A RECURRENCE FOR GIBONACCI CUBES WITH GRAPH-THEORETIC
CONFIRMATIONS

THOMAS KOSHY

ABSTRACT. We develop a fourth-order recurrence for gibonacci cubes, extend it to Pell and
Jacobsthal families, and then confirm the recurrences using graph-theoretic tools.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,2(z) = a(z)zp41(z)+
b(x)z,(x), where x is an arbitrary complex variable; a(z), b(x), zo(z), and 21 (z) are arbitrary
complex polynomials; and n > 0.

Suppose a(z) = z and b(z) = 1. When zp(x) = 0 and z1(x) = 1, z,(z) = fu(z), the
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x) = l,,(x), the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,(1) = L, the nth Lucas
number [1, 5, 7]. Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by
pn(x) = fr(22) and g,(x) = 1,(2x), respectively. In particular, the Pell numbers P, and Pell-
Lucas numbers @, are given by P, = p,(1) = f,(2) and 2Q,, = ¢,(1) = [,,(2), respectively
[5].

Suppose a(xz) = 1 and b(x) = . When zy(x) = 0 and z1(z) = 1, z,(x) = Ju(x), the nth
Jacobsthal polynomial; and when zo(z) = 2 and 21 (z) = 1, z,(z) = jn(z), the nth Jacobsthal-
Lucas polynomial [2, 7, 9]. Correspondingly, J, = J,(2) and j,, = j,(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, J,,(1) = F,, and j,(1) = L.

Let a(z) = = and b(z) = —1. When go(z) = 0 and gi(z) = 1, gn(x) = Vy(x), the nth
Vieta polynomial; and when go(z) = 2 and ¢1(z) = z, gn(x) = v,(z), the nth Vieta-Lucas
polynomial [3, 7, 9].

Finally, let a(z) = 2z and b(z) = —1. When go(x) = 1 and g1(z) = z, gn(x) = Ty(x), the
nth Chebyshev polynomial of the first kind; and when go(z) = 1 and g1 (x) = 2z, gp(z) = Uy (),
the nth Chebyshev polynomial of the second kind [3, 7, 9].

1.1. Gibonacci Links. The Jacobsthal, Vieta, and Chebyshev subfamilies are closely linked
by the relationships in Table 1, where i = v/—1 [3, 7, 9].

In the interest of clarity, concision, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). We let g, = f, or I, b, = pp
or gp, and ¢, = J,(z) or j,(z). Correspondingly, let G,, = F,, or L,, B, = P, or @, and
C, = Jn or j,. We also omit a lot of basic algebra.

Next, we develop a fourth-order recurrence for gibonacci cubes g3 .

TABLE 1. Links Among the Subfamilies

In(z) = 2 VPRANE) || () = 2"Pl(1/ V)
Vo(z) = "L, (—iz) vp(x) = il (—ix)
Vo(2z) = Up-_1(x) vp(2z) = 2T,(z).
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2. A RECURRENCE FOR GIBONACCI CUBES
Using the gibonacci recurrence gn4+2 = £gn+1 + gn, we have
92+4 = (%gnt3 + gnt2)”
2293 o+ 32297 L 3Gnt2 + 3TGni3gn o + Goio
g is + 220G 1 3(9n13 — gnt1) + 27001 30nv2 + 30 (XGnsa + Gni1)Gnro + Goo
= (2° +20)gp 5+ Gnta — 2(TGnt2 + Gni1)* (nt2 — gn)
+ 22 gni2(Tgns2 + gni1)” + 32(Tgni2 + gni1)gno
= 2(2® +2)gps + (2" + 327 + 1)gpr 15 + 3207 9011 — 387 gnsagni1 — 220541
= 2(a® +2)gnis + (#' + 327 + 1)gp 10 + Gni2(Gnt2 — Gn) + 2205 20n 11
— 327 gnyagni1 — 2095 41
= x(2* +2)gos + (2t + 322 +2)g2 » + E,
where
E = —gnioGn+ 2205 ogni1 — 387 gniagn 1 — 2805 4,
—(@gn11 + 9n) Gn + 220n 11 (Tgni1 + gn)” — 387051 (TGni1 + gn) — 22g5 41
= —a(@® +2)gn 1 — n-
Thus, we have the fourth-order recurrence
nra = 2(@* + 2)gn s+ (2° + 1)@ + 2)gp 1o — 2(2” + 2)gp 1 — n- (2.1)
In particular, we have
Goya = 3Ghi3+6G, 5 — 3G, — Gy (2.2)
b, = 4dx(20® + )03 5 + 2227 + 1)(da? + )b, — 4w (22 + )62, — 25 (2.3)
Byi4 = 12Bp.3+30Bp,, — 1283, — B,

Zeitlin and Parker discovered identity (2.2) with G,, = F,, [6].

3. GRAPH-THEORETIC MODELS

Next, we confirm the gibonacci identity (2.1) with graph-theoretic tools. To this end, we
introduce a digraph D1 with two vertices v; and vy, where a weight is assigned to each edge;

see Figure 1 [8].

1
FIGURE 1. Weighted Digraph D,
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z 1
where Q = Q(z) = (¢ij)2x2 [8]. It then follows by induction that

n __ fn+1 fn
Q N |: fn fn—1:| ’

Its weighted adjacency matriz is

where n > 1.

A walk from vertex v; to vertex v; is a sequence v;-€;-v;41--- - -vj_1-€;_1-v; of vertices vy,
and edges ey, where edge ey, is incident with vertices vi, and vg41. The walk is closed if v; = v;;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

We can employ the matrix @™ to compute the weight of a walk of length n from any vertex
v; to any vertex vj;, as the following theorem shows [4, §].

Theorem 3.1. Let M be the weighted adjacency matriz of a weighted, connected digraph with
vertices vy, Vs, ..., Vp. Then, the ijth entry of the matriz M™ gives the sum of the weights of
all walks of length n from v; to vj, where n > 1.

The next result follows from this theorem.

Corollary 3.2. The ijth entry of Q™ gives the sum of the weights of all walks of length n
from v; to v; in the weighted digraph Dy, where 1 <i,j <n.

It follows by this corollary that the sum of the weights of all closed walks of length n
originating at v; in the digraph is f,11, and that of walks of length n originating at vs is f,_1.
So, the sum of the weights of all closed walks of length n is f,11 + fn—1 = l,. These results
play a central role in the confirmation proofs.

Part I. First, we will establish the equivalent identity with g, = fy:

nea T @+ 2)f 0+ = a(@® 2 f s+ (@0 + 1)@+ 2)f .
Let A, B, and C denote the sets of closed walks of lengths n + 3, n, and n — 1, all originating
at vy, respectively. The sum of the weights of all walks in A is f,+4. We define the sum S; of
the weights of the elements in the product set A x A x A as the product of the sums of weights
from each component; so S = f> +4- Correspondingly, the sum of the weights in B x B x B

n

equals Sy = f,?{H, and that in C x C x C equals S3 = f3. Then,
Si+a(@?+2)Sy+ S5 = fi, +a(a®+2)fo + f2.

We will now compute the sum S = S + (22 + 2)S2 + S3 in a different way. Let (u,v,w)
be an arbitrary element of the product set A x A x A. Table 2 shows the possible cases for
such triples and the corresponding sums of weights.
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Table 2: Sum of the Weights of the Triples

u begins v begins w begins sum of the weights
with a loop? | with a loop? | with a loop? || of triples (u,v,w)
yes yes yes 3 f3 43
yes yes no x? n2+3fn+2
yes 1o yes s
yes no no 2 fr+3fito
no yes yes x? n2+3fn+2
no yes no & fr+3fito
1o 1o yes thsli

no no no 3 i

It follows from the table that

Sy =2 f3 5+ 322 f2 s e + 3T farafiie + fols.

This implies
Sy = x?’f,?{ + 3$2f721fn—1 + 3l‘fn n2—1 + fr%—l;
Sy = @ f3 4302 fao 3T a1 fio+ [y

Clearly, Sy = f3+1 and S3 = f2; so

n
w(x? +2)Sy + S3 = (2 +22) f34 + 3.
Now to simplify S;. First, notice that

3332f7%+3fn+2 = 295f7%+3(fn+3 = fat1) + 332fn+2(33fn+2 + fn+1)2

= 2xf¢31+3 + x4fT3L+2 + x2f13+2(fn+2 - fn) + $3f72L+2fn+1
+ & fayafiis — 22 fr s fon

= 2fp s+ @+ 2P — 2P ot + 2 fiafan
+ @ fayafiis — 22 fry g fota;

3cfuisfore = 20fnio(Tfura + far1) + T fuisfiio

2% f o + 2f 50 (fat2 — fu) + Tfnssfiaye

= (20®+2)f 0 — 2fniafn+ Tfarsfrio:

Consequently,
S1=a(@® +2)fos + (@ + 1)@ +2)fy0 + F,
where
F=fio—2af2 sfnr +2°friofnsr + 2 furafror — 22 foofn — 2f 0 vafn + Tfntsfiis.

Since

—295f3+3fn+1 = —2$fn+1(33fn+2+fn+1)2

3 r2 2 2 3
= —2u fn+2fn+1 — 4z fn+2fn+1 - 2$fn+17
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we have
F o= foo—2®frofurn — 32 furafrin + 3% friofner — 35 fryafriy
- 233f7?{+1 — 2 721+2f7l - 2fn2+2fn + xfn+3f721+2§
F4z(@®+2)S2 4583 = frio— foiofnr — 35 fayafi +2° fo — 2 friafn

— 2f7 o fut afnssfuga + f-
Using the identities

= z° 3+2(fn+2 - fn)

2 r3 2 r2 .
L Jp42 — & n+2fm

x2fn+2fr2L+1 = fn+2(fn+2 - fn)2
fn+2 2fn+2fn + fn+2fn7

2 2 3 r3
xfn-l-?fn—i-l = T n+1+x +1fn7

3 r2
x n+2fn+1

we have

F+ 33(5172 +2)S + 53 = —a? f3 n+2 — fn+2f - fr%+1fn - fn+2fn+1 + xfn+3fn+2 + f
=z n+2(fn+3 — Tfpy2) = fogofi — f3+1fn - fn+2fn+1 + 13
= Tfni2foit(for2 — Tfat1) = Farofe — 22 f2 0 fo + f2
= &for1folfore — 2fni1) = fusafn + £

Tfni1fr = fovofr+ fn

_frzz(fn+2 - xfn+1) + frgz

~fn+ 1

= 0.

Consequently,
S =a(@® +2)f5 + (@ +1)(=° +2)f 1,
as expected. O

Part II. To establish the identity with g, = [,, we will confirm its equivalent form:
Boyta@®+2)B, +18 =2@®+ 2B+ @2+ 1)(2? +2)13 .

Let A, B, and C denote the sets of closed walks of lengths n+4, n+1, and n in Dy, respectively.
The sum of the weights of all walks in A is I, +4. We define the sum S; of the weights of the
elements in the product set A x A x A as the product of the sums of weights from each
component; so, the sum S; of the weights of the elements in A x A x A equals S; = I3 4
Correspondingly, the sum of the weights Sy of the elements in B x B x B equals Sy = [3 41
and the sum of the weights S5 of the elements in C' x C x C equals S3 = [3. Then,

Si+a(@?+2)Sy+ S5 =13 +x(?+2)13,, +12.
It now remains to show that
Si 4+ x(2® +2)S2 + S5 = x(2? + 2)I2 5 + (2% + 1) (2* + 2)15 4.
Since the sum of the weights of all closed walks in A equals f,+5 4+ fni3 = lhra, we have
S1 = (Tlyys + lns2)?

= 2% 53+ 30%1 lnye + 3xluyali o + 1o,
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Replacing f,, with [,, in the second half of the proof in Part 1, it follows that
Sy =x(@® +2)13 5+ (@2 + 1)(2* +2)I3 5, + G,
where

G

by = 220 slns + 20 olngr + 2P lagali g — 2210 ol — 200 ol + @lysl o
= ln+2 €z li+2ln+1 - 3$21n+213+1 + $3172L+2ln+1 - 3$21n+2l%+1

—23l3 2?12 ol — 202 ol + Tlnisl2 .
Since Sy = (fuy2 + fn)? = l3+1 and hence S3 = I3, it also follows that

G+a(a®+2)S+S3 = By— a2 olnt1 — 3%l p2l2y + 2% — 2212 1,
— 22 ol by slP i,
= B4
= 0.
Thus,

S =a(x® +2)13 5+ (2® + 1) (2 + 2)12 .,
as desired. 0

4. JACOBSTHAL IMPLICATIONS

Using the gibonacci-Jacobsthal relationships in Section 1, we now find the Jacobsthal coun-
terpart of identity (2.1). Suppose g, = f,. Replacing x with v = 1/y/x, equation (2.1)
yields

e Vafapa =220+ Dfis+ @+ 1)@+ DVaf, - o(2e+ D - 2*Vafy,
where f, = f,,(u). Multiplying both sides with z3("+3)/2 we get
T3 a(@) = (20 + 1)J3 5(0) + ala +1)(2e + 12 () — (20 + VT2 (@) — 2073 0).
When g, = [,,, likewise we get
Jnpa(®) = (22 + 1) 5(2) + 2(z +1)(2z + 1)jpo(2) — (22 + 1)2’j) 4 () — 24 ().
Combining the two cases, we get
iy= e+ 1) s+ 2@+ 12z + )b s — (20 + )il — 25, (4.1)
In particular, we have
C3., =502 5+ 3003, , — 4002, — 64C3.
4.1. Graph-theoretic Model. Next, we construct a graph-theoretic model for the Jacob-

sthal identity (4.1). We accomplish this using the weighted digraph Dj in Figure 2 [9]. Using
its weighted adjacency matrix
1 =z
-]

s

it follows by induction that

where n > 1.
Consequently, the sum of the weights of closed walks of length n originating at vy is Jy,41(x),
and that of those originating at vy is x.J,—1(x). So, the sum of the weights of all closed walks

144 VOLUME 57, NUMBER 2



A RECURRENCE FOR GIBONACCI CUBES

X

2,

2
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Vi ——
1

F1GUurE 2. Weighted Digraph Dy

of length n in the digraph is J,41(z) + zJ,—1(2) = jn(z). These facts play a pivotal role in
the pursuit of the graph-theoretic model.

Part I. Let ¢, = J,,(z). We will then confirm the following equivalent form:
T3 a(@) + v+ )23 T2, (2) + 2872 (2) = 22 + 1) T2 5(2) + o2 + 1) (22 + 1)J2 5 (2).

Let A, B, and C denote the sets of closed walks of lengths n + 3, n, and n — 1 originating
at vp, respectively. The sums of the weights of such walks are J,14(z), Jpt1(z), and J,(z),
respectively. We define the sum S; of the weights of the elements in the product set A x A x A
as the product of the sums of weights from each component; so S = J3 44(x). Correspondingly,

the sum of the weights S5 of the elements in B x B x B equals Sy = J2_(z), and the sum of

n

the weights S3 of the elements in C' x C' x C equals S3 = J3(x). Then, the desired sum S is
given by

S = Si+4 2z +1)238y + 2°5;
= Jf{+4(x) + (2z + 1)w3J3+1(x) + xGJf;(ac).

To compute the sum S in a different way, consider an arbitrary element (u,v,w) of the
product A x A x A. Table 3 shows the various cases for the triples and their corresponding
weights. It follows from the table that the total contribution S; from such triples is given by

S1 = Jps(@) + 32 g(2) Jnga(x) + 32° Jnys(2) 2 o () + 22 T35 (2).

Table 3: Sum of the Weights of the Triples

u begins v begins w begins sum of the weights
with a loop? | with a loop? | with a loop? || of triples (u,v,w)
yes yes yes I3 g (x)
yes yes no xJ2, 4(2) Jni2(z)
yes no yes 2 J2 () Jnyo(2)
yes no no 2% Jpi3(2)J2, o ()
no yes yes 2 J2 () Jnyo(2)
no yes no 2% Jpi3(2)J2, o ()
no no yes 2% Jpi3(2) 2, o()

no no no 233 o (2)
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It then follows that

Sy = J3x) + 3xJ2(2) T 1(x) + 322 T () T2y (z) + 23 T34 (x)
J3+1(33)§
Sz = J3_y(x) +3xJ2 1 (x)Jn_a(x) + 322 T 1(x) 2o () + 23 T3 _5(x)
= J3(x).

In the rest of the section, we omit the argument in the functional notation for the sake of
brevity and clarity. We will now show that

Si+ 2z + )23y + 2%83 = 22 + 1) T2, 5 + 2(z + 1) (22 + 1) J2 4.

To rewrite Sy in a different form, first notice that

3$J +3Jn+2 = 233J +3Jn+2 + iUJ +3Jn+2
202 5(Jnss — aJpt1) + oo (Jnta + 2 Tpi1)?
= 2IIJ‘J3+3 + flfJ — 2$ J +3Jn+1 + 2:17 J +2Jn+1 +x Jn+2J 415
3% g3ty = 32’ Jn+2(Jn+2 + xJn+1)

= 32202 o + 2P T2 o (Jpga — wdn) + 228 T2 5 Tng1
= (23 +32%) I3 5 — 2t T2 Ty + 223 T2 o T
We then have
Si=Q@r+ 1) s +alz+ )2+ 1)Jo o+ H+1+J+K,

where
H = 22272 3Jn41 +22%J2 5 dnia
—272 In+1 (o +:17Jn+1) + 22202 ot
=224 3 = 20 0 Ry — 220 e R
=224 T3 = 203 T2 (g + ady) — 22 Tnga JR
= —22Y 03 —22° T2 — 20 T2 Ty — 22 e R
I = 23 J0J2
= I+ 2T T
J = —atJ2 T,
—a T2 T — 28T — 220 T, 0 T2
K = 22373 naodntl
= 22° T3+ At T2 T+ 220 T I
Then,

H4+T+J+K=—22" +2°) I3 +22° T + 224 T2 T — 2802 — 22 0, 0024

Consequently,
H+IT+J+K+2z+1)a38y 4+ 2%5; = 2$3J3+1 + 2:1:4J3+1Jn — 2x3Jn+2J3+1
= 20302 (Jpg1 + adn) — 203 T g0 J2
= 0.
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Thus,
S = Si+4 2z +1)z38y + %53
= e+ 1)J0 s +a(@+ )2z +1)J2.,,
as desired. O

Part II. Suppose ¢, = j,. We will then confirm that
Jnya+ Qo+ D)at g + 2% = 2o+ 1jays + 2z + 1) + 1o

This time, we focus on all closed walks of lengths n +4, n+ 1, and n. Let A, B, and C
denote the sets of closed walks of lengths n + 4, n + 1, and n, all originating at v;; and R,
S, and T the sets of those originating at vo. The sum of the weights of all closed walks of
length n 44 is j,44; so we define the sum Sp of the weights of the elements in the product set
Ex E x Eis j3,,, where E = AU R. Likewise, the sum S, of the weights of the elements
in ' x F x Fis j?z—i—l’ where F' = B U S; and the sum S5 of those in G x G x G is j3, where
G=CUT.

Thus, the desired sum S on the left side of the identity is given by

S = S+ 2z +1)x3Sy + 253
= Jna+ Qe+ D25 + 2%
It now suffices to show that
S1+ 2z + )23y + 2%83 = 22 + 1)ji 5 + x(x + 1) (22 + 1)52 .
This can be achieved by employing a technique similar to the one used in the graph-theoretic
proof of identity (2.1) with g, = l,,. In the interest of brevity, we omit the details.

Finally, we add that using the relationships in Table 1, identity (2.1) can be extended to
Vieta and Chebyshev polynomials.
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