LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX
FIELD - II

OWEN J. BRISON AND J. EURICO NOGUEIRA

ABSTRACT. In [1], the authors studied f-subgroups in the complex field for polynomials f(t)
of degree 2 and described their behavior in many cases. Here, similar questions are considered
for polynomials of general degree k > 2.

1. INTRODUCTION

Let C denote the complex field, let Cy[t] denote the set of nonconstant monic polynomials
over C with nonzero constant coefficient, and let C* denote the multiplicative group of nonzero
complex numbers. Let f(t) = t¥ —ap_1tF~' — .- —ait — ag € Co[t]. An f-sequence in C is a
(doubly-infinite) sequence S = (s;);ez of elements s; € C such that

Si = Ak—18i—1 + -+ A18;—k41 + G0Si—k

for all i € Z; S is cyclic if there exists g € C* such that s;11 = gs; for all ¢ € Z, in which
case ¢ is the common ratio of S; § is periodic if there exists m € N such that s, = sqynm, for
all a € Z, whereas the least such m is called the least period of S. By a minimal periodic
segment, we understand the whole sequence, if S is not periodic, and any segment consisting
of m consecutive members of S, if S is periodic with least period m.

If g € C* is a root of f(t) € Cy[t], then the subgroup < g > < C* may be regarded as (the
underlying set of) an f-sequence:

<g>=(..,1,0.9%....9"...).

It sometimes happens, for certain choices of f(t) and g with f(g) = 0, that < g > may be
written in an alternative manner as an f-sequence. This raises the question of classifying
this behavior. An analogous situation for finite fields seems to have first been investigated by
Somer [3, 4]. In [1], the authors studied this problem for f(t) € Cy[t] of degree 2. In that
paper, the case where < g > is finite was described, whereas the case where < g > is infinite
was described except for certain specified situations: see Propositions 4 and 6 of [1].

Definition 1.1. Let f(t) € Cy[t]. The subgroup M < C* is said to be an f-subgroup if either
(i) M is infinite and the underlying set of M can be written in such a way as to form an
f-sequence (Sp)nez, where sq # sp if a # b, or

The first author acknowledges the partial support of the Fundacao para a Ciéncia e Tecnologia via the project
UID/MAT/04721/2013 (Centro de Andlise Funcional, Estruturas Lineares e Aplicagées - Grupo de Estruturas
Lineares, Algébricas e Combinatérias, of the Universidade de Lisboa, Portugal). The second author acknowl-
edges the partial support of the Funda¢do para a Ciéncia e Tecnologia via the project UID/MAT/00297/2019
(Centro de Matemdtica e Aplicagoes, of the Universidade Nova de Lisboa, Portugal).

148 VOLUME 57, NUMBER 2



LINEAR SEQUENCE SUBGROUPS

(ii) M is finite, of order m, and the underlying set of M can be written in such a way as to
coincide with a minimal periodic segment of an f-sequence (Sy)nez, where sq = sy if and only
if a =b(mod m).

When M is an f-subgroup, we will write M = (s, )nez, even if M is finite, and say (sp)nez
is a representation of, or represents, the subgroup M as an f-sequence.

The following lemma relates f-subgroups with cyclic f-sequences.

Lemma 1.2. Let f(t) =tF —ap_1t* 1 — . — a;t — ap € Colt].

(a) If f(g) =0, then (9" )nez is a cyclic f-sequence that represents < g >.

(b) Suppose S C C* is a cyclic f-sequence with common ratio g and contains 1. Then,
f(g) =0 and S represents < g > < C* as an f-subgroup.

Proof. (a) We observed this above.

(b) Write & = (8, )nez and assume, without loss of generality, that so = 1; then s, = ¢g"”
for all n € Z and § = (¢")nez represents < g > < C* as an f-subgroup. Because S is an
f-sequence, ¢* = a_1g" "' +--- +a1g + ap and so, f(g) = 0. O

If f(t) € Cy[t], and if g, h € C* are distinct roots of f, it can happen that <h > =< g > <
C*, and then, (¢")nez and (h™),ez are both “obvious”, and cyclic, representations of < g >
as an f-subgroup. This suggests:

Definition 1.3. Let f(t) € Cy[t] be of degree k > 2.

(a) The f-subgroup M of C* is said to be standard if whenever M is represented as an
f-sequence M = (Sp)nez, then (sp)nez is necessarily cyclic. Otherwise, M is said to be
nonstandard.

(b) Suppose that M is a nonstandard f-subgroup. If M admits a representation as a cyclic
f-sequence, then M is nonstandard of the first type; otherwise M is nonstandard of the second
type.

It is possible to find polynomials f(t) € Cy[t] that admit noncyclic f-subgroups and, are
thus nonstandard of the second type: see Theorem 3.3 below and Example 7 of [1]. The
classification of these noncyclic f-subgroups seems to be an open problem; the only ones we

have found are of the form < a > x < b >, where < a > is finite and < b > is infinite.

Suppose f(t) = t*F — ap_1tF"" — ... —ag € Cy[t] and (s;)iez is an f-sequence in C. Write
fr(t) =tk + Z—étk_l + -+ a’;—;lt — % € Co[t]; this is the monic version of the reciprocal
polynomial of f(t) and its roots are the inverses of the roots of f(t). It is clear that f** = f.
For ¢ € Z, write u; = s—;. Then, (u;)icz (which is just “(s;) backwards”) is an f*-sequence
and M is an f-subgroup if and only if it is an f*-subgroup.

2. THE MAIN RESULT

The following result generalizes part (1) of Proposition 4 of [1].

Theorem 2.1. Let f(t) € Cyt] be of degree k > 2 with roots gi,...,g9r € C* such that
lgil < |g;| ifi < j, and let M be an f-subgroup. Then, M is standard. Furthermore, M is
finite if and only if for some i € {1,...,k} we have M = < g; >, where g; is a oot of unity.
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Proof. Let (sn)nez be an f-sequence that represents M; then there exist a; € C such that
Sp = a1g) + gy + -+ gy

for all n € Z. Without loss of generality, assume that sg = 1. We wish to prove that precisely
one of the ¢; is nonzero. Thus, for a contradiction, suppose at least two of the «; are nonzero.
Let
ke =min{i:i€ {1,...,k},a; # 0} and k; =max{i: i€ {1,...,k},a; # 0},
so that ko < k.
Write R; = gi/gi, for i = ko,..., k1 — 1 and P; = g;/g, for j = ko +1,...,k;. For all
relevant i and j, we have |R;| < 1, |P;| > 1, and

. n __ : n __
nILH;ORi = nEIPOOPj =0. (2.1)
We also have
50| =[G, ["ary Ry 4o 4 a1 R, 1 + gy | (2.2)
= |Gy "y + Qpy 1 Py g + - g P
Thus,
nh_>nolo ‘Sn’ = ’a/ﬂ‘ nh_lggo ’gkl ’n7 (23)
lim |[s,|=|ag,| lim |g,|",
n——0o0 n——0o0
and
|S$n+1] ‘O‘szZ;l +o |
= |9k, | - (2.4)
[snl ]akng2+...+ak1‘
| ||ak2+"'+ak1P]?1+l|
= |9k
2 |Ozk2+“‘+04k1P]?1|
so that
. |5n+1| o
Jim sl |9k, | > 0, (2.5)
lim 2ot = |gr,| > 0.
n—-co |8y

The following four assertions follow from (2.3) and (2.5).

(a) If | gg,| > 1, then there exists ng € N such that |s,+1| > |sn| for n > ng and
lim,, o |$n| = 00.

(b) If |gk,| > 1, then there exists ny € N such that |s,41] > |sp| for n < —ny and
lim, | sp| = 0.

(c¢) If |gr,| < 1, then there exists ny € N such that |sp,41] < |sp| for n > ny and
lim, o0 | 85| = 0.

(d) If |gk,| < 1, then there exists n3 € N such that |s,41] < |sp| for n < —n3 and
limy, o || = 0.

The following two assertions follow from (2.3).

(e) If | gk, | = 1, then lim,_ o |sn| = |ag,| > 0.

(f) If | gk, | = 1, then limy, oo [$n| = | agy| > 0.
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There are now a number of cases to consider; the first three lead rapidly to contradictions.

Case (1). First, suppose |gk,| < 1 < |gk,|- By (a) and (d), there exists ny € N such that
|sn| > 1 whenever |n| > ny; in particular, the group M contains a finite number of elements
Sp, with |s,| < 1, but an infinite number with |s,| > 1, which is a contradiction because M
contains the inverse of each of its elements.

Case (2). Next, suppose |gx,| = 1 < |gk,|- By (a), M contains elements of arbitrarily large
modulus. By (a) and (f), the elements of M are, in modulus, bounded below away from 0.
This is again a contradiction.

Case (3). Next, suppose |gg,| <1 = |gk,|- By (d), M contains elements of arbitrarily large
modulus. By (d) and (e), the elements of M are, in modulus, bounded below away from 0.
This is again a contradiction.

Case (4). Next, suppose 1 < |gi,| < |gk,|- By (a) and (b), there exists ns € N such that
|sn| is monotonic increasing whenever |n| > ns and such that, [s_,,| < |sn,|. We also have
limy, 00 [$n] = 00 and lim,,—,_« |s,| = 0. We start by proving that, in this case, |s,| # |sy],
whenever u # v. Write N5 = {—ns,...,n5}; then |s;| is monotonic increasing on N\Ns.
In particular, |s,| # |sy| whenever u and v are distinct elements of N\/N5. Suppose that
u € N5 and v € N are distinct with |s,| = |sy|; because u # v, then s, # s,. Because
limy, o0 |8n| = 00, there exists s,, € M such that |s,s,| = |sysw| > max{|s,],|s;| : j € Ns}.
But, s,84, = sq and s,8, = sp are distinct elements of M and so, we must have a # b > nj
and then, by what we have seen, |s,| # |sp|, a contradiction. Thus, |s,| # |s,| whenever u # v.

Next, we assert that, in this case, M is cyclic. The elements s, of M are monotonic
increasing in modulus (to o0o) for u ¢ Ns, while Nj is finite. In addition, |s,| # |sy| if u # v.
Thus, there exists a unique w € M of least modulus greater than 1. Suppose M #< w >.
Then, there exists a unique w; € M\ < w > of least modulus greater than 1. Let ¢ be the

LW
largest natural number such that 1 < |w!| < |wi|. Certainly — € M\ < w >, whereas

wt
w
1< ‘—1‘ < |w; |, contrary to choice. Thus, M =< w > is cyclic with |w| > 1 as above.
w
We now show that there exists i € {1,...,k} such that M = < g; >. The |s,| are all distinct
and are monotonic increasing from ns onwards. If v > ns, then s,11 € M must have the form
syw’ for some j, but |s,| < |s,w| < |s,w/| and so j = 1. Recall, from [2], that s, denotes
the k-vector (sy,...,Sytk—1). Fix & > ns. Then, s;41 = ws,j and
Sy k= (wt, .. ,wt+k_1)
for some t = t(z) € Z. Then from [2], we have
Sz kCf = Spy1k = WSg i,
where C is the companion matrix of f(t), so that

t ’wt—l—k—l)

(w', ... ¢ withh,

Cy = ww',...,
But, w is a nonzero scalar, while C is invertible and so,
w i w!, . wtR) = (Wl ,w”k_l)C’]?l.
We are assuming that so = 1. Then, so 1 = (1,51,...,5,—1) and, with = and t as above,

xr
80kCF = Su ks
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so that,
(w'™*,...) = sx,kC’f_x =sor= (1,...).
Thus, t = z and so 1, = (1, w,... ,wh 1), while 81k = (w,w?,...,wk). But then,
wh = s = ag_155-1 + - +apso = ap_ 1w+ +apl
and so, w is a root of f(t), whence w = g; for some i € {1,...,k}. But then, a; = 1 and

a; = 0 for all j # i, a contradiction.

Case (5). Finally, suppose |gk,| < |gk,| < 1. Then, the monic reciprocal, f*(t), falls under
Case 4 and we again reach a contradiction.

It follows that M is standard. The final assertion is now clear. O

3. SOME NONSTANDARD SUBGROUPS
In this section, we present some families of nonstandard subgroups in C*.

Theorem 3.1. Let p(t) € Cylt], let d € N with d > 2, and let f(t) = p(t?). Suppose, for some
m €N, g € C* is a root of f(t) of multiplicative order m. Write M = < g > < C*.

(a) Write b = ged(m,d). Then, < ¢ > = < g% > is a p-subgroup of order m/b. Let T be
the number of cyclically distinct p-sequences that represent < g° >. Then, there exist at least

g =75b—1) (%)H

cyclically distinct f-sequences that represent M.
(b) Suppose d | m. Furthermore, suppose that m >3, if d =3 and m > 4, if d = 2. Then,
M is a nonstandard f-subgroup of the first type.

Proof. (a) Because g is a root of f(t), g% is a root of p(t) and < ¢ > = < ¢* > < C* is
a p-subgroup of order m/b. By hypothesis, there are 7 cyclically-distinct p-sequences of the
form

S1 = (...,1,61,62,...,6%_1,...)
that represent < ¢® >; in a similar way, for any a € M, there are T p-sequences

S, = (...,a,a01,a02,...,GC%_l,...),

that represent (in the obvious way) the coset a < ¢° >. Interleaving the b p-sequences Sy, Sy,
..y Say_,, where {1,a1,...,a5_1} is a complete set of coset representatives of < ¢’ > in M,
we may now represent M by f-sequences of the form

S = ( cey 1,(11,. ..,ap—-1,C1,a1€1,...,ap—-1C1,C2,QA1C2, . .. ,c%_l,alc%_l, v ,ab_lc%_l,. . )

having a minimal periodic segment of length m.
There are 7 choices for S, (m — )7 choices for a;, and so (m — )7 = 7 (b—1)7 for Sy,
(m —2%)7 = 3 (b—2)7 for S,,, and so on. Thus, the total number of choices is given by

0 = T(%(b— 1)7') <%(b— 2)7’) (%7) = Tb<%>b_l(b— 1)!

It follows that the group M can be represented by at least 6 cyclically-distinct sequences
(and so will be nonstandard if 6 > k).
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(b) Let ky, € N denote the number of roots of f(t) of multiplicative order m. By hypothesis,
d | m and so, b = d and m/d > 1. Because f has k,, roots of order m (including g), p has
Ry > km/d roots of order m/d (including g%) in C. Each of these roots of order m/d will
afford a p-sequence that represents < g¢ > (because C* has a unique subgroup of each finite
order) and so, 7 > hy, > ky,/d. Thus, in the notation of (a) and because h,, > 1, we have

_p gpa—t (N R g et o (d 1)
0 = hyhd: (d) (d—1)! > =4 (d> (d=1)! > k.
If d > 4, then 0 > k,;, and so M is nonstandard as an f-subgroup.
Next, suppose d = 3. Then,
Ky /m2 2m?
0>-"2(—) 2l =k, —
-3 <3> 27

By hypothesis, m > 3 in this case, so 6 > k,, and M is nonstandard.

Finally, suppose d = 2. Then, 0 > k;,,"y and, because m > 4 in this case again, M is
nonstandard.

In all cases, M has a cyclic representation and is nonstandard of the first type. O

Example 3.2. Let p(t) =t —i € Co[t] and f(t) = p(t3). The roots of f(t) are g, = €5’ and
go = e%ﬂi, both of order 12, and g3 = eFi of order 4; thus, k1o = 2. Let M = < g1 > < C*. By
Theorem 3.1(b), M is nonstandard and, by Theorem 3.1(a), there are at least 0 = 32 distinct
f-sequences that represent M.

Theorem 3.3. Let p(t) € Colt], let d € N with d > 2, and let f(t) = p(t?). Suppose h € C*
s a root of p. Let g be a fixed dth root of h and suppose g is not a root of unity.

(a) There exist infinitely many cyclically-distinct f-sequences that represent M =< g >
and M is a nonstandard f-subgroup of the first type.

(b) Let ¢ € C* be a primitive dth root of unity and write N =< ( > x < h >. Then, N is
a nonstandard f-subgroup of the second type, represented by infinitely many f-sequences.

Proof. (a) Write So = (¢%)iez; then, Sp is a cyclic f-sequence that represents M. Fix m € Z,
m > 1. Let p; = ¢" if d does not divide i, and p4q = glat™d for ¢ € Z. Then, S, = (1i)ez
is an f-sequence that represents M and is noncyclic, because d > 2, and g is not a root of
unity. Thus, M is nonstandard of the first type. Distinct mq, my € Z give cyclically distinct
sequences Sp,, and Sp,,, so M is represented by an infinite number of f-sequences.

(b) The f-sequence

(Si)iEZ - ( R 17C17 cee 7Cd_17h7 hC17’ .- 7hcd_17h27h2cl7 .. )

represents the group N = < ( > x < h > < C*, which is an f-subgroup; it is clearly noncyclic
and is nonstandard of the second type. The above sequence may be viewed as d sequences
interleaved; we may “slide” one of these interleaved sequences past the others and so, N may
be represented by infinitely many f-sequences. O

Example 3.4. Let p(t) =t?> —t — 1 and f(t) = p(t?) and write @ for the golden ratio. Then,
M: < \/¢> = ("'7]‘7’\/@7(707(p\/¢7(p2"')
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and
— _ 2 2
N=x<-1> x<¢e>=(..,—1,1,—p,0,—¢0",¢°,...)

are infinite f-subgroups, nonstandard of the first and second type, respectively.
We end with a result concerning a special class of polynomials.

Theorem 3.5. Let f(t) = th + k=1 + k=2 4 ... 4t + 1 € Co[t], k € N. Let ¢ be a (chosen,
fized) primitive (k + 1)th root of unity in C. Then, M =< { > is a nonstandard f-subgroup
of the first type, if k > 2 and is standard, if k = 2.

Proof. The roots of f(t) are the elements of the set {¢,¢2,...,¢*}. Any sequence S = (s;)iez
in C such that
Sntk T Sntk—1+ Spyk—2+ -+ 8, =0

for all n € Z is an f-sequence. Thus, whenever

¢ G =G Y,

the sequence
("'717C17C27"'7Ck—17Ck717”’)

is an f-sequence that represents M, and there are k! ways in which this may occur. Therefore,
if & > 2, M is nonstandard because k! > k, and is of the first type because, at least one of
these representations is cyclic. If k = 2, then k! = k, and in that case, M is standard. O
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