A-CASSINI POLYNOMIAL SEQUENCES AND APPLICATIONS

ROGER C. ALPERIN

ABSTRACT. We examine some polynomial solutions to the A-Cassini relation. We show how
these solutions are related to trace polynomials, lengths of the diagonals of a regular polygon,
and recurrences given by the characteristic polynomial of certain tridiagonal matrices.

1. A-CASSINI RELATION AND ITS SEQUENCES

In this paper, we extend aspects of [2], [1] with an emphasis on polynomial solutions.
We consider the non-linear recurrence

In+19n—-1 = 9721 —A

. R . . . _b2—A go+go _ a’+b2—A
with non-zero initial values go = a, g1 = b, and given A. Thus, g = *—= and le e

Theorem 1.1. Let u = “2+£Z_A. Then for n > 2, gn = Ugn—1 — gn—2-

Proof. Let pp = Getoe—z Suppose by induction that pup = p and gr = pugr—1 — gr—o for

9k—1
2 <k <n. Then,
_ On4+1+ gn-1 In + Gn—2
Hn+1 — Un = -
9n gn—1
_ (gn+1 + gnfl)gnfl - (gn + gn72)gn
In—19n
_ In+19n—1 + g',%—l - 9721 — 9n—-20n
In—19n
At G =g =G+ A
In—19n
=0.
Hence, pn+1 = o and thus, gn+1 = tgn — gn—1. Therefore, we have proved the result. O
A polynomial in z, ¥, ... and their inverses %, i, ... is called a Laurent polynomial.

Corollary 1.2. For indeterminates a and b, g, = pign—1 — gn—2 s a Laurent polynomial in a

and b.

Proof. As shown above, g has denominator a. Since u has denominator ab, the result that g,
has denominator a”~'6"~2 for n > 2 follows by induction. O

Proposition 1.3. Suppose that gn+1 = M g — gn—1 with non-zero initial values go = a, g1 = b,
and given M. Let A = a®> + b> — Mab. Then, this sequence satisfies the A-Cassini relation
In+19n—1 = 9721 — A.

Proof. By Corollary 1.2, the solution to the A-Cassini relation with A = a? + b*> — Mab and
with initial values hg = a and hy = b is hyt1 = Mhy — hy—1, since p = M. Thus, h, = g, for
all n. O
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The universal A-Cassini polynomials are ug = 1, u; = ¢, and u,, = tun_1 — Up_o, for n > 2.
The polynomial wu,, is of degree n.
We have the following representation theorem in terms of the universal polynomials.

Theorem 1.4. Let A = a? +b> — Mab for given a, b, and M. Then, the sequence satisfying
the A-Cassini relation gni1gn—1 = g2 — A with go = a and g1 = b can be expressed as

Gnt1 = bup (M) — aup_1 (M), forn > 1.
Proof. The base case is bui (M) — aup = bM — a = go. By induction,

gn+1 = Mgn — gn—1
= M (bup—1(M) — aup—o(M)) — buy—o(M) + au,—3(M)
= O(Mutn 1 (M) — i >(M)) — a(Mutn_3(M) — un_3(M))
= bun (M) — aup—1(M).

O
1.1. Other Identities for u. [6]
Theorem 1.5. Let h and k be nonnegative integers such that h < k. Then, upug_1—uUptp_1 =
Uk—h—1-
Proof.
UpUp—1 — UpUp—1 = (PUp_1 — Up_2)Uk_1 — UpUp_1
= tUup—1UK—1 — Up—2UE—1 — URUR—1
= up_1(tup—1 — Up) — Up_2uk_1
= Up—1UK—2 — Uk—1UR—2.
Continuing in this way, we have
UpU—1 — URUp—1 = Up—1UL—2 — Uk—1Up—2
= UUk—h — Uk—h+1U0
= tug—p — Uk—h+1
= Uk—h—1-
O

Corollary 1.6. Let h and k be nonnegative integers such that h < k. Then,

h

UpUf = Z Uk—h+2i-
i=0

Proof. From Theorem 1.5, upur = ugyiup—1 + ug—p for h < k. Using this identity repeatedly,
we lower the subscript on up—1 and increase the subscript on ugy1 to get upur = Ugyoup—o +
Uk—h+2 + Uk—pn. Repeat this process until we get the desired formula. O

Proposition 1.7. Let n > 4 be an integer. Then, u, = (t?> — 2)up_2 — Up_4.
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Proof.
Up = tUp—1 — Up—2 = t(tunf2 - un73) — Up—2
2
=t"Uup—2 —tUup—3 — Up—2
2
=t Up—9 — (un—2 + Un—4) — Upn—2

= (t2 — Q)Un_g — Up—4.

Corollary 1.8. ui(t) is an even (odd) function of t if and only if k is even (odd).

Proof. 1t follows immediately from the previous Proposition that uj is even for k even and
from the linear recursion w1 = tug —up_1 it easily follows that ug, is odd for k+1 odd. [

The next result follows immediately by induction.

Corollary 1.9. Fori >0, u;(2) =i+ 1.

2. CHEBYSHEV POLYNOMIALS

We express the Chebyshev polynomials using the results above.

2.0.1. First Kind. The Chebyshev polynomials 7T, have the recurrence Ty = 1, T} = z, and
Tpi1 = 20Ty, —T),_1 for n > 1. Lettinga=1,b=2, M =2z, and M =2z = (1+ 2%+ A)/x,
it follows that A = 22 — 1. Using the representation theorem 1.4 above, we have T}, 1(z) =
T (22) — tn—1(22) = 5 (22U, (22) — 2up—1(22)) = $(Un41(22) — un—1(22)).

The polynomial formula for these Chebyshev polynomials are well-known [5]:

r=0

2.0.2. Second Kind. The recurrence relation for the Chebyshev polynomials of the second kind
is determined from a = 1, b = 2z, and M = 2z. Hence, M -2z = 1 + 42?2 — A and thus,
A=42? —4x+1=(1-22)2% Ups1(2) = 22u,(27) — up—1(22) = upy1(22). Thus, using the
representation identity above, we have Ty,+1(z) = 3 (Un+1(z) — Up—1(2)).

The polynomial formulas for these Chebyshev polynomials are well-known [5]:

Un(z) = Lnf(—n’“ <” - T) (2z)"".

r
r=0

Corollary 2.1. Forn > 1, u,(2t) = U,(t). The roots of u, are 2008(%) fork=1,...,n.

3. TRACE POLYNOMIALS

Consider a diagonalizable matrix Z € SLy(C) with trace 7 = ¢ +t¢~!. Then, the trace of
Z™is (t" +t7"). The Cassini relation is
(tn+1 + tfnfl)(tnfl + tfnJrl) _ (tn + tfn)2 — t2 + t72 _9
Thus, A=4— (t+t 12 =4- 72
For a =2 and b =7, we have M =

is tr(Z") = gny1 = TG0 — Gn-1.-
We can express these as gn+1(7) = T7un(7) — 2Up—1(7) = Up+1(7) — Up—1(7) = 2T 4+1(7/2).

a?4+b2—A _ 44724724

ab o = 7. Then, the sequence of traces
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The first few trace polynomials are
2, T, 72 -2, 73 — 3, 4 — 472 + 2, 0 — 573 + 57.

Using the formula for 7),, the trace polynomials have the formula

/2] n—r
T.(7/2) —nz n—r( . >7"2T

for n > 0.

4. DIAGONALS

Consider the diagonals of a regular polygon of radius 1 having n sides with vertices at the
nth roots of unity. The kth vertex is (; = cos(sz”) +Isin(2k7”) for k=0,...,n—1. Using the
Pythagorean formula and measuring from the initial vertex to the kth vertex, the diagonals
have length df = (cos(ZT) — 1)2 4 sin(227)2 = 2 — 2 cos(22%); for k = 1, d; is the side length.
Since cos(2t) = cos(t)? — sin(t)2 = 1 — 2sin?(t), the formula above can be rewritten as [6]

k
dp = 2sin <W> .
n

4.1. Reduced Diagonals. Consider the reduced diagonals r; = ill—’;; if needed, we denote this
as ri(n) to clarify that we are dealing with the regular n-sided polygon.

Using Ptolemy’s relation for the lengths of the sides of an inscribed quadrilateral on the
circle and its relation to its diagonals, we find the relations dpdy_1 = didi_p + dpdp_1 for
h < k. This can be rewritten symmetrically as

Tk—h = ThTk—1 — TkTh—1-
Let h =k — 1. Then,
2
TETk—2 = T,_1 — L.

. ri—1 rZ—1)2-1 r2—1 r3—2rg)2—1
Slncen:l,rg:r%—l ry = 2 G )| :r§—2r2,andr5:4 = (5=2r2)

T2 T2 T3 r2—1
r% (r§74r§ +4)—1

2
ro—1

= 7“2 37“2 + 1.
Corollary 4.1. 141 = up(r2) forn > 1.

The next result follows immediately from previous corollaries.

Corollary 4.2. Form >n+12> 2,
. (nHD)m n . o
= = k
M:” Sm(:f)—2cos T .
sin( ) P sin( ) n+1

5. GOBELS AND JUNGE-HOGGATT RELATIONS

For an n by n matrix B, its characteristic polynomial is fg(t) = det(B — tI). Let gp(t) =
det(I —tB). Since t Y (B—tl)=t'B—-I=—(I—t"'B), t "fg(t) = (-=1)"gp(t™!).

In connection with problems related to symmetric polynomials [3], the author considers
wy,(t) = det(I — tW,,), where the n by n matrix W,,(i,5) = 1, if i + j > n + 1, and otherwise
0. Then, wo =1, wy =1 —t, wg=1—t —t2 w3 =1+ —t2 -2t ...

In counting certain sequences generated by reflections [4], the authors consider v,(t) =
det(V,, — tI), where V,,(i,j) =1 if i+ j <n+1 (denoted D,, in [4]).
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Now, W, and V,, are similar using the matrix 7= T~!, where T(i,j) = 1 if i +j = n + 1,
else 0. By the remarks above, we have the following result.

Proposition 5.1. Let n be a nonnegative integer. Then, wy(t) = (—1)"t"v, (t~1).
Together with Section 4 and the results shown in [3], we have the following result.

Proposition 5.2. Letn > 1. Then,

Wyt = (24 (=1)" M w, — w,_y

and w11 = (_1)f(n+1)/2] Unt1 + (_1)(11/2]“”

The signs on the expressions for wyy; have period 4, (—1,1), (—=1,-1), (1,-1), (1,1) for
n > 0.

Corollary 5.3. Let Py = —1, P, = —1, and Py = 170U for | > 1. Then,
P2n:P2n—1 f07°n21-

Proof.

Py, — Poyq — Won — tw2;;1 — W2p-2  Won—1 — tw;z—Q — Wap—3
Wan — (t + 1)w2n—1 + (t - 1)w2n—2 + wan—3
2t
(24 t)wan—1 — wan—2 — (t + Nwap—1 + (t — D)wap—2 + wan—3
2t
Won—1 + (t — 2)wan—2 + Wap—3
2t

= 0.
]

Next, we consider the sequence QQrp = Por = Poi_1. Here is an expression we use in the
following theorem.

Wop, — tWap_—1 — Wag—2
Qr = Py, 57
W2k—1 — W2k—2
t
_ Ugk—1 t U2k-3
N t
= —Ugk—2.

Theorem 5.4. The sequence Q(t) is A-Cassini with A = t2. Hence with a = b = —1 and
M= 2 - t27

Qk-Jrl(t) = —uk(2 — t2) + uk,1(2 — t2).

Proof. The second part follows immediately from the first part and Theorem 1.4. The first
part uses some of the identities for u; in Section 1.1.

Let Cy = Qr+1Qk—1 — Q3. Then,
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2 2
Cr = Qr+1Qk—1 — Q) = UpUgk—g — Udp_o
2U%—d 2%—2 2%—2 2%—2

= ZU4+21‘— Zuzz‘z Zum— Zu%
i=0 i=0 =2 i=0
= —upg—up = —1—(t*—1) = —t%
Hence, A = 2. O
Consider the k by k£ matrix My, with i-j entry min(¢, j). It is straightforward to verify that
W2 = M.
Corollary 5.5. Let k > 0. Then, Qi1 = (—1)* 1 det(I — t2My,).
Proof.
det(I — t*My) = det(I — t*W})
= det(! — tWy) det(I + tWy)
= wi(t)wp(—1)
= (uk(t) = up—1(t)) (ur(—t) — up—1(-1))
= (uk(t) — up—1(1)) (ur(t) + up—1(t))

= (U% - UIQc—1)
k k—1
_ (z w3 )
i=0 i=0
= U2k
= —Qpy1(1).

O

We leave the following example for the interested reader. Let NJi,j] = (—1)"* min(i, )
and f, = det(l, —tN). Then, fo=1, fi =1—t, fo =12 =3t +1, and f3 = —3 + 52 — 6t + 1.
Then, foi1fn1— f2=—t, A=t,and M =2 —t.

6. TRIDIAGONAL MATRICES

By expansion along the last row, the recurrence formula for the characteristic polynomial
F,, of the tridiagonal matrix

------ O Cn72 anfl bnfl
0 Cn—1 Qn,

is given by
Fn(t) == (an - t)anl(t) - Cnflbnlen,Q(t).
Now, we assume a1 = s, a = a; for 1 < ¢ < n, b = b;, and ¢; = % for ¢ < n. Then,
Fo(t) = (a —t)Fh—1(t) — Fy—2(t) for n > 2.
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Corollary 6.1. With the above assumptions, F, is A-Cassini with M = a —t, Fy = 1, and
Fy = (s—t). Hence, A=1+s?—sa+t(a—s).

Proof. This follows immediately from Proposition 1.3 since A = 1+ (s—t)2—(a—t)(s—t). O
In a similar manner, the next result can be obtained using Theorem 1.4.

Corollary 6.2. With the above assumptions, d,, = det(Z,) is A-Cassini with A = 1+ 5% —sa,
M =a, dy=1, and dy = s. Hence, d,, = sun(a) — up—1(a) and is independent of the value of
b.

Suppose that Z,, is invertible. Then, F,, = det(Z, — tI,,) = det(Z,) det(I,, — tZ;'). There
are well-known formulas for the inverse of Z,, [7]. For a =2, s =1, and b = ¢ = —1, we can
use these formulas to see that Z, ! = M, from Section 5. However with b = ¢ = 1 we obtain
the matrix N from the example in Section 5. Also, using Corollary 1.9 with s =1 and a = 2,
det(Z,) = 1.

Additionally, if we fix the 1-1 entry and 2-2 entry to s; and s, and let the size n increase,
we obtain similar recurrences for the tridiagonal matrices with a higher degree polynomial
A. Also using the above ideas, if we let bc = —1, we get solutions to the Cassini relations
discussed in [1]. We leave both of these for future investigations.
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