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Abstract. We examine some polynomial solutions to the A-Cassini relation. We show how
these solutions are related to trace polynomials, lengths of the diagonals of a regular polygon,
and recurrences given by the characteristic polynomial of certain tridiagonal matrices.

1. A-Cassini Relation and Its Sequences

In this paper, we extend aspects of [2], [1] with an emphasis on polynomial solutions.
We consider the non-linear recurrence

gn+1gn−1 = g2n −A

with non-zero initial values g0 = a, g1 = b, and given A. Thus, g2 = b2−A
a and g2+g0

g1
= a2+b2−A

ab .

Theorem 1.1. Let µ = a2+b2−A
ab . Then for n ≥ 2, gn = µgn−1 − gn−2.

Proof. Let µk =
gk+gk−2

gk−1
. Suppose by induction that µk = µ and gk = µgk−1 − gk−2 for

2 ≤ k ≤ n. Then,

µn+1 − µn =
gn+1 + gn−1

gn
− gn + gn−2

gn−1

=
(gn+1 + gn−1)gn−1 − (gn + gn−2)gn

gn−1gn

=
gn+1gn−1 + g2n−1 − g2n − gn−2gn

gn−1gn

=
g2n −A+ g2n−1 − g2n − g2n−1 +A

gn−1gn
= 0.

Hence, µn+1 = µ and thus, gn+1 = µgn − gn−1. Therefore, we have proved the result. �

A polynomial in x, y, . . . and their inverses 1
x ,

1
y , . . . is called a Laurent polynomial.

Corollary 1.2. For indeterminates a and b, gn = µgn−1 − gn−2 is a Laurent polynomial in a
and b.

Proof. As shown above, g2 has denominator a. Since µ has denominator ab, the result that gn
has denominator an−1bn−2 for n ≥ 2 follows by induction. �

Proposition 1.3. Suppose that gn+1 = Mgn−gn−1 with non-zero initial values g0 = a, g1 = b,
and given M . Let A = a2 + b2 −Mab. Then, this sequence satisfies the A-Cassini relation
gn+1gn−1 = g2n −A.

Proof. By Corollary 1.2, the solution to the A-Cassini relation with A = a2 + b2 −Mab and
with initial values h0 = a and h1 = b is hn+1 = Mhn − hn−1, since µ = M . Thus, hn = gn for
all n. �
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The universal A-Cassini polynomials are u0 = 1, u1 = t, and un = tun−1 − un−2, for n ≥ 2.
The polynomial un is of degree n.

We have the following representation theorem in terms of the universal polynomials.

Theorem 1.4. Let A = a2 + b2 −Mab for given a, b, and M . Then, the sequence satisfying
the A-Cassini relation gn+1gn−1 = g2n −A with g0 = a and g1 = b can be expressed as

gn+1 = bun(M)− aun−1(M), for n ≥ 1.

Proof. The base case is bu1(M)− au0 = bM − a = g2. By induction,

gn+1 = Mgn − gn−1
= M(bun−1(M)− aun−2(M))− bun−2(M) + aun−3(M)

= b(Mun−1(M)− un−2(M))− a(Mun−2(M)− un−3(M))

= bun(M)− aun−1(M).

�

1.1. Other Identities for uk. [6]

Theorem 1.5. Let h and k be nonnegative integers such that h ≤ k. Then, uhuk−1−ukuh−1 =
uk−h−1.

Proof.

uhuk−1 − ukuh−1 = (tuh−1 − uh−2)uk−1 − ukuh−1
= tuh−1uk−1 − uh−2uk−1 − ukuh−1
= uh−1(tuk−1 − uk)− uh−2uk−1
= uh−1uk−2 − uk−1uh−2.

Continuing in this way, we have

uhuk−1 − ukuh−1 = uh−1uk−2 − uk−1uh−2
= . . .

= u1uk−h − uk−h+1u0

= tuk−h − uk−h+1

= uk−h−1.

�

Corollary 1.6. Let h and k be nonnegative integers such that h ≤ k. Then,

uhuk =

h∑
i=0

uk−h+2i.

Proof. From Theorem 1.5, uhuk = uk+1uh−1 + uk−h for h ≤ k. Using this identity repeatedly,
we lower the subscript on uh−1 and increase the subscript on uk+1 to get uhuk = uk+2uh−2 +
uk−h+2 + uk−h. Repeat this process until we get the desired formula. �

Proposition 1.7. Let n ≥ 4 be an integer. Then, un = (t2 − 2)un−2 − un−4.
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Proof.

un = tun−1 − un−2 = t(tun−2 − un−3)− un−2
= t2un−2 − tun−3 − un−2
= t2un−2 − (un−2 + un−4)− un−2
= (t2 − 2)un−2 − un−4.

�

Corollary 1.8. uk(t) is an even (odd) function of t if and only if k is even (odd).

Proof. It follows immediately from the previous Proposition that uk is even for k even and
from the linear recursion uk+1 = tuk−uk−1 it easily follows that uk+1 is odd for k+1 odd. �

The next result follows immediately by induction.

Corollary 1.9. For i ≥ 0, ui(2) = i+ 1.

2. Chebyshev Polynomials

We express the Chebyshev polynomials using the results above.

2.0.1. First Kind. The Chebyshev polynomials Tn have the recurrence T0 = 1, T1 = x, and
Tn+1 = 2xTn − Tn−1 for n ≥ 1. Letting a = 1, b = x, M = 2x, and M = 2x = (1 + x2 +A)/x,
it follows that A = x2 − 1. Using the representation theorem 1.4 above, we have Tn+1(x) =
xun(2x)− un−1(2x) = 1

2(2xun(2x)− 2un−1(2x)) = 1
2(un+1(2x)− un−1(2x)).

The polynomial formula for these Chebyshev polynomials are well-known [5]:

Tn(x) =
n

2

bn/2c∑
r=0

(−1)r
1

n− r

(
n− r
r

)
(2x)n−2r.

2.0.2. Second Kind. The recurrence relation for the Chebyshev polynomials of the second kind
is determined from a = 1, b = 2x, and M = 2x. Hence, M · 2x = 1 + 4x2 − A and thus,
A = 4x2 − 4x+ 1 = (1− 2x)2. Un+1(x) = 2xun(2x)− un−1(2x) = un+1(2x). Thus, using the
representation identity above, we have Tn+1(x) = 1

2(Un+1(x)− Un−1(x)).
The polynomial formulas for these Chebyshev polynomials are well-known [5]:

Un(x) =

bn/2c∑
r=0

(−1)r
(
n− r
r

)
(2x)n−r.

Corollary 2.1. For n ≥ 1, un(2t) = Un(t). The roots of un are 2 cos( kπ
n+1) for k = 1, . . . , n.

3. Trace Polynomials

Consider a diagonalizable matrix Z ∈ SL2(C) with trace τ = t + t−1. Then, the trace of
Zn is (tn + t−n). The Cassini relation is

(tn+1 + t−n−1)(tn−1 + t−n+1)− (tn + t−n)2 = t2 + t−2 − 2.

Thus, A = 4− (t+ t−1)2 = 4− τ2.
For a = 2 and b = τ , we have M = a2+b2−A

ab = 4+τ2+τ2−4
2τ = τ . Then, the sequence of traces

is tr(Zn+1) = gn+1 = τgn − gn−1.
We can express these as gn+1(τ) = τun(τ)− 2un−1(τ) = un+1(τ)− un−1(τ) = 2Tn+1(τ/2).
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The first few trace polynomials are

2, τ, τ2 − 2, τ3 − 3τ, τ4 − 4τ2 + 2, τ5 − 5τ3 + 5τ.

Using the formula for Tn, the trace polynomials have the formula

2Tn(τ/2) = n

bn/2c∑
r=0

(−1)r
1

n− r

(
n− r
r

)
τn−2r

for n > 0.

4. Diagonals

Consider the diagonals of a regular polygon of radius 1 having n sides with vertices at the
nth roots of unity. The kth vertex is ζk = cos(2kπn ) + I sin(2kπn ) for k = 0, . . . , n− 1. Using the
Pythagorean formula and measuring from the initial vertex to the kth vertex, the diagonals
have length d2k = (cos(2kπn )− 1)2 + sin(2kπn )2 = 2− 2 cos(2kπn ); for k = 1, d1 is the side length.

Since cos(2t) = cos(t)2 − sin(t)2 = 1− 2 sin2(t), the formula above can be rewritten as [6]

dk = 2 sin

(
kπ

n

)
.

4.1. Reduced Diagonals. Consider the reduced diagonals rk = dk
d1

; if needed, we denote this

as rk(n) to clarify that we are dealing with the regular n-sided polygon.
Using Ptolemy’s relation for the lengths of the sides of an inscribed quadrilateral on the

circle and its relation to its diagonals, we find the relations dhdk−1 = d1dk−h + dkdh−1 for
h ≤ k. This can be rewritten symmetrically as

rk−h = rhrk−1 − rkrh−1.
Let h = k − 1. Then,

rkrk−2 = r2k−1 − 1.

Since r1 = 1, r3 = r22 − 1, r4 =
r23−1
r2

=
(r22−1)2−1

r2
= r32 − 2r2, and r5 =

r24−1
r3

=
(r32−2r2)2−1

r22−1
=

r22(r
4
2−4r22+4)−1
r22−1

= r42 − 3r22 + 1.

Corollary 4.1. rn+1 = un(r2) for n ≥ 1.

The next result follows immediately from previous corollaries.

Corollary 4.2. For m > n+ 1 ≥ 2,

sin( (n+1)π
m )

sin( πm)
=

n∏
k=1

(
sin(2πm )

sin( πm)
− 2 cos

(
kπ

n+ 1

))
.

5. Göbels and Junge-Hoggatt Relations

For an n by n matrix B, its characteristic polynomial is fB(t) = det(B − tI). Let gB(t) =
det(I − tB). Since t−1(B − tI) = t−1B − I = −(I − t−1B), t−nfB(t) = (−1)ngB(t−1).

In connection with problems related to symmetric polynomials [3], the author considers
wn(t) = det(I − tWn), where the n by n matrix Wn(i, j) = 1, if i+ j ≥ n+ 1, and otherwise
0. Then, w0 = 1, w1 = 1− t, w2 = 1− t− t2, w3 = 1 + t3 − t2 − 2t, . . ..

In counting certain sequences generated by reflections [4], the authors consider vn(t) =
det(Vn − tI), where Vn(i, j) = 1 if i+ j ≤ n+ 1 (denoted Dn in [4]).
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Now, Wn and Vn are similar using the matrix T = T−1, where T (i, j) = 1 if i+ j = n+ 1,
else 0. By the remarks above, we have the following result.

Proposition 5.1. Let n be a nonnegative integer. Then, wn(t) = (−1)ntnvn(t−1).

Together with Section 4 and the results shown in [3], we have the following result.

Proposition 5.2. Let n ≥ 1. Then,

wn+1 = (2 + (−1)n+1t)wn − wn−1
and wn+1 = (−1)d(n+1)/2eun+1 + (−1)dn/2eun.

The signs on the expressions for wn+1 have period 4, (−1, 1), (−1,−1), (1,−1), (1, 1) for
n ≥ 0.

Corollary 5.3. Let P0 = −1, P1 = −1, and Pk+1 =
wk+1−twk−wk−1

2t for k ≥ 1. Then,
P2n = P2n−1 for n ≥ 1.

Proof.

P2n − P2n−1 =
w2n − tw2n−1 − w2n−2

2t
− w2n−1 − tw2n−2 − w2n−3

2t

=
w2n − (t+ 1)w2n−1 + (t− 1)w2n−2 + w2n−3

2t

=
(2 + t)w2n−1 − w2n−2 − (t+ 1)w2n−1 + (t− 1)w2n−2 + w2n−3

2t

=
w2n−1 + (t− 2)w2n−2 + w2n−3

2t
= 0.

�

Next, we consider the sequence Qk = P2k = P2k−1. Here is an expression we use in the
following theorem.

Qk = P2k =
w2k − tw2k−1 − w2k−2

2t

=
w2k−1 − w2k−2

t

= −u2k−1 + u2k−3
t

= −u2k−2.

Theorem 5.4. The sequence Qk(t) is A-Cassini with A = t2. Hence with a = b = −1 and
µ = 2− t2,

Qk+1(t) = −uk(2− t2) + uk−1(2− t2).

Proof. The second part follows immediately from the first part and Theorem 1.4. The first
part uses some of the identities for uk in Section 1.1.

Let Ck = Qk+1Qk−1 −Q2
k. Then,
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Ck = Qk+1Qk−1 −Q2
k = u2ku2k−4 − u22k−2

=

2k−4∑
i=0

u4+2i −
2k−2∑
i=0

u2i =

2k−2∑
i=2

u2i −
2k−2∑
i=0

u2i

= −u0 − u2 = −1− (t2 − 1) = −t2.

Hence, A = t2. �

Consider the k by k matrix Mk with i-j entry min(i, j). It is straightforward to verify that
W 2
k = Mk.

Corollary 5.5. Let k ≥ 0. Then, Qk+1 = (−1)k+1 det(I − t2Mk).

Proof.

det(I − t2Mk) = det(I − t2W 2
k )

= det(I − tWk) det(I + tWk)

= wk(t)wk(−t)
= (uk(t)− uk−1(t))(uk(−t)− uk−1(−t))
= (uk(t)− uk−1(t))(uk(t) + uk−1(t))

= (u2k − u2k−1)

=

(
k∑
i=0

u2i −
k−1∑
i=0

u2i

)
= u2k

= −Qk+1(t).

�

We leave the following example for the interested reader. Let N [i, j] = (−1)i+j min(i, j)
and fn = det(In− tN). Then, f0 = 1, f1 = 1− t, f2 = t2− 3t+ 1, and f3 = −t3 + 5t2− 6t+ 1.
Then, fn+1fn−1 − f2n = −t, A = t, and M = 2− t.

6. Tridiagonal Matrices

By expansion along the last row, the recurrence formula for the characteristic polynomial
Fn of the tridiagonal matrix

Zn =


a1 b1 0 · · ·
c1 a2 b2 0 · · ·
· · ·

· · ·
· · · · · · 0 cn−2 an−1 bn−1
· · · · · · 0 cn−1 an


is given by

Fn(t) = (an − t)Fn−1(t)− cn−1bn−1Fn−2(t).
Now, we assume a1 = s, a = ai for 1 < i ≤ n, b = bi, and ci = 1

b for i ≤ n. Then,
Fn(t) = (a− t)Fn−1(t)− Fn−2(t) for n ≥ 2.
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Corollary 6.1. With the above assumptions, Fn is A-Cassini with M = a − t, F0 = 1, and
F1 = (s− t). Hence, A = 1 + s2 − sa+ t(a− s).

Proof. This follows immediately from Proposition 1.3 since A = 1+(s− t)2−(a− t)(s− t). �

In a similar manner, the next result can be obtained using Theorem 1.4.

Corollary 6.2. With the above assumptions, dn = det(Zn) is A-Cassini with A = 1+s2−sa,
M = a, d0 = 1, and d1 = s. Hence, dn = sun(a)− un−1(a) and is independent of the value of
b.

Suppose that Zn is invertible. Then, Fn = det(Zn − tIn) = det(Zn) det(In − tZ−1n ). There
are well-known formulas for the inverse of Zn, [7]. For a = 2, s = 1, and b = c = −1, we can
use these formulas to see that Z−1n = Mn from Section 5. However with b = c = 1 we obtain
the matrix N from the example in Section 5. Also, using Corollary 1.9 with s = 1 and a = 2,
det(Zn) = 1.

Additionally, if we fix the 1-1 entry and 2-2 entry to s1 and s2 and let the size n increase,
we obtain similar recurrences for the tridiagonal matrices with a higher degree polynomial
A. Also using the above ideas, if we let bc = −1, we get solutions to the Cassini relations
discussed in [1]. We leave both of these for future investigations.
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