly the same result.

In general, to find the generating function for the pth power of the

Fibonaceci numbers, first expand Fs by the binomial theorem. This gives F;’

- n(p-1) n
as a linear combination of a(np. «B(P l)ﬂn s esey o(/] (p . P P g0 that

as above the generating function will have the denominator

e inY YSid
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(1 - &Pl - &P Yx) eee (1 P01 - 4P0)

Fortunately, this product can be expressed in a better way. Define the

f’ibonomial coefficients [k] by
T

€1 _ Tkfk-1 "t Froran . X
)M e (3]
12 r

Then it has been shown [7] that

P p+1
Qp(x) = ’/-T (1 -ap-jﬂjx) = z (_1)3(3*1)/2 [p + llxj .
j=0 j=20 J :

For example,

Ql(x) =1-x-x°

Qz(x) =1-2x - 2x2 + x°

Qy(x) = 1 - 3x - 6x2 + 30 + x'

Qu(x) =1 - 5% - 15x2 + 15%° + 5x' = x°

Since any sequence obeying the Fibonacci recurrence relation can be written
in the form Aun + Bﬂn ’ Qp(x) is the denominator of the generating function

of the pth power of any such sequence. The numerators of the generating

functions can be found by simply multiplying through by Qp(x). For example,

. ' . . 2 ,
to find the generating function of {Fn+2} , We have

A

= 2 (x)
n r(x
ngof‘n‘.ax ) l «2x = Zxa +:3 )
Then r(x) can be found by multiplyins by Qa(x); giving
r(x) = (1 - 2x - 2x% + x3)(l + bx + 9x2 + ZSx“ 4 eee)

=1+ 2x = x2 + O-x3 4 e0ee = 1 ¢+ 2X = xa .
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This is (4.7) of Section 4., However, for fixed p, once we have obtained the
. . P P «P
generating functions for‘{Fn‘} ’ {Fn+1} 9 eee o {’n’p ¢ the one for

{Fﬁ+k} follows directly from the identity of Hoggatt and Lind {[4)]

P
(3.8) Foek = Z (-1)(p-3)(p-3+3)/2 [k][p](Fk-n)Fp
j=0 P J Fk-j ned !

where we use the convention FO/FO = 1., For example, for p = 1 this gives

Frok ® FiFner * FeaaFn

Using the generating function for {’Fn+l} in (3.4) and,{'Fn} in (3.1,

[t o oo
F,_ + F x
n_ n n _ 'k k-1
Z Fra®* =% Z Faed*  * Fra Z 2 Sl
n=20 n=0 n=0 -
In fact, one of the main purposes for deriving (3.5) was to express the
. . P . . . D
generating functlon of {Fn+k} as a linear combination of those of {Fn} 9 eesy
{r? 1.
n+p )
Alternatively, to obtain the generating function of {F§+k} from that of
{Fi} , we could apply k times in succession the technique mentioned in
Section 2 for finding the generating function of’{an+l} from that of‘{an} .
The generating function of powers of the Fibonacci numbers have been
investigated by several authors (see [3], [5], and [7]).

4, SOME STANDARD GENERATING FUNCTICNS

We list here for reference some of the generating functions we have

alreédy derived along with others which can be established in the same way.

. .

X n

e I S
n=20

l = x - x

n

o
1 n
(4.2) —— - Z F_, %
< n=20

Y ¥ X X Yt
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(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(bo1l)

X - X

l =2x = 2x2 + x3

l-x _
l -2x - 2x2 + x3

l + 2x = x2

l «2x - 2x + X

X

2 3

l = 2x = 2x + x

b - 7x = x2

3

l - 2x - Zxa + X

1+ 7x = 4x2 _

1 -2x - 2x° + x°

9 = 2X = x2

3

l = 2x = 2x2 + X

2 3

X = 2X = X

"

-]

n [N

-]

||r\/13

=}

u[\st

o]

o]

ltPVQg uFV18

o]

u[\/19

o]

1 - 3x - 6x2 + 3x3

l « 2x = x2

1l - 3x = 6x2 + 3x

3

+

n =
X
L’- =
X
" =
X

%L
=)
"

o
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(4.15) 8 » Jx - x -.x - zFi X"
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1l - 3x - 6x2 + 3x7 + xu

Qo
2% n
(4.16) = ZFF F_ X
1 - 3x - 6x2 . 3x3 . xh n n+l n+2
n=20
F, x =t
k n
k 2 kn
1 - ka + (=1)"x n=o
| F_+ (-1)'F, _x & ,
(4.18) r k-; 5 = z Fkn+rxn
l - ka + (=1)"x n=o0

1.

2.

3.

Many thanks to Kathleen Weland and Allan Scott.
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AN EASY PROBLEM
B-14 (Proposed by Maxey Broocke and C. R. wall) Show that

oo oo | n"'l

z Fo 10 and z (-1)""F, 10
1o g9 e 109
n=1 n=1
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