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Abstract. In [1], the authors studied f -subgroups in the complex field for polynomials f(t)

of degree 2 and described their behavior in many cases. Here, similar questions are considered

for polynomials of general degree k ≥ 2.

1. Introduction

Let C denote the complex field, let C0[t] denote the set of nonconstant monic polynomials

over C with nonzero constant coefficient, and let C∗ denote the multiplicative group of nonzero

complex numbers. Let f(t) = tk − ak−1t
k−1 − · · · − a1t− a0 ∈ C0[t]. An f -sequence in C is a

(doubly-infinite) sequence S = (si)i∈Z of elements si ∈ C such that

si = ak−1si−1 + · · ·+ a1si−k+1 + a0si−k

for all i ∈ Z; S is cyclic if there exists g ∈ C
∗ such that si+1 = gsi for all i ∈ Z, in which

case g is the common ratio of S; S is periodic if there exists m ∈ N such that sa = sa+m for

all a ∈ Z, whereas the least such m is called the least period of S. By a minimal periodic

segment, we understand the whole sequence, if S is not periodic, and any segment consisting

of m consecutive members of S, if S is periodic with least period m.

If g ∈ C
∗ is a root of f(t) ∈ C0[t], then the subgroup < g > ≤ C

∗ may be regarded as (the

underlying set of) an f -sequence:

< g > = (. . . , 1, g, g2, . . . , gn, . . .).

It sometimes happens, for certain choices of f(t) and g with f(g) = 0, that < g > may be

written in an alternative manner as an f -sequence. This raises the question of classifying

this behavior. An analogous situation for finite fields seems to have first been investigated by

Somer [3, 4]. In [1], the authors studied this problem for f(t) ∈ C0[t] of degree 2. In that

paper, the case where < g > is finite was described, whereas the case where < g > is infinite

was described except for certain specified situations: see Propositions 4 and 6 of [1].

Definition 1.1. Let f(t) ∈ C0[t]. The subgroup M ≤ C
∗ is said to be an f -subgroup if either

(i) M is infinite and the underlying set of M can be written in such a way as to form an

f -sequence (sn)n∈Z, where sa 6= sb if a 6= b, or
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(ii) M is finite, of order m, and the underlying set of M can be written in such a way as to

coincide with a minimal periodic segment of an f -sequence (sn)n∈Z, where sa = sb if and only

if a ≡ b (mod m).

When M is an f -subgroup, we will write M = (sn)n∈Z, even if M is finite, and say (sn)n∈Z
is a representation of, or represents, the subgroup M as an f -sequence.

The following lemma relates f -subgroups with cyclic f -sequences.

Lemma 1.2. Let f(t) = tk − ak−1t
k−1 − · · · − a1t− a0 ∈ C0[t].

(a) If f(g) = 0, then (gn)n∈Z is a cyclic f -sequence that represents < g >.

(b) Suppose S ⊆ C
∗ is a cyclic f -sequence with common ratio g and contains 1. Then,

f(g) = 0 and S represents < g > ≤ C
∗ as an f -subgroup.

Proof. (a) We observed this above.

(b) Write S = (sn)n∈Z and assume, without loss of generality, that s0 = 1; then sn = gn

for all n ∈ Z and S = (gn)n∈Z represents < g > ≤ C
∗ as an f -subgroup. Because S is an

f -sequence, gk = ak−1g
k−1 + · · ·+ a1g + a0 and so, f(g) = 0. �

If f(t) ∈ C0[t], and if g, h ∈ C
∗ are distinct roots of f , it can happen that < h > = < g > ≤

C
∗, and then, (gn)n∈Z and (hn)n∈Z are both “obvious”, and cyclic, representations of < g >

as an f -subgroup. This suggests:

Definition 1.3. Let f(t) ∈ C0[t] be of degree k ≥ 2.

(a) The f -subgroup M of C
∗ is said to be standard if whenever M is represented as an

f -sequence M = (sn)n∈Z, then (sn)n∈Z is necessarily cyclic. Otherwise, M is said to be

nonstandard.

(b) Suppose that M is a nonstandard f -subgroup. If M admits a representation as a cyclic

f -sequence, then M is nonstandard of the first type; otherwise M is nonstandard of the second

type.

It is possible to find polynomials f(t) ∈ C0[t] that admit noncyclic f -subgroups and, are

thus nonstandard of the second type: see Theorem 3.3 below and Example 7 of [1]. The

classification of these noncyclic f -subgroups seems to be an open problem; the only ones we

have found are of the form < a > × < b >, where < a > is finite and < b > is infinite.

Suppose f(t) = tk − ak−1t
k−1 − · · · − a0 ∈ C0[t] and (si)i∈Z is an f -sequence in C. Write

f∗(t) = tk + a1
a0
tk−1 + · · · + ak−1

a0
t − 1

a0
∈ C0[t]; this is the monic version of the reciprocal

polynomial of f(t) and its roots are the inverses of the roots of f(t). It is clear that f∗∗ = f .

For i ∈ Z, write ui = s−i. Then, (ui)i∈Z (which is just “(si) backwards”) is an f∗-sequence

and M is an f -subgroup if and only if it is an f∗-subgroup.

2. The Main Result

The following result generalizes part (1) of Proposition 4 of [1].

Theorem 2.1. Let f(t) ∈ C0[t] be of degree k ≥ 2 with roots g1, . . . , gk ∈ C
∗ such that

|gi| < |gj | if i < j, and let M be an f -subgroup. Then, M is standard. Furthermore, M is

finite if and only if for some i ∈ {1, . . . , k} we have M = < gi >, where gi is a root of unity.
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Proof. Let (sn)n∈Z be an f -sequence that represents M ; then there exist αi ∈ C such that

sn = α1g
n
1 + α2g

n
2 + · · ·+ αkg

n
k

for all n ∈ Z. Without loss of generality, assume that s0 = 1. We wish to prove that precisely

one of the αi is nonzero. Thus, for a contradiction, suppose at least two of the αi are nonzero.

Let

k2 = min{i : i ∈ {1, . . . , k}, αi 6= 0} and k1 = max{i : i ∈ {1, . . . , k}, αi 6= 0},
so that k2 < k1.

Write Ri = gi/gk1 for i = k2, . . . , k1 − 1 and Pj = gj/gk2 for j = k2 + 1, . . . , k1. For all

relevant i and j, we have |Ri| < 1, |Pj | > 1, and

lim
n→∞

Rn
i = lim

n→−∞

Pn
j = 0. (2.1)

We also have

|sn| = |gk1 |n|αk2R
n
k2

+ . . .+ αk1−1R
n
k1−1 + αk1 |

= |gk2 |n|αk2 + αk2+1P
n
k2+1 + . . .+ αk1P

n
k1
|.

(2.2)

Thus,

lim
n→∞

|sn| = |αk1 | lim
n→∞

|gk1 |n,

lim
n→−∞

|sn| = |αk2 | lim
n→−∞

|gk2 |n,

(2.3)

and

|sn+1|
|sn|

= |gk1 |
|αk2R

n+1
k2

+ · · ·+ αk1 |
|αk2R

n
k2

+ · · · + αk1 |

= |gk2 |
|αk2 + · · ·+ αk1P

n+1
k1

|
|αk2 + · · ·+ αk1P

n
k1
|

(2.4)

so that

lim
n→∞

|sn+1|
|sn|

= |gk1 | > 0,

lim
n→−∞

|sn+1|
|sn|

= |gk2 | > 0.

(2.5)

The following four assertions follow from (2.3) and (2.5).

(a) If | gk1 | > 1, then there exists n0 ∈ N such that | sn+1| > | sn| for n > n0 and

limn→∞ |sn| = ∞.

(b) If | gk2 | > 1, then there exists n1 ∈ N such that |sn+1| > |sn| for n < −n1 and

limn→−∞ | sn| = 0.

(c) If | gk1 | < 1, then there exists n2 ∈ N such that | sn+1| < | sn| for n > n2 and

limn→∞ | sn| = 0.

(d) If | gk2 | < 1, then there exists n3 ∈ N such that |sn+1| < |sn| for n < −n3 and

limn→−∞ |sn| = ∞.

The following two assertions follow from (2.3).

(e) If | gk1 | = 1, then limn→∞ |sn| = |αk1 | > 0.

(f) If | gk2 | = 1, then limn→−∞ |sn| = |αk2 | > 0.
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There are now a number of cases to consider; the first three lead rapidly to contradictions.

Case (1). First, suppose |gk2 | < 1 < |gk1 |. By (a) and (d), there exists n4 ∈ N such that

|sn| > 1 whenever |n| ≥ n4; in particular, the group M contains a finite number of elements

sn with |sn| < 1, but an infinite number with |sn| > 1, which is a contradiction because M

contains the inverse of each of its elements.

Case (2). Next, suppose |gk2 | = 1 < |gk1 |. By (a), M contains elements of arbitrarily large

modulus. By (a) and (f), the elements of M are, in modulus, bounded below away from 0.

This is again a contradiction.

Case (3). Next, suppose |gk2 | < 1 = |gk1 |. By (d), M contains elements of arbitrarily large

modulus. By (d) and (e), the elements of M are, in modulus, bounded below away from 0.

This is again a contradiction.

Case (4). Next, suppose 1 < |gk2 | < |gk1 |. By (a) and (b), there exists n5 ∈ N such that

|sn| is monotonic increasing whenever |n| ≥ n5 and such that, |s−n5
| < |sn5

|. We also have

limn→∞ |sn| = ∞ and limn→−∞ |sn| = 0. We start by proving that, in this case, |su| 6= |sv|,
whenever u 6= v. Write N5 = {−n5, . . . , n5}; then |si| is monotonic increasing on N\N5.

In particular, |su| 6= |sv| whenever u and v are distinct elements of N\N5. Suppose that

u ∈ N5 and v ∈ N are distinct with |su| = |sv|; because u 6= v, then su 6= sv. Because

limn→∞ |sn| = ∞, there exists sw ∈ M such that |susw| = |svsw| > max{|sn5
|, |sj | : j ∈ N5}.

But, susw = sa and svsw = sb are distinct elements of M and so, we must have a 6= b ≥ n5

and then, by what we have seen, |sa| 6= |sb|, a contradiction. Thus, |su| 6= |sv| whenever u 6= v.

Next, we assert that, in this case, M is cyclic. The elements su of M are monotonic

increasing in modulus (to ∞) for u /∈ N5, while N5 is finite. In addition, |su| 6= |sv| if u 6= v.

Thus, there exists a unique w ∈ M of least modulus greater than 1. Suppose M 6=< w >.

Then, there exists a unique w1 ∈ M\< w > of least modulus greater than 1. Let t be the

largest natural number such that 1 < |wt| < |w1|. Certainly
w1

wt
∈ M\< w >, whereas

1 <
∣

∣

∣

w1

wt

∣

∣

∣
< |w1|, contrary to choice. Thus, M =< w > is cyclic with |w| > 1 as above.

We now show that there exists i ∈ {1, . . . , k} such that M =< gi >. The |su| are all distinct
and are monotonic increasing from n5 onwards. If v ≥ n5, then sv+1 ∈ M must have the form

svw
j for some j, but |sv| < |svw| ≤ |svwj | and so j = 1. Recall, from [2], that su,k denotes

the k-vector (su, . . . , su+k−1). Fix x ≥ n5. Then, sx+1,k = wsx,k and

sx,k = (wt, . . . , wt+k−1)

for some t = t(x) ∈ Z. Then from [2], we have

sx,kCf = sx+1,k = wsx,k,

where Cf is the companion matrix of f(t), so that

(wt, . . . , wt+k−1)Cf = w(wt, . . . , wt+k−1).

But, w is a nonzero scalar, while Cf is invertible and so,

w−1(wt, . . . , wt+k−1) = (wt, . . . , wt+k−1)C−1
f .

We are assuming that s0 = 1. Then, s0,k = (1, s1, . . . , sk−1) and, with x and t as above,

s0,kC
x
f = sx,k,
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so that,

(wt−x, . . .) = sx,kC
−x
f = s0,k = (1, . . .).

Thus, t = x and s0,k = (1, w, . . . , wk−1), while s1,k = (w,w2, . . . , wk). But then,

wk = sk = ak−1sk−1 + · · ·+ a0s0 = ak−1w
k−1 + · · · + a01

and so, w is a root of f(t), whence w = gi for some i ∈ {1, . . . , k}. But then, αi = 1 and

αj = 0 for all j 6= i, a contradiction.

Case (5). Finally, suppose |gk2 | < |gk1 | < 1. Then, the monic reciprocal, f∗(t), falls under

Case 4 and we again reach a contradiction.

It follows that M is standard. The final assertion is now clear. �

3. Some Nonstandard Subgroups

In this section, we present some families of nonstandard subgroups in C
∗.

Theorem 3.1. Let p(t) ∈ C0[t], let d ∈ N with d ≥ 2, and let f(t) = p(td). Suppose, for some

m ∈ N, g ∈ C
∗ is a root of f(t) of multiplicative order m. Write M = < g > ≤ C

∗.

(a) Write b = gcd(m,d). Then, < gb > = < gd > is a p-subgroup of order m/b. Let τ be

the number of cyclically distinct p-sequences that represent < gb >. Then, there exist at least

θ = τ b(b− 1)!
(m

b

)b−1

cyclically distinct f -sequences that represent M .

(b) Suppose d | m. Furthermore, suppose that m > 3, if d = 3 and m > 4, if d = 2. Then,

M is a nonstandard f -subgroup of the first type.

Proof. (a) Because g is a root of f(t), gd is a root of p(t) and < gd > = < gb > ≤ C
∗ is

a p-subgroup of order m/b. By hypothesis, there are τ cyclically-distinct p-sequences of the

form

S1 = (. . . , 1, c1, c2, . . . , cm
b
−1, . . .)

that represent < gb >; in a similar way, for any a ∈ M , there are τ p-sequences

Sa = (. . . , a, ac1, ac2, . . . , acm
b
−1, . . .),

that represent (in the obvious way) the coset a < gb >. Interleaving the b p-sequences S1, Sa1 ,

. . ., Sab−1
, where {1, a1, . . . , ab−1} is a complete set of coset representatives of < gb > in M ,

we may now represent M by f -sequences of the form

S = (. . . , 1, a1, . . . , ab−1, c1, a1c1, . . . , ab−1c1, c2, a1c2, . . . , cm
b
−1, a1cm

b
−1, . . . , ab−1cm

b
−1, . . .)

having a minimal periodic segment of length m.

There are τ choices for S1, (m− m
b
)τ choices for a1 , and so (m− m

b
)τ = m

b
(b− 1)τ for Sa1 ,

(m− 2m
b
)τ = m

b
(b− 2)τ for Sa2 , and so on. Thus, the total number of choices is given by

θ = τ
(m

b
(b− 1)τ

)(m

b
(b− 2)τ

)

. . .
(m

b
τ
)

= τ b
(m

b

)b−1
(b− 1)!

It follows that the group M can be represented by at least θ cyclically-distinct sequences

(and so will be nonstandard if θ > km).
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(b) Let km ∈ N denote the number of roots of f(t) of multiplicative order m. By hypothesis,

d | m and so, b = d and m/d ≥ 1. Because f has km roots of order m (including g), p has

hm ≥ km/d roots of order m/d (including gd) in C. Each of these roots of order m/d will

afford a p-sequence that represents < gd > (because C
∗ has a unique subgroup of each finite

order) and so, τ ≥ hm ≥ km/d. Thus, in the notation of (a) and because hm ≥ 1, we have

θ = hmhd−1
m

(m

d

)d−1
(d− 1)! ≥ km

d
hd−1
m

(m

d

)d−1
(d− 1)! ≥ km

(d− 1)!

d
.

If d ≥ 4, then θ > km and so M is nonstandard as an f -subgroup.

Next, suppose d = 3. Then,

θ ≥ km
3

(m

3

)2
2! = km

2m2

27
.

By hypothesis, m > 3 in this case, so θ > km and M is nonstandard.

Finally, suppose d = 2. Then, θ ≥ km
m
4 and, because m > 4 in this case again, M is

nonstandard.

In all cases, M has a cyclic representation and is nonstandard of the first type. �

Example 3.2. Let p(t) = t− i ∈ C0[t] and f(t) = p(t3). The roots of f(t) are g1 = e
π
6
i and

g2 = e
5π
6
i, both of order 12, and g3 = e

3π
2
i of order 4; thus, k12 = 2. Let M = < g1 > ≤ C

∗. By

Theorem 3.1(b), M is nonstandard and, by Theorem 3.1(a), there are at least θ = 32 distinct

f -sequences that represent M .

Theorem 3.3. Let p(t) ∈ C0[t], let d ∈ N with d ≥ 2, and let f(t) = p(td). Suppose h ∈ C
∗

is a root of p. Let g be a fixed dth root of h and suppose g is not a root of unity.

(a) There exist infinitely many cyclically-distinct f -sequences that represent M =< g >

and M is a nonstandard f -subgroup of the first type.

(b) Let ζ ∈ C
∗ be a primitive dth root of unity and write N =< ζ > × < h >. Then, N is

a nonstandard f -subgroup of the second type, represented by infinitely many f -sequences.

Proof. (a) Write S0 = (gi)i∈Z; then, S0 is a cyclic f -sequence that represents M . Fix m ∈ Z,

m ≥ 1. Let µi = gi if d does not divide i, and µqd = g(q+m)d for q ∈ Z. Then, Sm = (µi)∈Z
is an f -sequence that represents M and is noncyclic, because d ≥ 2, and g is not a root of

unity. Thus, M is nonstandard of the first type. Distinct m1,m2 ∈ Z give cyclically distinct

sequences Sm1
and Sm2

, so M is represented by an infinite number of f -sequences.

(b) The f -sequence

(si)i∈Z = (. . . , 1, ζ1, . . . , ζd−1, h, hζ1, . . . , hζd−1, h2, h2ζ1, . . .)

represents the group N = < ζ > × < h > ≤ C
∗, which is an f -subgroup; it is clearly noncyclic

and is nonstandard of the second type. The above sequence may be viewed as d sequences

interleaved; we may “slide” one of these interleaved sequences past the others and so, N may

be represented by infinitely many f -sequences. �

Example 3.4. Let p(t) = t2 − t− 1 and f(t) = p(t2) and write ϕ for the golden ratio. Then,

M = <
√
ϕ > = (. . . , 1,

√
ϕ,ϕ, ϕ

√
ϕ,ϕ2 . . .)
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and

N =< −1 > × < ϕ > = (. . . ,−1, 1,−ϕ,ϕ,−ϕ2, ϕ2, . . .)

are infinite f -subgroups, nonstandard of the first and second type, respectively.

We end with a result concerning a special class of polynomials.

Theorem 3.5. Let f(t) = tk + tk−1 + tk−2 + · · · + t + 1 ∈ C0[t], k ∈ N. Let ζ be a (chosen,

fixed) primitive (k + 1)th root of unity in C. Then, M =< ζ > is a nonstandard f -subgroup

of the first type, if k > 2 and is standard, if k = 2.

Proof. The roots of f(t) are the elements of the set {ζ, ζ2, . . . , ζk}. Any sequence S = (si)i∈Z
in C such that

sn+k + sn+k−1 + sn+k−2 + · · ·+ sn = 0

for all n ∈ Z is an f -sequence. Thus, whenever

{ζ1, ζ2, . . . , ζk} = {ζ, ζ2, . . . , ζk},
the sequence

(. . . , 1, ζ1, ζ2, . . . , ζk−1, ζk, 1, . . .)

is an f -sequence that represents M , and there are k! ways in which this may occur. Therefore,

if k > 2, M is nonstandard because k! > k, and is of the first type because, at least one of

these representations is cyclic. If k = 2, then k! = k, and in that case, M is standard. �
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