A-CASSINI POLYNOMIAL SEQUENCES AND APPLICATIONS

ROGER C. ALPERIN

ABSTRACT. We examine some polynomial solutions to the A-Cassini relation. We show how these solutions are related to trace polynomials, lengths of the diagonals of a regular polygon, and recurrences given by the characteristic polynomial of certain tridiagonal matrices.

1. A-CASSINI RELATION AND ITS SEQUENCES

In this paper, we extend aspects of [2], [1] with an emphasis on polynomial solutions. We consider the non-linear recurrence

$$g_{n+1}g_{n-1} = g_n^2 - A$$

with non-zero initial values $g_0 = a$, $g_1 = b$, and given A. Thus, $g_2 = \frac{b^2 - A}{a}$ and $\frac{g_2 + g_0}{g_1} = \frac{a^2 + b^2 - A}{ab}$.

Theorem 1.1. Let $\mu = \frac{a^2 + b^2 - A}{ab}$. Then for $n \ge 2$, $g_n = \mu g_{n-1} - g_{n-2}$.

Proof. Let $\mu_k = \frac{g_k + g_{k-2}}{g_{k-1}}$. Suppose by induction that $\mu_k = \mu$ and $g_k = \mu g_{k-1} - g_{k-2}$ for $2 \le k \le n$. Then,

$$\mu_{n+1} - \mu_n = \frac{g_{n+1} + g_{n-1}}{g_n} - \frac{g_n + g_{n-2}}{g_{n-1}}$$

$$= \frac{(g_{n+1} + g_{n-1})g_{n-1} - (g_n + g_{n-2})g_n}{g_{n-1}g_n}$$

$$= \frac{g_{n+1}g_{n-1} + g_{n-1}^2 - g_n^2 - g_{n-2}g_n}{g_{n-1}g_n}$$

$$= \frac{g_n^2 - A + g_{n-1}^2 - g_n^2 - g_{n-1}^2 + A}{g_{n-1}g_n}$$

$$= 0$$

Hence, $\mu_{n+1} = \mu$ and thus, $g_{n+1} = \mu g_n - g_{n-1}$. Therefore, we have proved the result. \Box

A polynomial in x, y, \ldots and their inverses $\frac{1}{x}, \frac{1}{y}, \ldots$ is called a Laurent polynomial.

Corollary 1.2. For indeterminates a and b, $g_n = \mu g_{n-1} - g_{n-2}$ is a Laurent polynomial in a and b.

Proof. As shown above, g_2 has denominator a. Since μ has denominator ab, the result that g_n has denominator $a^{n-1}b^{n-2}$ for $n \ge 2$ follows by induction.

Proposition 1.3. Suppose that $g_{n+1} = Mg_n - g_{n-1}$ with non-zero initial values $g_0 = a$, $g_1 = b$, and given M. Let $A = a^2 + b^2 - Mab$. Then, this sequence satisfies the A-Cassini relation $g_{n+1}g_{n-1} = g_n^2 - A$.

Proof. By Corollary 1.2, the solution to the A-Cassini relation with $A = a^2 + b^2 - Mab$ and with initial values $h_0 = a$ and $h_1 = b$ is $h_{n+1} = Mh_n - h_{n-1}$, since $\mu = M$. Thus, $h_n = g_n$ for all n.

VOLUME 57, NUMBER 1

The universal A-Cassini polynomials are $u_0 = 1$, $u_1 = t$, and $u_n = tu_{n-1} - u_{n-2}$, for $n \ge 2$. The polynomial u_n is of degree n.

We have the following representation theorem in terms of the universal polynomials.

Theorem 1.4. Let $A = a^2 + b^2 - Mab$ for given a, b, and M. Then, the sequence satisfying the A-Cassini relation $g_{n+1}g_{n-1} = g_n^2 - A$ with $g_0 = a$ and $g_1 = b$ can be expressed as

$$g_{n+1} = bu_n(M) - au_{n-1}(M), \text{ for } n \ge 1$$

Proof. The base case is $bu_1(M) - au_0 = bM - a = g_2$. By induction,

$$g_{n+1} = Mg_n - g_{n-1}$$

= $M(bu_{n-1}(M) - au_{n-2}(M)) - bu_{n-2}(M) + au_{n-3}(M)$
= $b(Mu_{n-1}(M) - u_{n-2}(M)) - a(Mu_{n-2}(M) - u_{n-3}(M))$
= $bu_n(M) - au_{n-1}(M).$

1.1. Other Identities for u_k . [6]

Theorem 1.5. Let h and k be nonnegative integers such that $h \le k$. Then, $u_h u_{k-1} - u_k u_{h-1} = u_{k-h-1}$.

Proof.

$$u_{h}u_{k-1} - u_{k}u_{h-1} = (tu_{h-1} - u_{h-2})u_{k-1} - u_{k}u_{h-1}$$

= $tu_{h-1}u_{k-1} - u_{h-2}u_{k-1} - u_{k}u_{h-1}$
= $u_{h-1}(tu_{k-1} - u_{k}) - u_{h-2}u_{k-1}$
= $u_{h-1}u_{k-2} - u_{k-1}u_{h-2}$.

Continuing in this way, we have

$$u_h u_{k-1} - u_k u_{h-1} = u_{h-1} u_{k-2} - u_{k-1} u_{h-2}$$

= ...
= $u_1 u_{k-h} - u_{k-h+1} u_0$
= $t u_{k-h} - u_{k-h+1}$
= u_{k-h-1} .

Corollary 1.6. Let h and k be nonnegative integers such that $h \leq k$. Then,

$$u_h u_k = \sum_{i=0}^h u_{k-h+2i}.$$

Proof. From Theorem 1.5, $u_h u_k = u_{k+1}u_{h-1} + u_{k-h}$ for $h \leq k$. Using this identity repeatedly, we lower the subscript on u_{h-1} and increase the subscript on u_{k+1} to get $u_h u_k = u_{k+2}u_{h-2} + u_{k-h+2} + u_{k-h}$. Repeat this process until we get the desired formula.

Proposition 1.7. Let $n \ge 4$ be an integer. Then, $u_n = (t^2 - 2)u_{n-2} - u_{n-4}$.

FEBRUARY 2019

Proof.

$$u_n = tu_{n-1} - u_{n-2} = t(tu_{n-2} - u_{n-3}) - u_{n-2}$$

= $t^2 u_{n-2} - tu_{n-3} - u_{n-2}$
= $t^2 u_{n-2} - (u_{n-2} + u_{n-4}) - u_{n-2}$
= $(t^2 - 2)u_{n-2} - u_{n-4}$.

Corollary 1.8. $u_k(t)$ is an even (odd) function of t if and only if k is even (odd).

Proof. It follows immediately from the previous Proposition that u_k is even for k even and from the linear recursion $u_{k+1} = tu_k - u_{k-1}$ it easily follows that u_{k+1} is odd for k+1 odd. \Box

The next result follows immediately by induction.

Corollary 1.9. For $i \ge 0$, $u_i(2) = i + 1$.

2. Chebyshev Polynomials

We express the Chebyshev polynomials using the results above.

2.0.1. First Kind. The Chebyshev polynomials T_n have the recurrence $T_0 = 1$, $T_1 = x$, and $T_{n+1} = 2xT_n - T_{n-1}$ for $n \ge 1$. Letting a = 1, b = x, M = 2x, and $M = 2x = (1 + x^2 + A)/x$, it follows that $A = x^2 - 1$. Using the representation theorem 1.4 above, we have $T_{n+1}(x) = xu_n(2x) - u_{n-1}(2x) = \frac{1}{2}(2xu_n(2x) - 2u_{n-1}(2x)) = \frac{1}{2}(u_{n+1}(2x) - u_{n-1}(2x))$.

The polynomial formula for these Chebyshev polynomials are well-known [5]:

$$T_n(x) = \frac{n}{2} \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r \frac{1}{n-r} \binom{n-r}{r} (2x)^{n-2r}.$$

2.0.2. Second Kind. The recurrence relation for the Chebyshev polynomials of the second kind is determined from a = 1, b = 2x, and M = 2x. Hence, $M \cdot 2x = 1 + 4x^2 - A$ and thus, $A = 4x^2 - 4x + 1 = (1 - 2x)^2$. $U_{n+1}(x) = 2xu_n(2x) - u_{n-1}(2x) = u_{n+1}(2x)$. Thus, using the representation identity above, we have $T_{n+1}(x) = \frac{1}{2}(U_{n+1}(x) - U_{n-1}(x))$.

The polynomial formulas for these Chebyshev polynomials are well-known [5]:

$$U_n(x) = \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r \binom{n-r}{r} (2x)^{n-r}.$$

Corollary 2.1. For $n \ge 1$, $u_n(2t) = U_n(t)$. The roots of u_n are $2\cos(\frac{k\pi}{n+1})$ for $k = 1, \ldots, n$.

3. TRACE POLYNOMIALS

Consider a diagonalizable matrix $Z \in SL_2(\mathbb{C})$ with trace $\tau = t + t^{-1}$. Then, the trace of Z^n is $(t^n + t^{-n})$. The Cassini relation is

$$(t^{n+1} + t^{-n-1})(t^{n-1} + t^{-n+1}) - (t^n + t^{-n})^2 = t^2 + t^{-2} - 2.$$

Thus, $A = 4 - (t + t^{-1})^2 = 4 - \tau^2$.

For a = 2 and $b = \tau$, we have $M = \frac{a^2 + b^2 - A}{ab} = \frac{4 + \tau^2 + \tau^2 - 4}{2\tau} = \tau$. Then, the sequence of traces is $tr(Z^{n+1}) = g_{n+1} = \tau g_n - g_{n-1}$.

We can express these as $g_{n+1}(\tau) = \tau u_n(\tau) - 2u_{n-1}(\tau) = u_{n+1}(\tau) - u_{n-1}(\tau) = 2T_{n+1}(\tau/2).$

VOLUME 57, NUMBER 1

The first few trace polynomials are

2,
$$\tau$$
, $\tau^2 - 2$, $\tau^3 - 3\tau$, $\tau^4 - 4\tau^2 + 2$, $\tau^5 - 5\tau^3 + 5\tau$.

Using the formula for T_n , the trace polynomials have the formula

$$2T_n(\tau/2) = n \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r \frac{1}{n-r} \binom{n-r}{r} \tau^{n-2r}$$

for n > 0.

4. DIAGONALS

Consider the diagonals of a regular polygon of radius 1 having n sides with vertices at the nth roots of unity. The kth vertex is $\zeta_k = \cos(\frac{2k\pi}{n}) + I\sin(\frac{2k\pi}{n})$ for $k = 0, \ldots, n-1$. Using the Pythagorean formula and measuring from the initial vertex to the kth vertex, the diagonals have length $d_k^2 = (\cos(\frac{2k\pi}{n}) - 1)^2 + \sin(\frac{2k\pi}{n})^2 = 2 - 2\cos(\frac{2k\pi}{n})$; for $k = 1, d_1$ is the side length. Since $\cos(2t) = \cos(t)^2 - \sin(t)^2 = 1 - 2\sin^2(t)$, the formula above can be rewritten as [6]

$$d_k = 2\sin\left(\frac{k\pi}{n}\right).$$

4.1. Reduced Diagonals. Consider the reduced diagonals $r_k = \frac{d_k}{d_1}$; if needed, we denote this as $r_k(n)$ to clarify that we are dealing with the regular *n*-sided polygon.

Using Ptolemy's relation for the lengths of the sides of an inscribed quadrilateral on the circle and its relation to its diagonals, we find the relations $d_h d_{k-1} = d_1 d_{k-h} + d_k d_{h-1}$ for $h \leq k$. This can be rewritten symmetrically as

$$r_{k-h} = r_h r_{k-1} - r_k r_{h-1}.$$

Let h = k - 1. Then,

 $r_k r_{k-2} = r_{k-1}^2 - 1.$ Since $r_1 = 1$, $r_3 = r_2^2 - 1$, $r_4 = \frac{r_3^2 - 1}{r_2} = \frac{(r_2^2 - 1)^2 - 1}{r_2} = r_2^3 - 2r_2$, and $r_5 = \frac{r_4^2 - 1}{r_3} = \frac{(r_2^3 - 2r_2)^2 - 1}{r_2^2 - 1} = \frac{r_2^2 (r_2^4 - 4r_2^2 + 4) - 1}{r_2^2 - 1} = r_2^4 - 3r_2^2 + 1.$

Corollary 4.1. $r_{n+1} = u_n(r_2)$ for $n \ge 1$.

The next result follows immediately from previous corollaries.

Corollary 4.2. *For* $m > n + 1 \ge 2$ *,*

$$\frac{\sin(\frac{(n+1)\pi}{m})}{\sin(\frac{\pi}{m})} = \prod_{k=1}^{n} \left(\frac{\sin(\frac{2\pi}{m})}{\sin(\frac{\pi}{m})} - 2\cos\left(\frac{k\pi}{n+1}\right) \right).$$

5. Göbels and Junge-Hoggatt Relations

For an n by n matrix B, its characteristic polynomial is $f_B(t) = \det(B - tI)$. Let $g_B(t) = \det(I - tB)$. Since $t^{-1}(B - tI) = t^{-1}B - I = -(I - t^{-1}B)$, $t^{-n}f_B(t) = (-1)^n g_B(t^{-1})$.

In connection with problems related to symmetric polynomials [3], the author considers $w_n(t) = \det(I - tW_n)$, where the *n* by *n* matrix $W_n(i,j) = 1$, if $i + j \ge n + 1$, and otherwise 0. Then, $w_0 = 1$, $w_1 = 1 - t$, $w_2 = 1 - t - t^2$, $w_3 = 1 + t^3 - t^2 - 2t$,

In counting certain sequences generated by reflections [4], the authors consider $v_n(t) = \det(V_n - tI)$, where $V_n(i, j) = 1$ if $i + j \le n + 1$ (denoted D_n in [4]).

FEBRUARY 2019

THE FIBONACCI QUARTERLY

Now, W_n and V_n are similar using the matrix $T = T^{-1}$, where T(i, j) = 1 if i + j = n + 1, else 0. By the remarks above, we have the following result.

Proposition 5.1. Let n be a nonnegative integer. Then, $w_n(t) = (-1)^n t^n v_n(t^{-1})$.

Together with Section 4 and the results shown in [3], we have the following result.

Proposition 5.2. Let $n \ge 1$. Then,

$$w_{n+1} = (2 + (-1)^{n+1}t)w_n - w_{n-1}$$

and $w_{n+1} = (-1)^{\lceil (n+1)/2 \rceil}u_{n+1} + (-1)^{\lceil n/2 \rceil}u_n$

The signs on the expressions for w_{n+1} have period 4, (-1, 1), (-1, -1), (1, -1), (1, 1) for $n \ge 0$.

Corollary 5.3. Let $P_0 = -1$, $P_1 = -1$, and $P_{k+1} = \frac{w_{k+1} - tw_k - w_{k-1}}{2t}$ for $k \ge 1$. Then, $P_{2n} = P_{2n-1}$ for $n \ge 1$.

Proof.

$$P_{2n} - P_{2n-1} = \frac{w_{2n} - tw_{2n-1} - w_{2n-2}}{2t} - \frac{w_{2n-1} - tw_{2n-2} - w_{2n-3}}{2t}$$
$$= \frac{w_{2n} - (t+1)w_{2n-1} + (t-1)w_{2n-2} + w_{2n-3}}{2t}$$
$$= \frac{(2+t)w_{2n-1} - w_{2n-2} - (t+1)w_{2n-1} + (t-1)w_{2n-2} + w_{2n-3}}{2t}$$
$$= \frac{w_{2n-1} + (t-2)w_{2n-2} + w_{2n-3}}{2t}$$
$$= 0.$$

Next, we consider the sequence $Q_k = P_{2k} = P_{2k-1}$. Here is an expression we use in the following theorem.

$$Q_{k} = P_{2k} = \frac{w_{2k} - tw_{2k-1} - w_{2k-2}}{2t}$$
$$= \frac{w_{2k-1} - w_{2k-2}}{t}$$
$$= -\frac{u_{2k-1} + u_{2k-3}}{t}$$
$$= -u_{2k-2}.$$

Theorem 5.4. The sequence $Q_k(t)$ is A-Cassini with $A = t^2$. Hence with a = b = -1 and $\mu = 2 - t^2$,

$$Q_{k+1}(t) = -u_k(2-t^2) + u_{k-1}(2-t^2).$$

Proof. The second part follows immediately from the first part and Theorem 1.4. The first part uses some of the identities for u_k in Section 1.1.

Let $C_k = Q_{k+1}Q_{k-1} - Q_k^2$. Then,

VOLUME 57, NUMBER 1

$$C_{k} = Q_{k+1}Q_{k-1} - Q_{k}^{2} = u_{2k}u_{2k-4} - u_{2k-2}^{2}$$

= $\sum_{i=0}^{2k-4} u_{4+2i} - \sum_{i=0}^{2k-2} u_{2i} = \sum_{i=2}^{2k-2} u_{2i} - \sum_{i=0}^{2k-2} u_{2i}$
= $-u_{0} - u_{2} = -1 - (t^{2} - 1) = -t^{2}.$

Hence, $A = t^2$.

Consider the k by k matrix M_k with *i*-*j* entry min(i, j). It is straightforward to verify that $W_k^2 = M_k$.

Corollary 5.5. Let $k \ge 0$. Then, $Q_{k+1} = (-1)^{k+1} \det(I - t^2 M_k)$.

Proof.

$$det(I - t^2 M_k) = det(I - t^2 W_k^2)$$

= $det(I - t W_k) det(I + t W_k)$
= $w_k(t)w_k(-t)$
= $(u_k(t) - u_{k-1}(t))(u_k(-t) - u_{k-1}(-t))$
= $(u_k(t) - u_{k-1}(t))(u_k(t) + u_{k-1}(t))$
= $(u_k^2 - u_{k-1}^2)$
= $\left(\sum_{i=0}^k u_{2i} - \sum_{i=0}^{k-1} u_{2i}\right)$
= u_{2k}
= $-Q_{k+1}(t)$.

We leave the following example for the interested reader. Let $N[i, j] = (-1)^{i+j} \min(i, j)$ and $f_n = \det(I_n - tN)$. Then, $f_0 = 1$, $f_1 = 1 - t$, $f_2 = t^2 - 3t + 1$, and $f_3 = -t^3 + 5t^2 - 6t + 1$. Then, $f_{n+1}f_{n-1} - f_n^2 = -t$, A = t, and M = 2 - t.

6. TRIDIAGONAL MATRICES

By expansion along the last row, the recurrence formula for the characteristic polynomial F_n of the tridiagonal matrix

$$Z_n = \begin{pmatrix} a_1 & b_1 & 0 & \cdots & \\ c_1 & a_2 & b_2 & 0 & \cdots \\ & \ddots & & & 0 & c_{n-2} & a_{n-1} & b_{n-1} \\ & \cdots & & & 0 & c_{n-1} & a_n \end{pmatrix}$$

is given by

$$F_n(t) = (a_n - t)F_{n-1}(t) - c_{n-1}b_{n-1}F_{n-2}(t).$$

Now, we assume $a_1 = s$, $a = a_i$ for $1 < i \le n$, $b = b_i$, and $c_i = \frac{1}{b}$ for $i \le n$. Then, $F_n(t) = (a-t)F_{n-1}(t) - F_{n-2}(t)$ for $n \ge 2$.

FEBRUARY 2019

THE FIBONACCI QUARTERLY

Corollary 6.1. With the above assumptions, F_n is A-Cassini with M = a - t, $F_0 = 1$, and $F_1 = (s - t)$. Hence, $A = 1 + s^2 - sa + t(a - s)$.

Proof. This follows immediately from Proposition 1.3 since $A = 1 + (s-t)^2 - (a-t)(s-t)$.

In a similar manner, the next result can be obtained using Theorem 1.4.

Corollary 6.2. With the above assumptions, $d_n = \det(Z_n)$ is A-Cassini with $A = 1 + s^2 - sa$, M = a, $d_0 = 1$, and $d_1 = s$. Hence, $d_n = su_n(a) - u_{n-1}(a)$ and is independent of the value of b.

Suppose that Z_n is invertible. Then, $F_n = \det(Z_n - tI_n) = \det(Z_n) \det(I_n - tZ_n^{-1})$. There are well-known formulas for the inverse of Z_n , [7]. For a = 2, s = 1, and b = c = -1, we can use these formulas to see that $Z_n^{-1} = M_n$ from Section 5. However with b = c = 1 we obtain the matrix N from the example in Section 5. Also, using Corollary 1.9 with s = 1 and a = 2, $\det(Z_n) = 1$.

Additionally, if we fix the 1-1 entry and 2-2 entry to s_1 and s_2 and let the size *n* increase, we obtain similar recurrences for the tridiagonal matrices with a higher degree polynomial *A*. Also using the above ideas, if we let bc = -1, we get solutions to the Cassini relations discussed in [1]. We leave both of these for future investigations.

References

- [1] R. C. Alperin, A-Cassini sequences and their spectrum, The Fibonacci Quarterly, 56.2 (2018), 153–155.
- [2] R. C. Alperin, Integer sequences generated by $x_{n+1} = (x_n^2 + A)/x_{n-1}$, The Fibonacci Quarterly, **49.4** (2011), 362–365.
- [3] M. Göbel, Rewriting techniques and degree bounds for higher order symmetric polynomials, AAECC, 9 (1999), 559–573.
- [4] B. Junge and V. E. Hoggatt, Jr., Polynomials arising from reflections across multiple plates, The Fibonacci Quarterly, 11.3 (1973), 285–291.
- [5] T. J. Rivlin, The Chebyshev Polynomials, Wiley-Interscience, New York, 1974.
- [6] P. Steinbach, Golden fields: A case for the heptagon, Math. Mag., 70.1 (1997), 22–31.
- [7] Wikipedia, https:en.wikipedia.org/wiki/Tridiagonal_matrix.

MSC2010: 11B37, 11B39, 11B83, 15B05

DEPARTMENT OF MATHEMATICS, SAN JOSE STATE UNIVERSITY, SAN JOSE, CA 95192 E-mail address: rcalperin@gmail.com