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Abstract. In this paper, we present explicit formulas for the sum of the first n Tetranacci
numbers and for the sum of the squares of the first n Tetranacci numbers. In the second half
of the paper, we will prove an explicit formula for the sum of the first n Fibonacci m-step
numbers. This formula will give us explicit expressions for the sum of the first n Pentanacci
numbers, the first n Hexanacci numbers, the first n Heptanacci numbers, and so on.

1. Introduction

The two explicit expressions for the sum of the first n Fibonacci numbers and for the sum
of the squares of the first n Fibonacci numbers given by

n
∑

k=1

Fk = Fn+1 + Fn − 1 = Fn+2 − 1 and

n
∑

k=1

F 2
k = FnFn+1

are well-known [2, 4].

In the past 10 years, several explicit closed form expressions for sums of Tribonacci numbers,
such as

n
∑

k=1

Tk =
1

2
(Tn+2 + Tn − 1) and

n
∑

k=1

T 2
k =

4TnTn+1 − (Tn+1 − Tn−1)
2 + 1

4

were discovered and published [3, 1]. The study of these papers has led us to find the equiva-
lents for the Tetranacci numbers.

The sequence of Tetranacci numbers {Tek}
∞

k=−∞
is defined by the initial conditions Te0 = 0,

Te1 = Te2 = 1, Te3 = 2 and the Tetranacci recurrence relation [8, 6]

Tek+4 = Tek +Tek+1+Tek+2+Tek+3 for all integers k.

The Tetranacci numbers are therefore higher analogues of the Fibonacci numbers {Fk}
∞

k=−∞

and the Tribonacci numbers {Tk}
∞

k=−∞
. The initial conditions for the Tetranacci numbers

are not uniform in the literature and we have chosen them in the above way because then its
generating function takes the simplest form. Moreover, this choice is similar to that in [1] for
the Tribonacci numbers.

In this paper, we give the corresponding explicit formulas for the sum
∑

n

k=1Tek of the

first n Tetranacci numbers and for the sum
∑

n

k=1Te
2
k
of the squares of the first n Tetranacci

numbers. In the second half of the paper, we will present an explicit formula for the sum
∑

n

k=1 F
(m)
k

of the first n Fibonacci m-step numbers. To prove these three formulas, we will
use induction on n.
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We have searched our formulas in the literature and on the internet, but we could find none
of them. We believe that these formulas are original.

2. The Explicit Formula for the Sum of the First n Tetranacci Numbers

In this section, we prove

Theorem 2.1. (Explicit formula for the sum of the first n Tetranacci numbers)
For all nonnegative integers n,

n
∑

k=1

Tek =
1

3
(Ten+3−Ten+1+Ten−1) .

Proof. We will prove this formula by induction.
Because we have Te0 = 0, Te1 = Te2 = 1, Te3 = 2, and Te4 = 4, the above formula holds for
n = 0 and n = 1 by the calculations

0 =

0
∑

k=1

Tek =
1

3
(Te3−Te1+Te0−1) =

1

3
(2− 1 + 0− 1) = 0,

1 = Te1 =
1
∑

k=1

Tek =
1

3
(Te4−Te2+Te1−1) =

1

3
(4− 1 + 1− 1) = 1.

Assuming that the formula holds for a nonnegative integer n, we will show that it also holds
for n+ 1.
Because of the above Tetranacci recurrence relation, we have

Ten+4 = Ten+Ten+1+Ten+2+Ten+3

⇐⇒ Ten+1 = Ten+4−Ten+3−Ten+2−Ten

⇐⇒ 3Ten+1 = Ten+4 −Ten+3−Ten+2+2Ten+1−Ten

⇐⇒ Ten+1 =
1

3
(Ten+4−Ten+3 −Ten+2+2Ten+1−Ten) ,

which implies

n+1
∑

k=1

Tek =

n
∑

k=1

Tek +Ten+1

=
1

3
(Ten+3−Ten+1+Ten−1) +

1

3
(Ten+4 −Ten+3−Ten+2+2Ten+1−Ten)

=
1

3
(Ten+4−Ten+2+Ten+1 −1) .

These calculations prove the claimed formula is also true for n+ 1. �

The above formula is equivalent to the formula for
∑

n

k=1Tek given in [8]. We have presented
it in this form because the formula for all Fibonacci m-step numbers given below suggests this
is its most natural form.
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3. The Explicit Formula for the Sum of the Squares of the First n

Tetranacci Numbers

In this section, we prove

Theorem 3.1. (Explicit formula for the sum of the squares of the first n Tetranacci numbers)
For all nonnegative integers n,

n
∑

k=1

Te2k =
3TenTen+1 − (Ten+1 −Ten−1)

2 + (Ten+Ten−3) Ten−2 +1

3
.

Proof. We will prove this formula also by induction. From the recurrence relation of the
Tetranacci numbers, we have that Te−3 = 1, Te−2 = 0, Te−1 = 0, Te0 = 0, Te1 = Te2 = 1,
and Te3 = 2. The above formula is satisfied for n = 0 and n = 1 because

0 =
0
∑

k=1

Te2
k
=

3Te0 Te1 − (Te1 −Te−1)
2 + (Te0 +Te−3)Te−2+1

3
=

3 · 0 · 1− 12 + 1 · 0 + 1

3
= 0,

1 = Te21 =

1
∑

k=1

Te2k =
3Te1 Te2 − (Te2−Te0)

2 + (Te1+Te−2)Te−1+1

3

=
3 · 1 · 1− 12 + 1 · 0 + 1

3
= 1.

We assume that the above formula is true for a positive integer n and show that the correctness
of the formula for n implies the correctness of the formula for n+ 1.
We have the following identity, namely

Te2n+1 =
3Ten+1 Ten+2− (Ten+2−Ten)

2 + (Ten+1 +Ten−2) Ten−1 +1

3

−
3TenTen+1− (Ten+1−Ten−1)

2 + (Ten+Ten−3)Ten−2+1

3
,

which is true, because using the Tetranacci recurrence relation several times, the above identity
is equivalent to

3Te2n+1 = 3Ten+1Ten+2 − (Ten+2 −Ten)
2 + (Ten+1+Ten−2) Ten−1 +1

−
[

3TenTen+1− (Ten+1−Ten−1)
2 + (Ten+Ten−3)Ten−2+1

]

= 3Ten+1 Ten+2− (Ten+2−Ten)
2 + (Ten+1 +Ten−2) Ten−1+1− 3TenTen+1

+ (Ten+1−Ten−1)
2 − (Ten +Ten−3) Ten−2−1

= (3Ten+1Ten+2 −3TenTen+1)− (Ten+2−Ten)
2 +Ten+1Ten−1 +Ten−2Ten−1+Te2n+1

− 2Ten+1Ten−1+Te2n−1−TenTen−2−Ten−3 Ten−2

= 3Ten+1(Ten+2 −Ten)− (Ten+2 −Ten)
2 +Ten+1Ten−1+Ten−2Ten−1 +Te2n+1

− 2Ten+1Ten−1+Te2n−1−TenTen−2−Ten−3 Ten−2

= 3Ten+1(Ten+1 +Ten−1+Ten−2)− (Ten+2−Ten)
2 +Ten+1Ten−1+Ten−2 Ten−1+Te2n+1

− 2Ten+1Ten−1+Te2n−1−TenTen−2−Ten−3 Ten−2

= 3Te2n+1 +3Ten+1 Ten−1+3Ten+1 Ten−2− (Ten+2−Ten)
2 +Ten+1Ten−1+Ten−2 Ten−1

+Te2n+1−2Ten+1Ten−1 +Te2n−1−TenTen−2 −Ten−3Ten−2
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= 4Te2n+1 +2Ten+1Ten−1 +3Ten+1 Ten−2− (Ten+2−Ten)
2 +Ten−2Ten−1+Te2n−1

− TenTen−2 −Ten−3Ten−2

= 4Te2n+1 +2Ten+1Ten−1 +2Ten+1 Ten−2− (Ten+2−Ten)
2 + (Ten+1−Ten−Ten−3)Ten−2

+Ten−1Ten−2 +Te2n−1

= 4Te2n+1 +2Ten+1Ten−1 +2Ten+1 Ten−2− (Ten+1+Ten−1+Ten−2)
2

+ (Ten−1+Ten−2)Ten−2+Ten−1 Ten−2+Te2n−1

= 4Te2n+1 +2Ten+1Ten−1 +2Ten+1 Ten−2−Te2n+1−Te2n−1 −Te2n−2−2Ten+1Ten−1

− 2Ten+1 Ten−2−2Ten−1Ten−2+Ten−1Ten−2 +Te2n−2+Ten−1Ten−2 +Te2n−1

= 3Te2n+1 .

This implies

n+1
∑

k=1

Te2k =

n
∑

k=1

Te2k +Te2n+1

=
3TenTen+1 − (Ten+1 −Ten−1)

2 + (Ten+Ten−3) Ten−2 +1

3

+

(

3Ten+1Ten+2 − (Ten+2 −Ten)
2 + (Ten+1+Ten−2) Ten−1 +1

3

−
3TenTen+1− (Ten+1−Ten−1)

2 + (Ten+Ten−3) Ten−2 +1

3

)

=
3Ten+1Ten+2− (Ten+2−Ten)

2 + (Ten+1+Ten−2)Ten−1+1

3
and finishes the proof. �

To see how the above formula works, we compute the sum
∑

n

k=1Te
2
k
for n = 7 and n = 10.

We have that

1152 =

7
∑

k=1

Te2k =
3Te7Te8− (Te8 −Te6)

2 + (Te7 +Te4)Te5+1

3

=
3 · 29 · 56− (56− 15)2 + (29 + 4) · 8 + 1

3

=
4872 − 1681 + 264 + 1

3
= 1152

and

59216 =
10
∑

k=1

Te2k =
3Te10 Te11 − (Te11 −Te9)

2 + (Te10 +Te7)Te8+1

3

=
3 · 208 · 401− (401− 108)2 + (208 + 29) · 56 + 1

3

=
250224 − 85849 + 13272 + 1

3
= 59216.
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4. The Explicit Formula for the Sum of the First n Fibonacci m-Step Numbers

Let m be a positive integer. The sequence of Fibonacci m-step numbers
{

F
(m)
k

}

∞

k=−∞

is

defined by the initial conditions F
(m)
k

= 0 for all (2−m) ≤ k ≤ 0, F
(m)
1 = F

(m)
2 = 1 and the

Fibonacci m-step recurrence relation [5]

F
(m)
k+m

=

m−1
∑

i=0

F
(m)
k+i

for all integers k.

In this section, we prove

Theorem 4.1. (Explicit formula for the sum of the first n Fibonacci m-step numbers) [7]
For all integers m ≥ 2 and all nonnegative integers n,

n
∑

k=1

F
(m)
k

=
1

m− 1

(

F
(m)
n+m−1 −

m−3
∑

k=1

kF
(m)
n+m−k−2 + F (m)

n − 1

)

.

Proof. We will prove this formula again by induction on n.
Let m ≥ 3. From the above recurrence relation for the Fibonacci m-step numbers, we get that

F
(m)
0 = 0, F

(m)
1 = F

(m)
2 = 1, F

(m)
3 = 2, F

(m)
4 = 4, . . ., F

(m)
l

= 2l−2 for all 2 ≤ l ≤ m+ 1, . . .,

F
(m)
m = 2m−2, F

(m)
m+1 = 2m−1.

The above formula is true for n = 0 and n = 1 because

0 =
0
∑

k=1

F
(m)
k

=
1

m− 1

(

F
(m)
m−1 −

m−3
∑

k=1

kF
(m)
m−k−2 + F

(m)
0 − 1

)

=
1

m− 1

(

2m−3 −
m−4
∑

k=1

k2m−k−4 −m+ 2

)

= 0,

1 = F
(m)
1 =

1
∑

k=1

F
(m)
k

=
1

m− 1

(

F (m)
m −

m−3
∑

k=1

kF
(m)
m−k−1 + F

(m)
1 − 1

)

=
1

m− 1

(

2m−2 −

m−3
∑

k=1

k2m−k−3

)

= 1.

Assuming the formula holds for a nonnegative integer n, we will show that it is also true for
n+ 1.
Because of the above Fibonacci m-step recurrence relation, we have

F
(m)
n+m

=
m−1
∑

k=0

F
(m)
n+k

⇐⇒ F
(m)
n+m = F (m)

n + F
(m)
n+1 +

m−1
∑

k=2

F
(m)
n+k

⇐⇒ F
(m)
n+1 = F

(m)
n+m −

m−1
∑

k=2

F
(m)
n+k

− F (m)
n
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⇐⇒ (m− 1)F
(m)
n+1 = F

(m)
n+m −

m−1
∑

k=2

F
(m)
n+k

+ (m− 2)F
(m)
n+1 − F (m)

n

⇐⇒ F
(m)
n+1 =

1

m− 1

(

F
(m)
n+m −

m−1
∑

k=2

F
(m)
n+k

+ (m− 2)F
(m)
n+1 − F (m)

n

)

,

which implies

n+1
∑

k=1

F
(m)
k

=
n
∑

k=1

F
(m)
k

+ F
(m)
n+1

=
1

m− 1

(

F
(m)
n+m−1 −

m−3
∑

k=1

kF
(m)
n+m−k−2 + F (m)

n − 1

)

+
1

m− 1

(

F
(m)
n+m −

m−1
∑

k=2

F
(m)
n+k

+ (m− 2)F
(m)
n+1 − F (m)

n

)

=
1

m− 1

(

F
(m)
n+m + F

(m)
n+m−1 −

m−3
∑

k=1

kF
(m)
n+m−k−2 −

m−1
∑

k=2

F
(m)
n+k

+ (m− 2)F
(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m + F

(m)
n+m−1 −

m−3
∑

k=1

kF
(m)
n+m−k−2 −

m−2
∑

k=2

F
(m)
n+k

− F
(m)
n+m−1 + (m− 2)F

(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m −

m−3
∑

k=1

kF
(m)
n+m−k−2 −

m−2
∑

k=2

F
(m)
n+k

+ (m− 2)F
(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m

−
m−4
∑

k=1

kF
(m)
n+m−k−2 − (m− 3)F

(m)
n+1 −

m−2
∑

k=2

F
(m)
n+k

+ (m− 2)F
(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m

−
m−4
∑

k=1

kF
(m)
n+m−k−2 −

m−2
∑

k=2

F
(m)
n+k

+ F
(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m −

m−4
∑

k=1

kF
(m)
n+m−k−2 −

m−4
∑

k=0

F
(m)
n+m−k−2 + F

(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m −

m−3
∑

k=2

(k − 1)F
(m)
n+m−k−1 −

m−3
∑

k=1

F
(m)
n+m−k−1 + F

(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m −

m−3
∑

k=1

(k − 1)F
(m)
n+m−k−1 −

m−3
∑

k=1

F
(m)
n+m−k−1 + F

(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m

−
m−3
∑

k=1

kF
(m)
n+m−k−1 +

m−3
∑

k=1

F
(m)
n+m−k−1 −

m−3
∑

k=1

F
(m)
n+m−k−1 + F

(m)
n+1 − 1

)

=
1

m− 1

(

F
(m)
n+m

−
m−3
∑

k=1

kF
(m)
n+m−k−1 + F

(m)
n+1 − 1

)

.

Therefore, the claimed formula also holds for n+1, which finishes the proof, because for m = 2,
the formula becomes the identity

∑

n

k=1 Fk = Fn+1 + Fn − 1 = Fn+2 − 1 for the Fibonacci
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numbers already mentioned in the introduction and that is true for all nonnegative integers
n. �

As a corollary, we obtain the following summation formulas for the Pentanacci numbers

Pk = F
(5)
k

, the Hexanacci numbers Hk = F
(6)
k

, the Heptanacci numbers Hek = F
(7)
k

and the

Octanacci numbers Ok = F
(8)
k

.

Corollary 4.2. (Explicit formulas for the sum of the first n Pentanacci, Hexanacci,
Heptanacci and Octanacci numbers) [7]
For all nonnegative integers n,

n
∑

k=1

Pk =
1

4
(Pn+4 − Pn+2 − 2Pn+1 + Pn − 1) ,

n
∑

k=1

Hk =
1

5
(Hn+5 −Hn+3 − 2Hn+2 − 3Hn+1 +Hn − 1) ,

n
∑

k=1

Hek =
1

6
(Hen+6−Hen+4−2Hen+3−3Hen+2−4Hen+1 +Hen−1) ,

n
∑

k=1

Ok =
1

7
(On+7 −On+5 − 2On+4 − 3On+3 − 4On+2 − 5On+1 +On − 1) .

5. Conclusion

We have presented and proved closed form expressions for the sum
∑

n

k=1Tek and for the
sum

∑

n

k=1Te
2
k
involving the Tetranacci numbers. In addition, we proved a summation formula

for the sum
∑

n

k=1 F
(m)
k

of the first n Fibonacci m-step numbers.
The structure of all the summation formulas in this paper is similar and clearly visible.

There exist many other closed form expressions for Tetranacci sums of the same structure,
which are new and previously unpublished, for example:

n
∑

k=1

kTek =
1

3

[(

n+
2

3

)

Ten−

(

n+
2

3

)

Ten+1 −Ten+2+

(

n−
1

3

)

Ten+3

]

+
7

9

as well as

n
∑

k=1

k2 Tek =
1

3

[(

n2 +
4

3
n+

14

9

)

Ten −

(

n2 +
4

3
n−

22

9

)

Ten+1−

(

2n−
5

3

)

Ten+2

+

(

n2 −
2

3
n+

11

9

)

Ten+3

]

−
59

27
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and
n
∑

k=1

kTe2k =

(

1

3
n+

10

9

)

TenTen+3+

(

2

3
n+

43

18

)

Ten+1 Ten+3+

(

n+
10

3

)

Ten+2 Ten+3

−

(

1

3
n+

16

9

)

TenTen+1−
1

6
TenTen+2 −

5

6
Ten+1 Ten+2−

(

1

3
n+

29

18

)

Te2n

−

(

4

3
n+

28

9

)

Te2n+1− (n+ 3)Te2n+2−

(

1

3
n+

23

18

)

Te2n+3 +
11

18

and
n
∑

k=1

k2 Te2
k
=

(

1

3
n2 +

20

9
n+

277

54

)

TenTen+3+

(

2

3
n2 +

43

9
n+

343

27

)

Ten+1Ten+3

+

(

n2 +
20

3
n+

277

18

)

Ten+2Ten+3−

(

1

3
n2 +

32

9
n+

553

54

)

TenTen+1

−

(

1

3
n−

2

9

)

TenTen+2 −

(

5

3
n+

56

9

)

Ten+1Ten+2−

(

1

3
n2 +

29

9
n+

242

27

)

Te2n

−

(

4

3
n2 +

56

9
n+

799

54

)

Te2n+1−

(

n2 + 6n+
79

6

)

Te2n+2 −

(

1

3
n2 +

23

9
n+

164

27

)

Te2n+3 +
62

27
.

The proofs of these four formulas are left to the reader.
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