SOLUTIONS TO PROBLEMS

Solutions to problems posed previously are given here. Where a problem solution appeared in the Fibonacci Quarterly, date and page numbers are given.

Page 5

The solutions to "Problems For Exploration" were given by Ken Siler in "Fibonacci Summations," Fibonacci Quarterly, Vol. 1, No. 3, October, 1963, pp. 67-69, as follows:

$$\sum_{k=1}^{n} F_{2k} = F_{2n+1} - 1$$

$$\sum_{k=1}^{n} F_{4k-2} = F_{2n}^{2}$$

$$\sum_{k=1}^{n} F_{3k-1} = F_{3n+1} - 1$$

$$\sum_{k=1}^{n} F_{4k} = F_{2n+1}^{2} - 1$$

$$\sum_{k=1}^{n} F_{4k-3} = F_{2n-1}F_{2n}$$

$$\sum_{k=1}^{n} F_{4k-3} = F_{2n-1}F_{2n}$$

$$\sum_{k=1}^{n} F_{4k-1} = F_{2n}F_{2n+1}$$

In that paper is derived the general formula,

$$\sum_{k=1}^{n} F_{ak-b} = \frac{(-1)^{a} F_{an-b} - F_{a(n+1)-b} + (-1)^{a-b} F_{b} + F_{a-b}}{(-1)^{a} + 1 - L_{a}}$$

for the a-th Lucas number L and the Fibonacci numbers with subscript ak-b .

Page 17

B-1, B-2, B-3 are each proved by mathematical induction in Vol. 1, No. 3, October, 1963, pp. 76-78.

Page 26

Use the formulas for the lambda number developed in the article or use elementary row and column operations to simplify the resulting determinant.

B-4 (Solution by Joseph Erbacher and J. L. Brown, Jr., FQ, 2:1, February, 1964, p. 80) Using the Binet formula,

$$F_{2n+j} = \frac{(a^2)^n a^j - (b^2)^n b^j}{a - b} = \frac{(1 + a)^n a^j - (1 + b)^n b^j}{a - b}$$

Since

$$a^2 = a + 1$$
, $b^2 = b + 1$ when $a = (1 + \sqrt{5})/2$, $b = (1 - \sqrt{5})/2$,

we have

$$F_{2n+j} = \frac{1}{a-b} \left[\sum_{i=0}^{n} {n \choose i} a^{i+j} - \sum_{i=0}^{n} {n \choose i} b^{i+j} \right] = \sum_{i=0}^{n} {n \choose i} \frac{a^{i+j} - b^{i+j}}{a-b}$$
$$= \sum_{i=0}^{n} {n \choose i} F_{i+j} .$$

If j=0, we have the original problem. The identity also holds, with arbitrary j, for Lucas numbers $L_n=F_{n+1}+F_{n-1}$.

B-5 (Solution by J. L. Brown, Jr., FQ, 1:3, October, 1963, p. 79.)

Let a_n for $n \ge 1$ be the number of different ways of being paid n dollars in one and two dollar bills, taking order into account. Consider the case where $n \ge 2$. Since a one-dollar bill is received as the last bill if and only if n-1 dollars have been received previously and a two-dollar bill is received as the last bill if and only if n-2 dollars have been received previously, the two possibilities being mutually exclusive, we have $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$. But $a_1 = 1$, $a_2 = 2$; therefore, $a_n = F_{n+1}$ for $n \ge 1$. B-9 (Solution by Francis D. Parker, FQ, 1:4, Dec., 1963, p. 76) Since

$$\frac{1}{F_{n-1}F_{n+1}} = \frac{F_n}{F_{n-1}F_nF_{n+1}} = \frac{F_{n+1} - F_{n-1}}{F_{n-1}F_nF_{n+1}} = \frac{1}{F_{n-1}F_n} - \frac{1}{F_nF_{n+1}} ,$$

$$\sum_{n=2}^{\infty} \frac{1}{F_{n-1}F_{n+1}} = \sum_{n=2}^{\infty} \left(\frac{1}{F_{n-1}F_n} - \frac{1}{F_nF_{n+1}} \right) = \left(\frac{1}{1 \cdot 1} - \frac{1}{1 \cdot 2} \right) + \left(\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right) + \left(\frac{1}{2 \cdot 3} - \frac{1}{3 \cdot 5} \right) + \dots = 1$$

Similarly,

$$\frac{F_n}{F_{n-1}F_{n+1}} = \frac{F_{n+1} - F_{n-1}}{F_{n-1}F_{n+1}} = \frac{1}{F_{n-1}} - \frac{1}{F_{n+1}} \quad \text{and}$$

$$\sum_{n=-2}^{\infty} \frac{F_n}{F_{n-1}F_{n+1}} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{5}\right) + \left(\frac{1}{3} - \frac{1}{8}\right) + \dots = 2$$

B-10 (Solution by Charles Wall, FQ, 1:4, Dec., 1963, p. 77) Since

$$\frac{L_n + \sqrt{5} F_n}{2} = \frac{a^n + b^n + a^n - b^n}{2} = a^n$$

where a = $(1 + \sqrt{5})/2$ and b = $(1 - \sqrt{5})/2$, we have

$$\left(\frac{L_n + \sqrt{5} F_n}{2}\right)^p = a^{np} = \frac{a^{np} + b^{np} + a^{np} - b^{np}}{2} = \frac{L_{np} + \sqrt{5} F_{np}}{2}.$$

Page 51

H-8 (Solution by John Allen Fuchs and Joseph Erbacher, FQ, 1:3, October, 1963, pp. 51-52.) The squares of the Fibonacci numbers satisfy the linear homogeneous recursion relationship $F_{n+3}^2 = 2F_{n+2}^2 + 2F_{n+1}^2 - F_n^2$. We may use this recursion formula to substitute for the last row of the given determinant, D_n , and then apply standard row operations to get

$$D_{n} = \begin{vmatrix} F_{n}^{2} & F_{n+1}^{2} & F_{n+2}^{2} \\ F_{n+1}^{2} & F_{n+2}^{2} & F_{n+3}^{2} \\ 2F_{n+1}^{2} + 2F_{n}^{2} - F_{n-1}^{2} & 2F_{n+2}^{2} + 2F_{n+1}^{2} - F_{n}^{2} & 2F_{n+3}^{2} + 2F_{n+2}^{2} - F_{n+1}^{2} \end{vmatrix}$$

$$= \begin{vmatrix} F_{n}^{2} & F_{n+1}^{2} & F_{n+2}^{2} \\ F_{n+1}^{2} & F_{n+2}^{2} & F_{n+3}^{2} \\ -F_{n-1}^{2} & -F_{n}^{2} & -F_{n+1}^{2} \end{vmatrix} = -D_{n-1}.$$

It follows that $D_n = (-1)^{n-1}D_1$. Since $D_1 = 2$, $D_n = 2(-1)^{n-1} = 2(-1)^{n+1}$.

B-28 (Solution by Marjorie Bicknell, FQ, 2:2, April, 1964, p. 159)

By considering combinations of Fibonacci numbers which give minimum and maximum values to sums of the form abc + def + ghi, the following determinant seems to have the maximum value obtainable with the nine Fibonacci numbers given:

$$\begin{bmatrix} F_{10} & F_4 & F_7 \\ F_6 & F_9 & F_3 \\ F_2 & F_5 & F_8 \end{bmatrix} = F_{10}F_9F_8 + F_7F_6F_5 + F_4F_3F_2 - (F_{10}F_3F_5 + F_9F_2F_7 + F_8F_4F_6)$$

$$= 39796 - 1496 = 38300.$$

B-13 Expand the determinant by its last row, obtaining $F_n = F_{n-1} + F_{n-2}$, making possible a proof by mathematical induction since $F_1 = 1$ and $F_2 = 2$.

Page 64

B-14 (Solution by Charles Wall, FQ, 1:4, Dec., 1963, pp. 79-80) Since

$$\sum_{n=1}^{\infty} F_n x^n = \frac{x}{1 - x - x^2}$$

let x = 0.1 in one case and (-0.1) in the other.

Page 69

Since Euler's famous formula gives $e^{i\pi}=-1$, the curious formula becomes just $\emptyset=2\cos\pi/5$, which is proved in the article referred to when the problem was posed.

B-18 (Solution by J. L. Brown, Jr., FQ, 2:1, Feb., 1964, pp. 74-75.) It is well known (e. g., I. J. Schwatt, "An Introduction to the Operations with Series," Chelsea Pub. Co., p. 177) that $\cos \pi/5 = (1 + \sqrt{5})/4$ and $\sin \pi/10 = (\sqrt{5} - 1)/4$. Therefore, $a = (1 + \sqrt{5})/2 = 2 \cos \pi/5$ and $b = (1 - \sqrt{5})/2 = -2 \sin \pi/10$, and

$$F_{n} = \frac{a^{n} - b^{n}}{a - b} = 2^{n-1} \cdot \frac{\cos^{n} \frac{\pi}{5} - (-1)^{n} \sin^{n} \frac{\pi}{10}}{\cos \frac{\pi}{5} + \sin \frac{\pi}{10}}$$
$$= 2^{n-1} \sum_{k=0}^{n-1} (-1)^{k} \cos^{n-k-1} \frac{\pi}{5} \sin^{k} \frac{\pi}{10}$$

as stated. We have made use of the algebraic identity

$$\frac{x^n - y^n}{x - y} = \sum_{k=0}^{n-1} x^{n-k-1} y^k .$$

Page 85

H-19 (Solution by Michael Goldberg, FQ, 2:2, April, 1964, pp. 130-131) As $n \to \infty$, the ratio F_{n+1}/F_n approaches $t = (\sqrt{5} + 1)/2$, and F_{n+3}/F_n approaches $t^3 = 2t + 1$. Hence, the limiting triangle ABC can be drawn by taking points D and E on AC so that AD = 1, DE = t, and EC = 2t + 1. Since BD is a bisector of \angle ABE, the point B must lie on the circle which is the locus of points whose distances to A and E are in the ratio AD/DE = $1/t^*$. The circle passes through D. If the diameter of the circle is $2r_1 = x + 1$, then x/(x + 1 + t) = 1/t from which

$$r_1 = t/(t-1) = t^2 = t+1$$
.

Simarly, BE is a bisector of the angle DBC. The point B must lie on a circle which is the locus of points whose distances from D and C are in the ratio DE/EC = $t/t^3 = 1/t^2$. If the diameter of the circle is $2r_2 = y + t$, then $y/(y + t + t^2) = 1/t^2$ from which

$$r_2 = t^2 = t + 1 = r_1$$
.

Hence, cos $\angle BAE = -t/2(t+1) = -(\sqrt{5}-1)/4$ and $\angle BAE = 108^{\circ}$. From which $2\theta = 90^{\circ} - 108^{\circ}/2 = 36^{\circ}$, $\theta = 18^{\circ}$; $\emptyset = 180^{\circ} - 108^{\circ} - 3\theta = 18^{\circ}$.

B-39 (Solution by Brian Scott, FQ, 2:4, Dec., 1964, p. 327) The solution is by induction on n. $F_{3+2} = F_5 = 5 < 8 = 2^3$ and $F_{4+2} = F_6 = 8 < 16 = 2^4$. Assume as the induction hypothesis that $F_{(n-2)+2} < 2^{n-2}$ and $F_{(n-1)+2} < 2^{n-1}$. Then

 $F_{n+2} = F_{(n-1)+2} + F_{(n-2)+2} < 2^{n-1} + 2^{n-2} = 2^{n-2}(2+1) < 2^{n-2} \cdot 2^2 = 2^n .$ Therefore, $F_{n+2} < 2^n$ for all $n \ge 3$.

B-41(Solution by John L. Brown, Jr., FQ, 2:4, Dec., 1964, pp. 328-329.) No. For, assume $F_i < F_j < F_h < F_k$ are in arithmetic progression, so that $F_j - F_i = d = F_k - F_h$. Then

$$d = F_j - F_i < F_j$$

while

$$d = F_k - F_h \ge F_k - F_{k-1} = F_{k-2} \ge F_i$$
,

since $k \ge j+2$. This is a contradiction, so that four distinct positive Fibonacci numbers cannot be in arithmetic progression.

B-42 (Solution by H. H. Ferns)

The following three identities are readily proved by applying Binet's formula.

$$2F_{n+1} = F_n + L_n$$

(2)
$$L_n^2 - 5F_n^2 = 4(-1)^n$$

$$2L_{n+1} = 5F_n + L_n$$

Eliminating L_n from (1) and (2) gives F_{n+1} , while eliminating F_n from (2) and (3) gives L_{n+1} :

$$F_{n+1} = \frac{F_n + \sqrt{5F_n^2 + 4(-1)^n}}{2}$$
, $L_{n+1} = \frac{L_n + \sqrt{5}\sqrt{L_n^2 - 4(-1)^n}}{2}$.

B-44 (Solution by Douglas Lind, FQ, 3:1, February, 1965, p. 75) Assume the maximum,

(1)
$$n^k < F_{r+1}, F_{r+2}, \dots, F_{r+n} < n^{k+1}$$
.

Now

$$\sum_{j=1}^{n-1} F_{r+j} = \sum_{j=1}^{r+n-1} F_{j} - \sum_{j=1}^{r} F_{j} = F_{r+n+1} - F_{r+2}.$$

But by (1),

$$\sum_{j=1}^{n-1} F_{r+j} + F_{r+2} > n \cdot n^{k}$$

and hence

$$F_{r+n+1} > n^{k+1}$$

thus proving the proposition.

B-47 (Solution by Sidney Kravitz, FQ, 3:1, February, 1965, p. 77) Let F_n be the n-th Fibonacci number. We note that $F_n > 1$ for n > 2, that F_j divides F_{mj} , and that j is a divisor of (k+2)!+j for $3 \le j \le k+2$. Thus the k consecutive Fibonacci numbers F(k+2)!+3, F(k+2)!+4, ..., F(k+2)!+k+2 are divisible by F_3 , F_4 , ..., F_k respectively.

B-58 (Solution by Douglas Lind, FQ, 3:3, October, 1965, pp. 236-237) Since $L_k = F_{k-1} + F_{k+1}$, the assertion is equivalent to

(1)
$$F_n = F_{k-1} + F_{k+1}$$
.

If $k \ge 3$, then n > k + 1, and (1) is clearly impossible since

$$F_{k-1} + F_{k+1} < F_k + F_{k+1} = F_{k+2} \le F_n$$
.

Impossibility for $k \ge 3$ implies impossibility for $k \le -3$ since only signs are different. For -3 < k < 3 we find $F_{-2} = L_{-1} = 1$, $F_3 = L_0 = 2$, $F_1 = L_1 = 1$, and $F_4 = L_2 = 3$, corresponding to k = -1, 0, 1, and 2 respectively. Hence these are the only solutions.

B-62 (Solution by J. L. Brown, Jr., FQ, 3:3, October, 1965, p. 239)

From the identity $F_{2n+1} = F_n^2 + F_{n+1}^2$, $(n \ge 1)$ it follows that $F_{2n+1} < (F_n + F_{n+1})^2 = F_{n+2}^2.$ Therefore, any representation $F_{2n+1} = F_k^2 + F_m^2$ $(k \le m)$ must have both k and $m \le n+1$. Then $k \ge n$, for otherwise $F_k^2 + F_m^2 < F_n^2 + F_{n+1}^2 = F_{2n+1}$ for k > 2.

B-95 (Solution by Charles W. Trigg, FQ, 5:2, April, 1967, p. 204)

For $n \geq 3$, F_k is divisible by 2^n if k is of the form $2^{n-2} \cdot 3(1 + 2m)$. F_k is divisible by 2^n but by no higher power of 2. Hence, the highest power of 2 that exactly divides $F_1F_2F_3 \cdot \cdot \cdot \cdot F_{100}$ is

[103/6] + 3[106/12] + 4[112/24] + 5[124/48] + 6[148/96] + 7[196/192]

or 80. As usual, [x] indicates the largest integer in x.

(Editorial note: The results in the above solution indicate that the answer may also be expressed as

$$[100/3] + 2[100/6] + [100/12] + [100/24] + [100/48] + [100/96]$$

= 33 + 32 + 8 + 4 + 2 + 1 = 80.)

H-2 This was a world famous problem. J. H. E. Cohn proved the truth of the conjecture in "Square Fibonacci Numbers, Etc.," Fibonacci Quarterly, Vol. 2, No. 2, April, 1964, pp. 109-113. Also, it was established that $L_1 = 1$ and $L_3 = 4$ are the only Lucas numbers which are perfect squares.