THE GOLDEN RATIO: COMPUTATIONAL CONSIDERATIONS

Dmitri Thoro San Jose State College, San Jose, California

1. INTRODUCTION

"Geometry has two great treasures: one is the Theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel"—so wrote Kepler (1571-1630)[1].

The famous golden section involves the division of a given line segment into mean and extreme ratio, i.e., into two parts a and b, such that a/b = b/(a + b), a < b. Setting x = b/a we have $x^2 - x - 1 = 0$. Let us designate the positive root of this equation by \emptyset (the golden ratio). Thus

(1)
$$g^2 - g - 1 = 0$$
.

Since the roots of (1) are $\emptyset = (1 + \sqrt{5})/2$ and $-1/\emptyset = (1 - \sqrt{5})/2$ we may write Binet's formula [2] for the nth Fibonacci number in the form

(2)
$$F_{n} = \frac{g^{n} - (-g)^{-n}}{\sqrt{5}}$$

2. POWERS OF THE GOLDEN RATIO

Returning to (1), let us "solve for \emptyset^2 " by writing

(3)
$$g^2 = g + 1$$
.

Multiplying both members by \emptyset , we get $\emptyset^3 = \emptyset^2 + \emptyset = (\emptyset + 1) + \emptyset = 2\emptyset + 1$. Proceeding in a similar fashion we can write all of

$$\phi^3 = 2\phi + 1$$
,
 $\phi^4 = 3\phi + 2$,
 $\phi^5 = 5\phi + 3$.

This pattern suggests

(4)
$$g^n = F_n g + F_{n-1}, \quad n = 1, 2, 3, \dots$$

To prove (4) by mathematical induction, we note that it is true for n = 1 and n = 2 (since F_0 = 0 by definition). Assume that $p^k = F_k p + F_{k-1}$. Then

$$g^{k+1} = F_k g^2 + F_{k-1} g = F_k (g + 1) + F_{k-1} g$$

$$= (F_k + F_{k-1}) g + F_k = F_{k+1} g + F_k ,$$

which completes the proof.

The computational advantage of (4) over expansion of $\left(\frac{1+\sqrt{5}}{2}\right)^n$ by the binomial theorem is striking.

Dividing both members of (3) by \emptyset , we obtain

$$\frac{1}{\emptyset} = \emptyset - 1 \quad .$$

Thus $1/\emptyset^2 = 1 - 1/\emptyset = 1 - (\emptyset - 1) = -(\emptyset - 2)$. Using this result and (5), $1/\emptyset^3 = 2/\emptyset - 1 = 2(\emptyset - 1) - 1 = 2\emptyset - 3$. Proceeding in a similar fashion, one may write all of the following:

$$\frac{1}{g^2} = -(\emptyset - 2) ,$$

$$\frac{1}{g^3} = 2\emptyset - 3 ,$$

$$\frac{1}{g^4} = -(3\emptyset - 5) .$$

Via induction, the reader may provide a painless proof of

(6)
$$g^{-n} = (-1)^{n+1} (F_n g - F_{n+1}), \quad n = 1, 2, 3, \cdots$$

3. A LIMIT OF FIBONACCI RATIOS

If we "solve" $x^2 - x - 1 = 0$ for x by writing x = 1 + 1/x and then consider the related recursion relation

(7)
$$x_1 = 1$$
, $x_{n+1} = 1 + \frac{1}{x_n}$,

Fibonacci numbers start popping out! We immediately deduce $x_2 = 1 + 1/x_1$ = 1 + 1/1 = 2/1, $x_3 = 3/2$, $x_4 = 5/3$, $x_5 = 8/5$, etc. This suggests that $x_n = F_{n+1}/F_n$.

Now suppose the sequence x_1, x_2, x_3, \dots has a limit, say L, as n tends toward infinity. Then

$$\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} x_n = L$$

whence (7) yields L = 1 + 1/L or $L = \emptyset$ since the x_i are positive. Indeed, there are many ways of proving Kepler's observation that

(8)
$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n} = \emptyset .$$

For example, from (2)

$$\frac{F_{n+1}}{F_n} = \frac{g^{n+1} - (-g)^{-n-1}}{g^n - (-g)^{-n}} = \frac{g - \frac{1}{(-g)^{n+1}g^n}}{1 - \frac{1}{(-g)^ng^n}} \longrightarrow g$$

as $n \to \infty$ since $\emptyset = (1 + \sqrt{5})/2 > 1$ implies that the fractions involving \emptyset^n approach 0 as $n \to \infty$.

4. AN APPROXIMATE ERROR ANALYSIS

Just how accurate are the above approximations to the golden ratio? Let us denote the exact error at the nth iteration by

$$\mathbf{e_n} = \mathbf{x_n} - \mathbf{\emptyset}$$

The trick is to express e_{n+1} in terms of e_n using (7) and then to make use of the identity

(10)
$$\frac{1}{1+w} = 1 - w + w^2 - w^3 + w^4 - \dots, \quad w < 1$$

(The latter may be discovered by dividing 1 by 1 + w).

Thus

$$e_{n+1} = x_{n+1} - \emptyset$$

$$= 1 + \frac{1}{x_n} - \emptyset$$

$$= 1 - \emptyset + \frac{1}{e_n + \emptyset}$$

$$= 1 - \emptyset + \frac{1}{\emptyset} \cdot \frac{1}{1 + (e_n/\emptyset)}$$

$$= 1 - \emptyset + \frac{1}{\emptyset} [1 - (e_n/\emptyset) + (e_n/\emptyset)^2 - (e_n/\emptyset)^3 + \dots]$$

$$= -\frac{e_n}{\emptyset^2} + \frac{e_n}{\emptyset^3} - \frac{e_n}{\emptyset^4} + \dots$$

since $1/\emptyset=\emptyset-1$ by (5). However, the terms involving the higher powers of e_n are quite small in comparison with the first term. Thus, following the customary practice of neglecting high order terms, we will approximate the error at the (n+1)st step by $e_{n+1}=-e_n\emptyset^{-2}$. Finally, we may note that

$$e_2 = -e_1 g^{-2}$$
, $e_3 = -e_2 g^{-2} = +e_1 g^{-4}$, $e_4 = -e_1 g^{-6}$, and, in general,

(11)
$$e_n = (-1)^{n+1} e_1 \emptyset^{-2(n-1)}$$

If $x_1 = 1$, then $e_1 = 1 - \emptyset = -1/\emptyset$ by (9) and (5), making (11) become

(12)
$$e_n = (-1)^n \ \emptyset^{-2(n-1)-1}$$
.

(Sections 5 and 6 of the original paper are omitted here.)
REFERENCES

- 1. H. S. M. Coxeter, <u>Introduction to Geometry</u>, John Wiley and Sons, <u>Inc.</u>, New York, 1961, p. 160.
- S. L. Basin and Verner E. Hoggatt, Jr., "A Primer on the Fibonacci Sequence--Part II," <u>Fibonacci Quarterly</u>, Vol. 1, No. 2, April, 1963, pp. 61-68.