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Abstract. A natural number n is called a repdigit if all its digits are the same. In this
paper, we prove that the Euler totient function of no Pell number is a repdigit with at least
two digits.

1. Introduction

The Pell sequence {Pn}n≥0 and the associated Pell sequence {Qn}n≥0 are defined by the
binary recurrences

Pn+1 = 2Pn + Pn−1, Qn+1 = 2Qn +Qn−1,

with the initial terms P0 = 0, P1 = 1 and Q0 = 1, Q1 = 1, respectively. If α = 1 +
√
2 and

β = 1 −
√
2, then their Binet forms are Pn = αn−βn

α−β
and Qn = αn+βn

2
for all n ≥ 0. The

Euler totient function φ(n) of a positive integer n is the number of positive integers less than
or equal to n and relatively prime to n. If n has the canonical decomposition n = pa1

1
· · · parr ,

then it is well-known that

φ(n) = pa1−1

1
(p1 − 1) · · · par−1

r (pr − 1).

In [17], it was shown that if the Euler function of the nth Pell number Pn or associated Pell
number Qn is a power of 2, then n ≤ 8. In 2014, Damir et al. [6] proved that if {un}n≥0 is
the Lucas sequence defined by u0 = 0, u1 = 1 and un+2 = run+1 + sun for all n ≥ 0 with
s ∈ {1,−1}, then there are finitely many n such that φ(|un|) is a power of 2.

A positive integer is called a repdigit if it has only one distinct digit in its decimal expansion.
Thus, the repdigits are of the form d(10m − 1)/9 for some m ≥ 1 and 1 ≤ d ≤ 9. In [7], it was
shown that there is no repdigit Pell or Pell-Lucas number larger than 10.

The study of repdigits in Euler functions of specified number sequences has attracted several
number theorists. In 2002, Luca ([12], p. 134) proved that under some technical assumptions,
there exist only finitely many positive integer solution (m,n) satisfying the Diophantine equa-
tion φ(Un) = Vm, where {Un}n≥0 and {Vm}m≥0 are two non-degenerate binary recurrence

sequences. Taking Vm = d · 10m−1

9
where d ∈ {1, 2, . . . , 9}, Luca [3, 16] investigated the pres-

ence of repdigits associated with the Euler functions of Fibonacci and Lucas numbers. In this
paper, we follow the method described in [3, 16] to investigate the presence of repdigits with
at least two digits in the Euler functions of Pell numbers.

Throughout this paper, we use p, with or without subscripts, as a prime number and (a, b)
as the greatest common divisor of a and b. If b is odd and (a, b) = 1, then we also denote the
Jacobi symbol of a and b by

(

a
b

)

.

2. Preliminaries

To achieve the objective of this paper, we need the following results and definitions. We
shall keep referring to this section with or without further reference.

Lemma 2.1. If m and n are natural numbers, then
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(1) P2n = 2PnQn,
(2) Q2

n − 2P 2
n = (−1)n,

(3) (Pn, Qn) = 1,
(4) Pm|Pn if and only if m|n,
(5) v2(Pn) = v2(n) and v2(Qn) = 0, where v2(n) is the exponent of 2 in the canonical

decomposition of n.

For the proof of this lemma, readers are advised to refer to [9].

Lemma 2.2. ([23], Theorem 2, [5], Theorem 1). The only solutions of the Diophantine

equation Pn = ym in positive integers n, y, and m, with m ≥ 2, are (n, y,m) = (1, 1,m),
(7, 13, 2).

Lemma 2.3. ([19], Theorem 1). The solutions of the Diophantine equation PmPn = x2 with

1 ≤ m < n are (m,n) = (1, 7) or n = 3m, 3 ∤ m, m is odd.

Lemma 2.4. ([2], Theorem A). If n, y,m are positive integers with m ≥ 2, then the only

solution of equation Qn = ym is (n, y) = (1, 1).

Lemma 2.5. If m and n are positive integers and p is an odd prime, then the Diophantine

equation Pn = 4pm has only one integer solution: n = 4, p = 3, and m = 1.

Proof. Suppose that Pn = 4pm where p is a prime and m and n are positive integers. Since
4|Pn, n = 4k for some k. Hence, Pn = P4k = 2P2kQ2k = 4pm. Since (P2k, Q2k) = 1 and Qn is
odd for all n ≥ 0, it follows that P2k = 2 and Q2k = pm. �

Lemma 2.6. ([2], Lemma 2.1, [25], p. 869). Let (un)n≥0 be a Lucas sequence with u0 = 0 and

u1 = 1 and ∆ = (α − β)2 be its discriminant. If there exists a prime p such that p|un and

p ∤ ∆ ·
n−1
∏

i=1

ui, then p is called as primitive prime factor of un and is congruent to ±1 modulo

n.

Lemma 2.7. ([2], Lemma 2.1). A primitive prime factor of Pn exists if n ≥ 3 and a primitive

prime factor of Qn exists if n ≥ 2.

Lemma 2.8. ([18], Theorem 4) There exist a prime factor p of Pn such that p ≡ 1 (mod 4)
if n 6= 0, 1, 2, 4, 14.

Lemma 2.9. ([8], Pell and Pell-Lucas numbers). If the associated Pell number Qn is a prime,

then n is either a prime or a power of 2 and Pn is a prime if and only if n is prime.

3. Repdigits in Euler Functions of Pell Numbers

We begin this section by computing the least residues and periods of the Pell sequence
{Pn}n≥0 modulo 5 and associated Pell sequence {Qn}n≥0 modulo 5, 8. These residues will be
used in the proof of Theorem 3.1.

The following theorem, which proves the nonexistence of repdigits with at least two digits
in the Euler function of Pell numbers, is the main result of this paper.

Theorem 3.1. The equation

φ(Pn) = d · 10
m − 1

9
(3.1)

has no solution in positive integers n,m, d such that m ≥ 2 and d ∈ {1, 2, . . . , 9}.
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Table 1. Periods of Pn

Least Residues Period
Pn (mod 5) 0, 1, 2, 0, 2, 4, 0, 4, 3, 0, 3, 1 12
Pn (mod 1)1 0, 1, 2, 5, 1, 7, 4, 4, 1, 6, 2, 10, 0, 10, 24

9, 6, 10, 4, 7, 7, 10, 5, 9, 1
Pn (mod 4)0 0, 1, 2, 5, 12, 29, 30, 9, 8, 25, 18, 24

21, 20, 21, 22, 25, 32, 9, 10, 29, 28, 5, 38,1
Qn (mod 5) 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4 12
Qn (mod 8) 1, 1, 3, 7 4

Proof. For n ≤ 16, it is easy to see that there is no Pell number Pn such that φ(Pn) is a
repdigit with at least two digits. Assume to the contrary that for some n > 16, φ(Pn) is a
repdigit. That is

φ(Pn) = d · 10
m − 1

9
for some d ∈ {1, 2, . . . , 9} and for some n. Let v2(n) be the exponent of 2 in the factorization
of a positive integer n. Since 10m−1

9
is odd, it follows that

v2(φ(Pn)) = v2(d) ≤ 3. (3.2)

By virtue of Lemma 2.8, there exists a prime factor p1 of Pn such that p1 ≡ 1 (mod 4). Clearly,
p1 − 1|φ(Pn) and v2(d) ≥ 2, which implies that there exists another odd prime factor p2 of Pn

such that p2 ≡ 3 (mod 4) or p1 is the only odd prime factor of Pn.

First, assume Pn has two distinct prime factors p1 and p2 such that p1 ≡ 1 (mod 4) and
p2 ≡ 3 (mod 4). If n is odd, reducing relation (2) in Lemma 2.1 modulo p2, we get Q2

n ≡ −1
(mod p2), which implies that −1 is a quadratic residue modulo p2. But, this is possible only
when p2 ≡ 1 (mod 4), which is a contradiction to p2 ≡ 3 (mod 4). If n is even, then Pn is
even. Let Pn = 2a · pb1 · pc2. If a > 1, then 2(p1− 1)(p2− 1)|φ(Pn), which implies v2(φ(Pn)) ≥ 4.
This contradicts (3.2). Hence, a = 1 and consequently Pn = 2 · pb1 · pc2. Let n = 2n1. If n1 is
even, then 4|n. Thus, 4|Pn, so a ≥ 2. Therefore, n1 must be odd. Since P2n1

= 2Pn1
Qn1

and
(Pn1

, Qn1
) = 1, it follows that Pn1

= pb1 and Qn1
= pc2.

Since n1 > 8, it follows, from Lemma 2.2 and 2.4, that Pn1
= p1, Qn1

= p2 and consequently
Pn = 2p1p2. This implies that v2(d) ≥ 3. Hence, the only possible value of d is 8. Since
Pn1

and Qn1
are primes, it follows, from Lemma 2.9, that n1 is a prime. Further, reducing

Q2
n1
−2P 2

n1
= −1 modulo p2, we get (

2

p2
) = 1, which with p2 ≡ 3 (mod 4) gives p2 ≡ 7 (mod 8).

Since the period of {Qm}m≥0 modulo 8 is 4 (see Table 1) and Qn1
= p2 ≡ 7 (mod 8), it follows

that n1 ≡ 3 (mod 4). Thus, n1 is of the form 12k + 3, 12k + 7, or 12k + 11. Furthermore, in
view of Table 1, the period of both {Pm}m≥0 and {Qm}m≥0 modulo 5 is 12.

If n1 = 12k + 3, then p1 = Pn1
≡ 0 (mod 5), which implies that n1 = 3. This contradicts

our assumption that n1 > 8.
If n1 = 12k + 7, then p1 = Pn1

≡ 4 (mod 5) and p2 = Qn1
≡ 4 (mod 5) and therefore,

φ(Pn) = φ(2Pn1
Qn1

) = (p1−1)(p2−1) ≡ 4 (mod 5). Since d = 8, it follows that d(10m−1)/9 ≡
3 (mod 5). This is a contradiction to the assumption that φ(Pn) is a repdigit.

If n1 = 12k + 11, then p1 = Pn1
≡ 1 (mod 5), which implies that φ(Pn) ≡ 0 (mod 5),

but with d = 8, d(10m − 1)/9 ≡ 3 (mod 5). Therefore, φ(Pn) 6= d · 10m−1

9
. Hence, there

exists only one odd prime factor p1 of Pn. If n is even (say n = 2n1), then by Lemma 2.1,
Pn = 2Pn1

Qn1
= 2apb1 and consequently, Pn1

= 2a−1 and Qn1
= pb1. If Pn1

= 2a−1, then in
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view of Lemmas 2.2 and 2.4, n1 ∈ {1, 2}, which contradicts the assumption that n > 16. If n
is odd, then Pn = pb1. If b ≥ 2, then by virtue of Lemma 2.2, n ∈ {1, 7}, which also contradicts
our assumption that n > 16. If b = 1, then Pn = p1 and therefore, φ(Pn) = p1 − 1 = Pn − 1 is
a multiple of 4. Thus, d ∈ {4, 8}.

If d = 4, then

Pn = 4 · 10
m − 1

9
+ 1 =

4 · 10m + 5

9
is divisible by 5. This contradicts Pn = p1. If d = 8, then (3.1) can be written as

9Pn − 1 = 8 · 10m = 2m+35m. (3.3)

Since m ≥ 1, 9Pn − 1 ≡ 0 (mod 40) and in view of Table 1, this is possible if n ≡ 7, 17
(mod 24). But, modulo 11, the Pell sequence has period 24. If n ≡ 7, 17 (mod 24), then
Pn ≡ 4 (mod 11). Reducing (3.3) modulo 11, we get 35 ≡ 8 · 10m (mod 11). This results in
3 ≡ ±1 (mod 11), which is not true. Hence, φ(Pn) cannot be a repdigit consisting of at least
two digits for any natural number n. �

4. Conclusion

From the proof of Theorem 3.1, we can also conclude that the Euler function of none of
the odd indexed balancing number Bn is a repdigit with at least two digits, since P2n = 2Bn

[1, 22, 24]. Using similar techniques, one can verify that the Euler function of no Lucas-
balancing number is a repdigit consisting of more than one digit. Exploring repdigits in Euler
function of associated Pell numbers is also equally interesting. We leave these as open problems
for the readers.
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