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1. INTRODUCTION

"Geometry has two great treasures: one is the Theorem of Pythagoras;
the other, the division of a line into extreme and mean ratio. The first we
may compare to a measure of gold; the second we may name a precious jewel'-a
so wrote Kepler (1571-1630)[1].

The famous golden section involves the division of a given line segment

into mean and extreme ratio, i.e., into two parts a and b, such that

a/b = b/(a + b), a<b. Setting x = b/a we have x2 - x=-1=0. Let us
designate the positive root of this equation by @ (the golden ratio). Thus

(1) > _-g-1=0 .

Since the roots of (1) are # = (1 +—V§)/2 and -1/@ = (1 - 45)/2 we may
write Binet's formula [2] for the nth Fibonacci number in the form

. n =n
(2) N
V5

2. POWERS CF THE GOLDEN RATIO
Returning to (1), let us "solve for ¢2" by writing

(3) ¢2=¢+1.

Multiplying both members by @, we get ¢3 = ¢2 + §=(F+1)+ g=20+1.
Proceeding in a similar fashion we can write all of

g2 =28 +1 ,
| ﬁh =37+ 2 ,
g7 =5+ 3 .

This pattern suggests
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(&) g8 =F g Fn-l ’ n=1, 2, 3y es- .

To prove (4) by mathematical induction, we note that it is true for n =1
and n = 2 (since F, = O by definition). Assume that g = F 8 + Fp_y - Then

gL Fkﬂz + B #=F(f+1) +F .8

(Fg + A )8 + F = F ,F + F

which completes the proof. . ‘—\n
The computational advantage of (4) over expansion of (l_%;ﬁi) by

the binomial theorem is striking.
Dividing both members of (3) by @, we obtain

(5) % -1 .

Thus 1/¢2 =1=-1/F=1-(g - 1) -(g - 2). Using this result and (s5),

1/8° = 2/f -1 =2(8 - 1) -1 =208
may write all of the following:

3, Proceeding in a similar fashion, one

1
—='(¢-2)$
¢2

1

== = 2¢ -3
¢3

- -5) .

Via induction, the reader may provide a painless proof of
- 1
(6) g = (LS - F ) m= 1 2 3 e

3, A LIMIT OF FIBONACCI RATIOS

If we ''solve" x2 - x =1 =0 for x by writing x = 1 + 1/x and then

consider the related recursion relation

1
(7) Xy = 1, X . = 1+ ;; ,
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Fibonacci numbers start popping out! We immediately deduce X, = 1l + l/xl

=1+1/1 = 2/1, x, = 3/2, x, = 5/3, x. = 8/5, etc. This suggests that

3 5

Xp < Fn+l/Fn *

Now suppose the sequence Xy X5 x3, eee has a limit, say L, as n

tends toward infinity. Then

lim _ lim -
n~o*n+l " pre*a T L
whence (7) yields L =1 + 1/L or L = @& since the x, are positive. Indeed,

there are many ways of proving Kepler's observation that

8 - lim Fne1 - g
n=o F - *

For example, from (2)

1
F n+l -nel -
n+l _ @ - (-2 1 )
F = n -n = (_¢)n+ gn ]
n g - (=2 1 - 1
(-§)°g"

as n ~o since ¥ = (1L +45)/2 > 1 implies that the fractions involving z°

approach O as n ~ o=,
4, AN APPROXIMATE ERROR ANALYSIS

Just how accurate are the above approximations to the golden ratio?

Let us denote the exact error at the nth iteration by

(9) . e, =x, -

The trick is to express e _, in terms of e, using (7) and then to make

use 6f the identity

(10) =1 -w+ N O , w<l .

(The latter may be discovered by dividing 1 by 1 + w).
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Thus

- 9

e = X

n+l n+l

1
=l+x— -g
n

1
PoPre T

1-0+ 1, 1
B 1l + zen735

1-g+ 301 - (e/B) ¢ (/D = (e/B 4 .0 ]

en en en
= =3 + = - + oo
PR A

since 1/# = @ - 1 by (5). However, the terms involving the higher powers

of e, are quite small in comparison with the first term. Thus, following
the customary practice of neglecting high order terms, we will approximate

the error at the (n + 1l)st step by e 1" --euﬁ-2 . Finally, we may note that

e, = -elﬂ-z, e5 = - eaﬁ-z = +el¢-4 v e, = -elﬂ-é, and, in general,

(11) e = (_1)n+191¢-2(n-1) ]

1f x; = 1, then e = 1-0=-=1/¢ by (9) and (5), making (11) become

(12) en = (-l)n ¢"2(n-1)-1 N
(Sections 5 and 6 of the original paper are omitted here.)
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