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Abstract. The discriminator of an integer sequence s = (s(i))i≥0 with distinct terms, in-
troduced by Arnold, Benkoski, and McCabe in 1985, is the function Ds(n) that sends n to
the least integer m such that the n values s(0), s(1), . . ., s(n − 1) are pairwise incongruent
modulo m. In this note, we compute the discriminators for a class of exponential sequences
that have the special property that the discriminator is shift-invariant , i.e., that it does not
depend on the particular index the sequence is chosen to start with.

1. Discriminators

Let m be a positive integer. If S is a set of integers that are pairwise incongruent modulo
m, we say that m discriminates S. Now let s = (s(i))i≥0 be a sequence of distinct integers.
For all integers n ≥ 1, we define Ds(n) to be the least positive integer m that discriminates
the set {s(0), s(1), . . . , s(n − 1)}. The function Ds(n) is called the discriminator of the
sequence s.

The discriminator was first introduced by Arnold, Benkoski, and McCabe [1]. They derived
the discriminator for the sequence 1, 4, 9, . . . of positive integer squares. More recently,
discriminators of various sequences were studied by Schumer and Steinig [14], Barcau [2],
Schumer [13], Bremser, Schumer, and Washington [3], Moree and Roskam [10], Moree [8],
Moree and Mullen [9], Zieve [16], Sun [15], Moree and Zumalacárrequi [11], Ciolan and Moree
[4], and the authors [5, 7].

In almost all of these cases, however, the discriminator is based on the first n terms of a
sequence, for n ≥ 2. Therefore, the discriminator can depend crucially on the starting point of
a given sequence. For example, although the discriminator for the first three positive squares,
(1, 4, 9), is 6, we see that the number 6 does not discriminate the first length-3 “window” into
the shifted sequence, (4, 9, 16, . . .), since 16 ≡ 4 (mod 6).

Furthermore, there has been little work on the discriminators of exponential sequences. Sun
[15] presented some conjectures concerning certain exponential sequences, whereas Moree and

Zumalacárrequi [11] computed the discriminator for the sequence
(
|(−3)j−5|

4

)
j≥0

. The latter

was generalized by Ciolan and Moree [4], who computed the discriminators for sequences of the

form (sq(n))n≥1 =
(
3n−q∗(−1)n

4

)
n≥1

, with q∗ = (−1)(q−1)/2 · q, an infinite family of sequences

introduced by Jerzy Browkin.
We say that the discriminator of a sequence is shift-invariant if the discriminator for the

sequence does not depend on the starting point of the sequence; that is, for all positive integers
c, the discriminator of the sequence (s(n))n≥1 is the same as the discriminator of the shifted
sequence (s(n+c))n≥0. This idea was briefly mentioned by Zieve [16], who considered sequences
with discriminators that are shift-invariant for sufficiently large values of n.

In this paper, we present a class of exponential sequences (ex(n, t, a))n≥0 whose discrimi-

nators are shift-invariant for all n ≥ 1. Here ex(n, t, a) := a t2n−1
2b

, and t ≥ 3 and a are odd
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integers, whereas b is the smallest positive integer such that t 6≡ ±1 (mod 2b). A typical
example is the sequence (ex(n, 3, 1))n≥0 =

(
9n−1
8

)
n≥0. We show that the discriminator for all

sequences of this form is Dex(n) = 2dlog2 ne. Furthermore, we show that this discriminator is
shift-invariant, i.e., it applies to every sequence (ex(n + c, t, a))n≥0 for c ≥ 0. We define the
shifted sequence (exs(n, t, a, c))n≥0 as follows:

exs(n, t, a, c) := ex(n+ c, t, a) = a
t2(n+c) − 1

2b
.

Specifically, our main result is the following theorem.

Theorem 1.1. Let t, a, and c be integers such that t ≥ 3 is odd, a is odd, c ≥ 0, and let
b be the smallest positive integer such that t 6≡ ±1 (mod 2b). Then the discriminator for the
sequence (exs(n, t, a, c))n≥0 is

Dexs(n) = 2dlog2 ne.

The outline of the paper is as follows. We compute the discriminators for (ex(n, t, 1))n≥0
and all of its shifts by providing matching upper and lower bounds. In Section 2, we obtain
an upper bound. In Section 3, we prove a lemma relating to the lower bound. Finally, in
Section 4, we put the results together to prove Theorem 1.1.

2. Upper Bound

In this section, we derive an upper bound for the discriminator of the sequence (ex(n, t, 1))n≥0
and all of its shifts, given that t ≥ 3 is an odd integer and b is the smallest positive integer
such that t 6≡ ±1 (mod 2b).

The constraint on b is closely related to 2-adic valuations. For primes p and integers c 6= 0,
the p-adic valuation of c, denoted by νp(c), is the unique integer e such that pe|c and pe+1 - c.
We use the following familiar properties of p-adic valuations (see, e.g., [12, p. 10]):

(1) νp(c1c2) = νp(c1) + νp(c2).
(2) If c1 6= c2, 2 - c1c2, and ν2(c1 − c2) = e ≥ 2, then ν2(c

2r
1 − c2

r

2 ) = e+ r for every r ≥ 1.

Lemma 2.1. Let t ≥ 3 be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then for k ≥ 1, the powers of t2 form a cyclic subgroup of order 2k in
(Z/2k+b)∗.

Proof. The value of b is either ν2(t−1)+1 or ν2(t+1)+1, whichever is larger. Note that t+1
and t − 1 are both even, and that (t + 1) − (t − 1) = 2, which means 4 does not divide both
t+ 1 and t− 1. Therefore, min(ν2(t+ 1), ν2(t− 1)) = 1 and so b = ν2(t+ 1) + ν2(t− 1). From
the first property of p-adic valuations listed above, we have b = ν2((t+ 1)(t− 1)) = ν2(t

2− 1).
Note that this implies 2b+1 - t2 − 1 and so t2 6≡ 1 (mod 2b+1).

From the second property listed above, setting c1 = t2 and c2 = 1 implies e = ν2(t
2−1) = b,

and so ν2
(
(t2)2

r − 1
)

= r+b for all r ≥ 1. Therefore, for r = k, we have (t2)2
k ≡ 1 (mod 2k+b).

Note that for r ≥ 1, we have 2r+b+1 - (t2)2
r − 1, so setting r = k − 1 for k ≥ 2 implies

(t2)2
k−1 6≡ 1 (mod 2k+b). This is also true for k = 1, since t2 6≡ 1 (mod 2b+1).

In other words, for all k ≥ 1, we have (t2)2
k ≡ 1 (mod 2k+b) and (t2)2

k−1 6≡ 1 (mod 2k+b).
It follows that the order of the subgroup generated by t2 in (Z/2k+b)∗ is 2k. �

We use this lemma to establish an upper bound on the discriminator of (ex(n, t, 1))n≥0 and
all its shifts.
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Lemma 2.2. Let t ≥ 3 be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then for k ≥ 0, the number 2k discriminates every set of 2k consecutive

terms of the sequence (ex(n, t, 1))n≥0 =
(
t2n−1
2b

)
n≥0

.

Proof. For every i ≥ 0, it follows from Lemma 2.1 that the numbers

(t2)i, (t2)i+1, . . . , (t2)i+2k−1

are distinct modulo 2k+b. By subtracting 1 from every element, we see that the numbers

(t2)i − 1, (t2)i+1 − 1, . . . , (t2)i+2k−1 − 1

are distinct modulo 2k+b. Furthermore, these numbers are also congruent to 0 modulo 2b

because ν2(t
2 − 1) = b. It follows that the set of quotients{

(t2)i − 1

2b
,

(t2)i+1 − 1

2b
, . . . ,

(t2)i+2k−1 − 1

2b

}
consists of integers that are distinct modulo 2k+b

2b
= 2k.

Such a set of quotients coincides with every set of 2k consecutive terms of the sequence
(ex(n, t, 1))n≥0. Since the numbers in each set are distinct modulo 2k, the desired result
follows. �

3. Lower Bound

In this section, we establish a lemma that is useful for proving the lower bound Dexs(n) ≥
2dlog2 ne.

Lemma 3.1. Let t ≥ 3 be an odd integer, and let b be the smallest positive integer such that
t 6≡ ±1 (mod 2b). Then for all k ≥ 0 and 1 ≤ m ≤ 2k+1, there exists a pair of integers (i, j)
such that 0 ≤ i < j ≤ 2k and t2i ≡ t2j (mod 2bm).

Proof. Let the prime factorization of m be

m = 2x
∏

1≤`≤u
py``

∏
1≤`≤v

qz`` ,

where u, v, x, y`, z` ≥ 0, while p1, p2, . . ., pu are the prime factors of m that also divide t,
and q1, q2, . . ., qv are the odd prime factors of m that do not divide t. For each ` ≤ u, let e`
be the integer such that pe`` ||t, i.e., we have pe`` |t but pe`+1

` - t.
We need to find a pair (i, j) such that t2i ≡ t2j (mod 2bm). From the Chinese remainder

theorem, we know it suffices to find a pair (i, j) such that

t2i ≡ t2j (mod 2x+b),

t2i ≡ t2j (mod py`` ), for all 1 ≤ ` ≤ u,
and t2i ≡ t2j (mod qz`` ), for all 1 ≤ ` ≤ v.

For the first of these equations, we know from Lemma 2.1 that (t2)i ≡ (t2)i+2x (mod 2x+b).
In other words, it suffices to have 2x|(j − i) to get t2i ≡ t2j (mod 2x+b).

Next, we consider the u equations of the form t2i ≡ t2j (mod py`` ). Since pe`` is a factor of t,

it follows that (t2)y`/2e` is a multiple of (p2e`` )y`/2e` = py`` . Therefore, (t2)y`/2e` ≡ 0 (mod py`` ).
Any further multiplication by t2 also yields 0 modulo py`` . Thus, it suffices to have j > i ≥ y`

2e`

to ensure that t2i ≡ t2j (mod py`` ).
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Finally, there are v equations of the form t2i ≡ t2j (mod qz`` ). In each case, q` is co-prime

to t, which means that (t2)ϕ(q
z`
` )/2 = tϕ(q

z`
` ) ≡ 1 (mod qz`` ), where ϕ(n) is Euler’s totient

function. As ϕ(qz`` ) = qz`−1` (q` − 1), it is sufficient to have
q
z`−1

` (q`−1)
2 |(j − i) to ensure that

t2i ≡ t2j (mod qz`` ).
Merging these ideas together, we choose the following values for i and j:

i = max
1≤`≤u

⌈
y`
2e`

⌉
, j = max

1≤`≤u

⌈
y`
2e`

⌉
+ 2x

∏
1≤`≤v

qz`−1` (q` − 1)

2
,

to ensure that t2i ≡ t2j (mod 2bm). It is clear that 0 ≤ i < j. To show that j ≤ 2k, we first
observe that

j = max
1≤`≤u

⌈
y`
2e`

⌉
+ 2x

∏
1≤`≤v

qz`−1` (q` − 1)

2
= max

1≤`≤u

⌈
y`
2e`

⌉
+

2x

2v

∏
1≤`≤v

qz`−1` (q` − 1)

≤ max
1≤`≤u

⌈y`
2

⌉
+

2x

2v

∏
1≤`≤v

qz`` = max
1≤`≤u

⌈y`
2

⌉
+

m

2v
∏

1≤`≤u p
y`
`

.

We now consider the following two cases.

Case 1. u = 0: If v = 0 as well, then j = 2x = m < 2k+1, which means that x ≤ k and
thus j ≤ 2k. Otherwise, if v ≥ 1, then we have

j ≤ max
1≤`≤u

⌈y`
2

⌉
+

m

2v
∏

1≤`≤u p
y`
`

=
m

2v
≤ m

2
<

2k+1

2
= 2k.

Case 2. u ≥ 1: Let r be such that yr = max1≤`≤u y`, and thus, pr is the corresponding
prime number with exponent yr. Since pyrr ≥ pr ≥ 3, we have

j ≤ max
1≤`≤u

⌈y`
2

⌉
+

m

2v
∏

1≤`≤u p
y`
`

≤
⌈yr

2

⌉
+

m

pyrr
≤ yr

2
+

1

2
+
m

3
.

Note that yr ≤ logpr m ≤ log3m ≤ m
3 for positive integers m. We leave it to the reader

to verify the last inequality. Thus,

j ≤ yr
2

+
1

2
+
m

3
≤ m

6
+

1

2
+
m

3
=
m+ 1

2
.

Since m and j are integers, this implies that

j ≤
⌈m

2

⌉
≤
⌈

2k+1

2

⌉
≤ 2k.

In both cases, we have j ≤ 2k, thus fulfilling the required conditions. �

4. Discriminator of (ex(n, t, a))n≥0 and Its Shifted Counterparts

In this section, we combine the results of the previous sections to determine the discriminator
for (ex(n, t, a))n≥1, as well as its shifted counterparts. We first prove a general lemma about
the discriminator of some scaled sequences.

Lemma 4.1. Given a sequence s(0), s(1), . . ., and a nonzero integer a, let s′(0), s′(1), . . .,
denote the sequence such that s′(i) = a · s(i) for all i ≥ 0. Then, for every n such that
gcd(|a|, Ds(n)) = 1, we have Ds′(n) = Ds(n).
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Proof. From the definition of the discriminator, we know that for every m < Ds(n), there
exists a pair of integers i and j with i < j < n, such that m|s(j) − s(i). Thus, for this same
pair of i and j, we have

m|a(s(j)− s(i)) = as(j)− as(i) = s′(j)− s′(i).

Therefore, m cannot discriminate the set {s′(0), s′(1), . . . , s′(n−1)} and so Ds′(n) ≥ Ds(n).
But for m = Ds(n), we know that for all i and j with i < j < n, we have m - s(j) − s(i).

Since gcd(m, |a|) = 1, it follows that

m - a(s(j)− s(i)) = as(j)− as(i) = s′(j)− s′(i)

for all i and j with i < j < n. Therefore, m = Ds(n) discriminates the set

{s′(0), s′(1), . . . , s′(n− 1)}

and so Ds′(n) ≤ Ds(n).
Putting these results together, we have Ds′(n) = Ds(n). �

We can now prove Theorem 1.1.

Proof. First we compute the discriminator for a = 1, where the sequence is of the form

(exs(n, t, 1, c))n≥0 =
(
(t2)n+c−1

2b

)
n≥0

.

The case for n = 1 is trivial. Otherwise, let k ≥ 0 be such that 2k < n ≤ 2k+1. We show
that Dexs(n) = 2k+1.

From Lemma 2.2, we know that 2k+1 discriminates the set,

{ex(c, t, 1), ex(c+ 1, t, 1), . . . , ex(c+ 2k+1 − 1, t, 1)},

as well as every smaller subset of these numbers. Therefore, 2k+1 discriminates

{exs(0, t, 1, c), exs(1, t, 1, c), . . . , exs(n− 1, t, 1, c)}.

In other words, Dexs(n) ≤ 2k+1 for a = 1.
Now, let m be a positive integer such that m < 2k+1. By Lemma 3.1, we know that

there exists a pair of integers, i and j, such that (t2)i ≡ (t2)j (mod 2bm). This implies that
(t2)i+c − 1 ≡ (t2)j+c − 1 (mod 2bm).

Furthermore, since ν2(t
2 − 1) = b, we have (t2)i+c − 1 ≡ (t2)j+c − 1 ≡ 1− 1 ≡ 0 (mod 2b).

Therefore,

(t2)i+c − 1

2b
≡ (t2)j+c − 1

2b
(mod m).

In other words, exs(i, t, 1, c) ≡ exs(j, t, 1, c) (mod m) while both numbers are in the set

{exs(0, t, 1, c), exs(1, t, 1, c), . . . , exs(n− 1, t, 1, c)}

since i < j ≤ 2k < n. Therefore, m fails to discriminate this set. Since this applies for all
m < 2k+1, we have Dexs(n) ≥ 2k+1 for a = 1.

Since we have 2k+1 ≤ Dexs ≤ 2k+1, this means that Dexs(n) = 2k+1 and thus Dexs(n) =

2dlog2 ne, provided that a = 1.
As for a 6= 1, we observe that the value of 2dlog2 ne is a power of 2 for all n, and so it is

co-prime to all odd a. Therefore, we can apply Lemma 4.1 to prove that the discriminator
remains unchanged for odd values of a, thus proving that the discriminator for the sequence

(exs(n, t, a, c))n≥0 =
(
a (t2)n+c−1

2b

)
n≥0

is Dexs(n) = 2dlog2 ne. �
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5. Final Remarks

We have considered sequences of the form (ex(n, t, a))n≥0 =
(
a t2n−1

2b

)
n≥0

for odd integers

a and t, where b is the smallest positive integer such that t 6≡ ±1 (mod 2b). We showed

that the discriminator for this sequence is characterized by Dex(n) = 2dlog2 ne and that the
discriminator is shift-invariant, i.e., all sequences of the form (ex(n+c, t, a))n≥0 for c ≥ 0 share
the same discriminator.

This raises the obvious question, what other sequences have shift-invariant discriminators?
It is easy to show that sequences defined by a linear equation, i.e., of the form (an + b)n≥0,
have shift-invariant discriminators. Furthermore, the first author has recently shown [6] that
the quadratic sequence (2kcn2 + bcn)n≥0, for a positive integer k and odd integers b, c, also

has a shift-invariant discriminator 2dlog2 ne.
It is an open problem as to whether there are any sequences, other than those mentioned

here, whose discriminators are shift-invariant. Furthermore, all sequences whose discriminators
are known to be shift-invariant have discriminators with linear growth, but we do not know if
this is true of all shift-invariant discriminators.
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