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A PRIMER FOR TEE FIBONACCI NUMEBERS: PART XI

Verner E. Hoggatt, Jr., and Janet Crump Anaya
San Jose State University, San Jose, California

MULTISECTICN GENERATING FUNCTICNS FCR TEE COLUMNS OF PASCAL'S TRIANGLE

1. INTRODUCTION

Let

[—d

f(x) = ZS anxn

n=20

be the generating function for the sequence {anJ. Often one desires

generating functions which multisect the sequence {an} ’

o0

Gi(x) = zz ai+mjxj , (i =0,1, 2, ¢es, m=1).

=

For the bisection generating functions the task is easy. Let

f(x) + £(-x)
2 ?

Hl(xa)

2 £(x) = f(=x) .,
Ha(x ) = s

then clearly Hl(xz) and Ha(xa) contain only even powers of x so that

oo oo
n _ n
Hl(x) = zz a, X and Ha(x) = EZ a5, 1%
n=20 n=20

are what we are looking for.

Let us illustrate this for the Fibonacci sequence. Here
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(- -4
f(x):;—::—-:-;: Zann H
- n=20
then
co
H.(x) s —% = ZF 2
1 2 2n
l -3x+x n'=o
and

1 ©o
- X n
H(x)-_.________.=zlr X .

2 1 - 3x + x2 - 2n+l

Exercise: Find the bisection generating functions for the Lucas

sequence.

Let us find the general multisecting generating functions for the
Fibonacci sequence, using the method of H. W. Gould (See [1].). The

Fibonacci sequence enjoys the Binet Form

n n 5 1-45
Fn=——_ao(:ﬂﬂ ' d=1;4—’ /3=12r‘
Let f£(x) =1/(1L - x) ; then
SF & =°tjf(0'-mx) - Alra®y)
mn+ j £ -4
n=20
.1 ( G __ﬂi_)
x-4 \1 . &B 1- 8%
J J n-J n-J
- S 3 = A
-7 B = x

1-(x®+ gMx + & 4) %%

Foe (DI x

h|
1 - Lx + (--l)mx‘2

sy (3=0,1, 2, ¢«o., m=1),

kY ¥ X X Xus

AafbaAaa
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n n
o - 7
m? and . Fn = - .

since o(ﬂ: -1, o™+ ﬁm =L

Exercise: Find the general multisecting generating function for the

Lucas sequence.

The same technique can be used on any sequence having a Binet Form.
The general problem of multisecting a general sequence rapidly becomes very

complicated according to Riordan [2], even in the classical case.
2. COLUMN GENERATORS OF PASCAL'S TRIANGLE

The column generators of Pascal's left-justified triangle 21, C41, Cs51,

are

k Ei n
X n
Gk(x) = (l _ x)k"’l = (k) b d 'Y k = o‘ 1, 2, es e .

=}
n
o

We now seel generating functions which will m-sect these,

Gi(m, k; x).=

i+k+mn)xn+k+l’ (i = 0,1,.0., m=1).
o k

anr\/jg

n

We first cite an obvious little lemma.

e ()3 (D).

Definition: Let Gi,k(X)’ i=0,1, 2, evey m - 1, be then

generating functions

oo

G. (x) = Z ( i+k+mn ) xi+mn+k .

ik k
=0 .

Lemma 2¢

2 m
xGy k(x) + X Gi-l,k(X) 4 eee + X Gi-u+l,k(x)

G (x) 2 1 N .
i,k+1 1 - x®

The proof follows easily from Lemma 1.
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Let

n(m-1)
(L + x+ <2 + vee + xm-l)n = (n) x3
350 \3/m=

define the row elements of the m-nomial triangle. Further, let

k
fi(m,k; x) = Z (i + jm )m xd 9 i = O, 1' seey m-l’
j=o0

where j is such that i + jm L k(m - 1). These are multisecting polynomials

for the rows of the m-nomial triangle, Now, we can state an interesting theorem:

Theorem: For i =0, 1, 2, sesy m =1,
xk+i fi(m,k; x)

(1 - x)*rd

Gi(m,k; x) =

Proof: Recall first that the m-nomial coefficients obey

n S N | n - 1) n-1 )
= + + oo +
(r)m (r)m (r-lm (r-m-rlm
where the lower arguments are non-negative and less than or equal to n(m - 1).
Clearly, for k = 0, from the definition'just before Lemma 2,

Gi’o(x) = —— ' i = 0, 1, 2. ee sy m"'l .

Assume now that

L+ fi(m,k; <)

(1 - xm)k+l

Gi'k(x)
fori=0,1, 2, 3, vy (m = 1). From Lemma 2,

m
XGi-l,k(X) + hee + X Gi-m+1,k(x)

63, xe1(x) = T -

l - x

Thus,

kY ¥ X X X }
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m=-1 :
k ) xk+(i-s)+s+3m+l
Z Z (i-s+jm m
__s=0\j=0
Gi,k+l(x) - a - xn)k+2
m=1
EZ ( k ) k+l+i+jm
Z i-s+jm/m x
__j=0\s =0
= Q xm)k+2
k+1l
*k+l+i Im
* Z (i + jm )m x
. i=0
- 1 - xm)k+2
xk+1+i fi(m.k; xm)

) (l - xm)k+2

This completes the induction.

The xk+l+i

entries are separated by m = 1 =zeros. To get rid of the zeros, let

merely positioxi the column generators. Here the non-zero

o+ fi(m,k; %)
x)k+l

G,(m,k; x) =
i Q-

for i = 0, 1, 2,+e0,m=1. This concludes the proof of the theorem.

If we write this in tke form

: k k+i+]
x
xj+k+l . Z (i + jm)m

j=0

""71 _ x)k+l

oo (i+jm+k)

Gi(m,k; x) = X

y=0

it emphasizes the relation of the multisection of the kth column of Pascal's

triangle and the multisection of the kth row of the m-nomial triangle.
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3, A NEAT GENZRATING FUNCTICON

(3)(-3)

0

Lemma 3:

—
W oo
N——
n

IIPV1H

This is easy to prove by starting with
n n - l) n - 1)
(4) (k) (k * (k-l
n - 2) (n - 2) n - 2) v (n - 2)
(k * k-1 *(k-l * \k-2
n-2 n-Z) n-a)
1'( X )" 2°<k-1 * 1'(1:-2 .

Apply (A) to each term on the right repeatedly.

[}

Now let Hi(m,k; x) m-sect the kth column of Pascal's triangle (i = 0, 1,

2, seey m - 1); then, using lemma 3, it follows that

.Lemma L: Hi(m,k; x) = T Z (J) Hi(msk-.'l; x) .

The results using the method of Polya for szall m and i seem to indicate

the following (See [3].).

Theorem: The generating functions for the rising diagonal sums of the

rows of FPascal's triangle i + jm (all other rows are deleted) are given by

i
H, (x) = (1 + x) ~, 1=20,1, «eoy m -1,
1 - x(1 + x)

Exercise: 3Show that

m-1

i m 1
x"H, (x) =
1:20 t 1-x(1+x)

[ Yy ¥ Y.
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This is a necessary condition which now makes the theorem plausible.
These are the generalized Fibonacci numbers obtained as rising diagonal sums
from Pascal's triangle, beginning in the left-most coluzmn and going over 1
and up m. (See [3]) The theorem is proved by careful examination of its

meaning with regards to Pascal's triangle as follows:

co

N oo n
(1L + x) - - z B x)mn+i - z z (m(n-j) + i) &,
1= x(1+x) n=20 n=03j=0 d

1 20,1, 2, «sey @ - 1. Recall that (“) 0 if 0<n<k.

k
JLLUSTRATION
n=20 xo(l + x)o"'1 =1+ x
n=1 xl(l + x)2+1 = X + 3x2 + 3x3 + xh
n=2 x2(l + x}4+; = x2 + 5x3 + IOxu + 10x5 + 5x6 + x7
n=23 x3(l + x)6+1 = x3 + 7xu + 21x5 + eoo
Sunm: ) l~n-2x-¢:'+x2-o-9x3 +19x4+ e

Here,m = 2 and 1 = 1. Now; write a left-justified Pascal's triangle.
Form the sequence of sums of elements found by beginning in the left-most column
and proceeding right one and up 2 throughout the array: 1, 1, 1, 2, 3, 4, 6,
9, 13, 19, ... » Notice that the coefficients of successive powers of x give
every other term in that sequence.

The general problem of finding generating functions which multisect the
column generators of Pascal's triangle has been solved by Nilson [6], although
interpretation of the numerator polynomial coefficients has not been achieved

as in our last few theorems,
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