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Abstract. We develop a fourth-order recurrence for gibonacci cubes, extend it to Pell and
Jacobsthal families, and then confirm the recurrences using graph-theoretic tools.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas

polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 5, 7]. Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by
pn(x) = fn(2x) and qn(x) = ln(2x), respectively. In particular, the Pell numbers Pn and Pell-

Lucas numbers Qn are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively
[5].

Suppose a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-

Lucas polynomial [2, 7, 9]. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn and jn(1) = Ln.

Let a(x) = x and b(x) = −1. When g0(x) = 0 and g1(x) = 1, gn(x) = Vn(x), the nth
Vieta polynomial ; and when g0(x) = 2 and g1(x) = x, gn(x) = vn(x), the nth Vieta-Lucas

polynomial [3, 7, 9].
Finally, let a(x) = 2x and b(x) = −1. When g0(x) = 1 and g1(x) = x, gn(x) = Tn(x), the

nth Chebyshev polynomial of the first kind ; and when g0(x) = 1 and g1(x) = 2x, gn(x) = Un(x),
the nth Chebyshev polynomial of the second kind [3, 7, 9].

1.1. Gibonacci Links. The Jacobsthal, Vieta, and Chebyshev subfamilies are closely linked
by the relationships in Table 1, where i =

√
−1 [3, 7, 9].

In the interest of clarity, concision, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). We let gn = fn or ln, bn = pn
or qn, and cn = Jn(x) or jn(x). Correspondingly, let Gn = Fn or Ln, Bn = Pn or Qn, and
Cn = Jn or jn. We also omit a lot of basic algebra.

Next, we develop a fourth-order recurrence for gibonacci cubes g3n.

Table 1. Links Among the Subfamilies

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)
Vn(2x) = Un−1(x) vn(2x) = 2Tn(x).
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2. A Recurrence for Gibonacci Cubes

Using the gibonacci recurrence gn+2 = xgn+1 + gn, we have

g3n+4 = (xgn+3 + gn+2)
3

= x3g3n+3 + 3x2g2n+3gn+2 + 3xgn+3g
2
n+2 + g3n+2

= x3g3n+3 + 2xg2n+3(gn+3 − gn+1) + x2g2n+3gn+2 + 3x(xgn+2 + gn+1)g
2
n+2 + g3n+2

= (x3 + 2x)g3n+3 + g3n+2 − 2(xgn+2 + gn+1)
2(gn+2 − gn)

+ x2gn+2(xgn+2 + gn+1)
2 + 3x(xgn+2 + gn+1)g

2
n+2

= x(x2 + 2)g3n+3 + (x4 + 3x2 + 1)g3n+2 + 3xg2n+2gn+1 − 3x2gn+2g
2
n+1 − 2xg3n+1

= x(x2 + 2)g3n+3 + (x4 + 3x2 + 1)g3n+2 + g2n+2(gn+2 − gn) + 2xg2n+2gn+1

− 3x2gn+2g
2
n+1 − 2xg3n+1

= x(x2 + 2)g3n+3 + (x4 + 3x2 + 2)g3n+2 + E,

where

E = −g2n+2gn + 2xg2n+2gn+1 − 3x2gn+2g
2
n+1 − 2xg3n+1

= −(xgn+1 + gn)
2gn + 2xgn+1(xgn+1 + gn)

2 − 3x2g2n+1(xgn+1 + gn)− 2xg3n+1

= −x(x2 + 2)g3n+1 − g3n.

Thus, we have the fourth-order recurrence

g3n+4 = x(x2 + 2)g3n+3 + (x2 + 1)(x2 + 2)g3n+2 − x(x2 + 2)g3n+1 − g3n. (2.1)

In particular, we have

G3
n+4 = 3G3

n+3 + 6G3
n+2 − 3G3

n+1 −G3
n; (2.2)

b3n+4 = 4x(2x2 + 1)b3n+3 + 2(2x2 + 1)(4x2 + 1)b3n+2 − 4x(2x2 + 1)b3n+1 − b3n; (2.3)

B3
n+4 = 12B3

n+3 + 30B3
n+2 − 12B3

n+1 −B3
n.

Zeitlin and Parker discovered identity (2.2) with Gn = Fn [6].

3. Graph-theoretic Models

Next, we confirm the gibonacci identity (2.1) with graph-theoretic tools. To this end, we
introduce a digraph D1 with two vertices v1 and v2, where a weight is assigned to each edge;
see Figure 1 [8].

Figure 1. Weighted Digraph D1
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Its weighted adjacency matrix is

Q =

[

x 1
1 0

]

,

where Q = Q(x) = (qij)2×2 [8]. It then follows by induction that

Qn =

[

fn+1 fn
fn fn−1

]

,

where n ≥ 1.
A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk

and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if vi = vj;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

We can employ the matrix Qn to compute the weight of a walk of length n from any vertex
vi to any vertex vj , as the following theorem shows [4, 8].

Theorem 3.1. Let M be the weighted adjacency matrix of a weighted, connected digraph with

vertices v1, v2, . . ., vk. Then, the ijth entry of the matrix Mn gives the sum of the weights of

all walks of length n from vi to vj , where n ≥ 1.

The next result follows from this theorem.

Corollary 3.2. The ijth entry of Qn gives the sum of the weights of all walks of length n
from vi to vj in the weighted digraph D1, where 1 ≤ i, j ≤ n.

It follows by this corollary that the sum of the weights of all closed walks of length n
originating at v1 in the digraph is fn+1, and that of walks of length n originating at v2 is fn−1.
So, the sum of the weights of all closed walks of length n is fn+1 + fn−1 = ln. These results
play a central role in the confirmation proofs.

Part I. First, we will establish the equivalent identity with gn = fn:

f3
n+4 + x(x2 + 2)f3

n+1 + f3
n = x(x2 + 2)f3

n+3 + (x2 + 1)(x2 + 2)f3
n+2.

Let A, B, and C denote the sets of closed walks of lengths n+ 3, n, and n− 1, all originating
at v1, respectively. The sum of the weights of all walks in A is fn+4. We define the sum S1 of
the weights of the elements in the product set A×A×A as the product of the sums of weights
from each component; so S1 = f3

n+4. Correspondingly, the sum of the weights in B × B × B

equals S2 = f3
n+1, and that in C × C × C equals S3 = f3

n. Then,

S1 + x(x2 + 2)S2 + S3 = f3
n+4 + x(x2 + 2)f3

n+1 + f3
n.

We will now compute the sum S = S1 + x(x2 + 2)S2 + S3 in a different way. Let (u, v, w)
be an arbitrary element of the product set A × A × A. Table 2 shows the possible cases for
such triples and the corresponding sums of weights.
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Table 2: Sum of the Weights of the Triples

u begins v begins w begins sum of the weights
with a loop? with a loop? with a loop? of triples (u, v, w)

yes yes yes x3f3
n+3

yes yes no x2f2
n+3fn+2

yes no yes x2f2
n+3fn+2

yes no no xfn+3f
2
n+2

no yes yes x2f2
n+3fn+2

no yes no xfn+3f
2
n+2

no no yes xfn+3f
2
n+2

no no no f3
n+2

It follows from the table that

S1 = x3f3
n+3 + 3x2f2

n+3fn+2 + 3xfn+3f
2
n+2 + f3

n+2.

This implies

S2 = x3f3
n + 3x2f2

nfn−1 + 3xfnf
2
n−1 + f3

n−1;

S3 = x3f3
n−1 + 3x2f2

n−1fn−2 + 3xfn−1f
2
n−2 + f3

n−2.

Clearly, S2 = f3
n+1 and S3 = f3

n; so

x(x2 + 2)S2 + S3 = (x3 + 2x)f3
n+1 + f3

n.

Now to simplify S1. First, notice that

3x2f2
n+3fn+2 = 2xf2

n+3(fn+3 − fn+1) + x2fn+2(xfn+2 + fn+1)
2

= 2xf3
n+3 + x4f3

n+2 + x2f2
n+2(fn+2 − fn) + x3f2

n+2fn+1

+ x2fn+2f
2
n+1 − 2xf2

n+3fn+1

= 2xf3
n+3 + (x4 + x2)f3

n+2 − x2f2
n+2fn + x3f2

n+2fn+1

+ x2fn+2f
2
n+1 − 2xf2

n+3fn+1;

3xfn+3f
2
n+2 = 2xf2

n+2(xfn+2 + fn+1) + xfn+3f
2
n+2

= 2x2f3
n+2 + 2f2

n+2(fn+2 − fn) + xfn+3f
2
n+2

= (2x2 + 2)f3
n+2 − 2f2

n+2fn + xfn+3f
2
n+2.

Consequently,

S1 = x(x2 + 2)f3
n+3 + (x2 + 1)(x2 + 2)f3

n+2 + F,

where

F = f3
n+2 − 2xf2

n+3fn+1 + x3f2
n+2fn+1 + x2fn+2f

2
n+1 − x2f2

n+2fn − 2f2
n+2fn + xfn+3f

2
n+2.

Since

−2xf2
n+3fn+1 = −2xfn+1(xfn+2 + fn+1)

2

= −2x3f2
n+2fn+1 − 4x2fn+2f

2
n+1 − 2xf3

n+1,
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we have

F = f3
n+2 − x3f2

n+2fn+1 − 3x2fn+2f
2
n+1 + x3f2

n+2fn+1 − 3x2fn+2f
2
n+1

− 2xf3
n+1 − x2f2

n+2fn − 2f2
n+2fn + xfn+3f

2
n+2;

F + x(x2 + 2)S2 + S3 = f3
n+2 − x3f2

n+2fn+1 − 3x2fn+2f
2
n+1 + x3f3

n+1 − x2f2
n+2fn

− 2f2
n+2fn + xfn+3f

2
n+2 + f3

n.

Using the identities

x3f2
n+2fn+1 = x2f2

n+2(fn+2 − fn)

= x2f3
n+2 − x2f2

n+2fn;

x2fn+2f
2
n+1 = fn+2(fn+2 − fn)

2

= f3
n+2 − 2f2

n+2fn + fn+2f
2
n;

x2fn+2f
2
n+1 = x3f3

n+1 + x2f2
n+1fn,

we have

F + x(x2 + 2)S2 + S3 = −x2f3
n+2 − fn+2f

2
n − x2f2

n+1fn − x2fn+2f
2
n+1 + xfn+3f

2
n+2 + f3

n

= xf2
n+2(fn+3 − xfn+2)− fn+2f

2
n − x2f2

n+1fn − x2fn+2f
2
n+1 + f3

n

= xfn+2fn+1(fn+2 − xfn+1)− fn+2f
2
n − x2f2

n+1fn + f3
n

= xfn+1fn(fn+2 − xfn+1)− fn+2f
2
n + f3

n

= xfn+1f
2
n − fn+2f

2
n + f3

n

= −f2
n(fn+2 − xfn+1) + f3

n

= −f3
n + f3

n

= 0.

Consequently,

S = x(x2 + 2)f3
n+3 + (x2 + 1)(x2 + 2)f3

n+2,

as expected. �

Part II. To establish the identity with gn = ln, we will confirm its equivalent form:

l3n+4 + x(x2 + 2)l3n+1 + l3n = x(x2 + 2)l3n+3 + (x2 + 1)(x2 + 2)l3n+2.

Let A, B, and C denote the sets of closed walks of lengths n+4, n+1, and n in D1, respectively.
The sum of the weights of all walks in A is ln+4. We define the sum S1 of the weights of the
elements in the product set A × A × A as the product of the sums of weights from each
component; so, the sum S1 of the weights of the elements in A × A × A equals S1 = l3n+4.

Correspondingly, the sum of the weights S2 of the elements in B × B × B equals S2 = l3n+1,

and the sum of the weights S3 of the elements in C × C × C equals S3 = l3n. Then,

S1 + x(x2 + 2)S2 + S3 = l3n+4 + x(x2 + 2)l3n+1 + l3n.

It now remains to show that

S1 + x(x2 + 2)S2 + S3 = x(x2 + 2)l3n+3 + (x2 + 1)(x2 + 2)l3n+2.

Since the sum of the weights of all closed walks in A equals fn+5 + fn+3 = ln+4, we have

S1 = (xln+3 + ln+2)
3

= x3l3n+3 + 3x2l2n+3ln+2 + 3xln+3l
2
n+2 + l3n+2.
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Replacing fn with ln in the second half of the proof in Part 1, it follows that

S1 = x(x2 + 2)l3n+3 + (x2 + 1)(x2 + 2)l3n+2 +G,

where

G = l3n+2 − 2xl2n+3ln+1 + x3l2n+2ln+1 + x2ln+2l
2
n+1 − x2l2n+2ln − 2l2n+2ln + xln+3l

2
n+2

= l3n+2 − x3l2n+2ln+1 − 3x2ln+2l
2
n+1 + x3l2n+2ln+1 − 3x2ln+2l

2
n+1

− 2xl3n+1 − x2l2n+2ln − 2l2n+2ln + xln+3l
2
n+2.

Since S2 = (fn+2 + fn)
3 = l3n+1 and hence S3 = l3n, it also follows that

G+ x(x2 + 2)S2 + S3 = l3n+2 − x3l2n+2ln+1 − 3x2ln+2l
2
n+1 + x3l3n+1 − x2l2n+2ln

− 2l2n+2ln + xln+3l
2
n+2 + l3n

= −l3n + l3n
= 0.

Thus,
S = x(x2 + 2)l3n+3 + (x2 + 1)(x2 + 2)l3n+2,

as desired. �

4. Jacobsthal Implications

Using the gibonacci-Jacobsthal relationships in Section 1, we now find the Jacobsthal coun-
terpart of identity (2.1). Suppose gn = fn. Replacing x with u = 1/

√
x, equation (2.1)

yields

x2
√
xf3

n+4 = x(2x+ 1)f3
n+3 + (x+ 1)(2x + 1)

√
xf3

n+2 − x(2x+ 1)f3
n+1 − x2

√
xf3

n,

where fn = fn(u). Multiplying both sides with x3(n+3)/2, we get

J3
n+4(x) = (2x+ 1)J3

n+3(x) + x(x+ 1)(2x + 1)J3
n+2(x)− (2x+ 1)x3J3

n+1(x)− x6J3
n(x).

When gn = ln, likewise we get

j3n+4(x) = (2x+ 1)j3n+3(x) + x(x+ 1)(2x + 1)j3n+2(x)− (2x+ 1)x3j3n+1(x)− x6j3n(x).

Combining the two cases, we get

c3n+4 = (2x+ 1)c3n+3 + x(x+ 1)(2x + 1)c3n+2 − (2x+ 1)x3c3n+1 − x6c3n. (4.1)

In particular, we have

C3
n+4 = 5C3

n+3 + 30C3
n+2 − 40C3

n+1 − 64C3
n.

4.1. Graph-theoretic Model. Next, we construct a graph-theoretic model for the Jacob-
sthal identity (4.1). We accomplish this using the weighted digraph D2 in Figure 2 [9]. Using
its weighted adjacency matrix

M =

[

1 x
1 0

]

,

it follows by induction that

Mn =

[

Jn+1(x) xJn(x)
Jn(x) xJn−1(x)

]

,

where n ≥ 1.
Consequently, the sum of the weights of closed walks of length n originating at v1 is Jn+1(x),

and that of those originating at v2 is xJn−1(x). So, the sum of the weights of all closed walks
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Figure 2. Weighted Digraph D2

of length n in the digraph is Jn+1(x) + xJn−1(x) = jn(x). These facts play a pivotal role in
the pursuit of the graph-theoretic model.

Part I. Let cn = Jn(x). We will then confirm the following equivalent form:

J3
n+4(x) + (2x+ 1)x3J3

n+1(x) + x6J3
n(x) = (2x+ 1)J3

n+3(x) + x(x+ 1)(2x + 1)J3
n+2(x).

Let A, B, and C denote the sets of closed walks of lengths n + 3, n, and n− 1 originating
at v1, respectively. The sums of the weights of such walks are Jn+4(x), Jn+1(x), and Jn(x),
respectively. We define the sum S1 of the weights of the elements in the product set A×A×A
as the product of the sums of weights from each component; so S1 = J3

n+4(x). Correspondingly,

the sum of the weights S2 of the elements in B ×B ×B equals S2 = J3
n+1(x), and the sum of

the weights S3 of the elements in C × C × C equals S3 = J3
n(x). Then, the desired sum S is

given by

S = S1 + (2x+ 1)x3S2 + x6S3

= J3
n+4(x) + (2x+ 1)x3J3

n+1(x) + x6J3
n(x).

To compute the sum S in a different way, consider an arbitrary element (u, v, w) of the
product A × A × A. Table 3 shows the various cases for the triples and their corresponding
weights. It follows from the table that the total contribution S1 from such triples is given by

S1 = J3
n+3(x) + 3xJ2

n+3(x)Jn+2(x) + 3x2Jn+3(x)J
2
n+2(x) + x3J3

n+2(x).

Table 3: Sum of the Weights of the Triples

u begins v begins w begins sum of the weights
with a loop? with a loop? with a loop? of triples (u, v, w)

yes yes yes x3J3
n+3(x)

yes yes no xJ2
n+3(x)Jn+2(x)

yes no yes xJ2
n+3(x)Jn+2(x)

yes no no x2Jn+3(x)J
2
n+2(x)

no yes yes xJ2
n+3(x)Jn+2(x)

no yes no x2Jn+3(x)J
2
n+2(x)

no no yes x2Jn+3(x)J
2
n+2(x)

no no no x3J3
n+2(x)
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It then follows that

S2 = J3
n(x) + 3xJ2

n(x)Jn−1(x) + 3x2Jn(x)J
2
n−1(x) + x3J3

n−1(x)

= J3
n+1(x);

S3 = J3
n−1(x) + 3xJ2

n−1(x)Jn−2(x) + 3x2Jn−1(x)J
2
n−2(x) + x3J3

n−2(x)

= J3
n(x).

In the rest of the section, we omit the argument in the functional notation for the sake of
brevity and clarity. We will now show that

S1 + (2x+ 1)x3S2 + x6S3 = (2x+ 1)J3
n+3 + x(x+ 1)(2x + 1)J3

n+2.

To rewrite S1 in a different form, first notice that

3xJ2
n+3Jn+2 = 2xJ2

n+3Jn+2 + xJ2
n+3Jn+2

= 2xJ2
n+3(Jn+3 − xJn+1) + xJ2

n+2(Jn+2 + xJn+1)
2

= 2xJ3
n+3 + xJ3

n+2 − 2x2J3
n+3Jn+1 + 2x2J2

n+2Jn+1 + x3Jn+2J
2
n+1;

3x2Jn+3J
2
n+2 = 3x2J2

n+2(Jn+2 + xJn+1)

= 3x2J3
n+2 + x3J2

n+2(Jn+2 − xJn) + 2x3J2
n+2Jn+1

= (x3 + 3x2)J3
n+2 − x4J2

n+2Jn + 2x3J2
n+2Jn+1.

We then have

S1 = (2x+ 1)J3
n+3 + x(x+ 1)(2x + 1)J3

n+2 +H + I + J +K,

where

H = −2x2J2
n+3Jn+1 + 2x2J2

n+2Jn+1

= −2x2Jn+1(Jn+2 + xJn+1)
2 + 2x2J2

n+2Jn+1

= −2x4J3
n+1 − 2x3Jn+2J

2
n+1 − 2x3Jn+2J

2
n+1

= −2x4J3
n+1 − 2x3J2

n+1(Jn+1 + xJn)− 2x3Jn+2J
2
n+1

= −2x4J3
n+1 − 2x3J3

n+1 − 2x4J2
n+1Jn − 2x3Jn+2J

2
n+1;

I = x3Jn+2J
2
n+1

= x3J3
n+1 + x4J2

n+1Jn;

J = −x4J2
n+2Jn

= −x4J2
n+1Jn − x6J3

n − 2x5Jn+1J
2
n;

K = 2x3J3
n+2Jn+1

= 2x3J3
n+1 + 4x4J2

n+1Jn + 2x5Jn+1J
2
n.

Then,

H + I + J +K = −(2x4 + x3)J3
n+1 + 2x3J3

n+1 + 2x4J2
n+1Jn − x6J3

n − 2x3Jn+2J
2
n+1.

Consequently,

H + I + J +K + (2x+ 1)x3S2 + x6S3 = 2x3J3
n+1 + 2x4J2

n+1Jn − 2x3Jn+2J
2
n+1

= 2x3J2
n+1(Jn+1 + xJn)− 2x3Jn+2J

2
n+1

= 0.
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Thus,

S = S1 + (2x+ 1)x3S2 + x6S3

= (2x+ 1)J3
n+3 + x(x+ 1)(2x+ 1)J3

n+2,

as desired. �

Part II. Suppose cn = jn. We will then confirm that

j3n+4 + (2x+ 1)x3j3n+1 + x6j3n = (2x+ 1)j3n+3 + x(x+ 1)(2x + 1)j3n+2.

This time, we focus on all closed walks of lengths n + 4, n + 1, and n. Let A, B, and C
denote the sets of closed walks of lengths n + 4, n + 1, and n, all originating at v1; and R,
S, and T the sets of those originating at v2. The sum of the weights of all closed walks of
length n+4 is jn+4; so we define the sum S1 of the weights of the elements in the product set
E × E × E is j3n+4, where E = A ∪ R. Likewise, the sum S2 of the weights of the elements

in F × F × F is j3n+1, where F = B ∪ S; and the sum S3 of those in G×G ×G is j3n, where
G = C ∪ T .

Thus, the desired sum S on the left side of the identity is given by

S = S1 + (2x+ 1)x3S2 + x6S3

= j3n+4 + (2x+ 1)x3j3n+1 + x6j3n.

It now suffices to show that

S1 + (2x+ 1)x3S2 + x6S3 = (2x+ 1)j3n+3 + x(x+ 1)(2x + 1)j3n+2.

This can be achieved by employing a technique similar to the one used in the graph-theoretic
proof of identity (2.1) with gn = ln. In the interest of brevity, we omit the details.

Finally, we add that using the relationships in Table 1, identity (2.1) can be extended to
Vieta and Chebyshev polynomials.
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