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Abstract. In this paper, we explore properties of the Fibonacci fundamental system. The
matrix properties of this fundamental system allow us to establish the generalization of the
Cassini identity. Further, combinatorial representation of this identity is given and known
properties are recovered.

1. Introduction

In the literature, there are several generalizations of the classical sequence {Fn}n≥0 of Fi-
bonacci numbers defined by Fn+1 = Fn +Fn−1, for n ≥ 1, where F0 = 1 and F1 = 0 or F0 = 0
and F1 = 1. In this study, we are concerned with the generalization defined by the following
linear difference equation of order r,

Fn =
r−1∑

i=0

Fn−i−1 for n ≥ r, (1.1)

where the initial conditions F0, . . ., Fr−1 are chosen adequately. Among the solutions of

equation (1.1) we specify the family of generalized Fibonacci numbers Fr = {{F
(s)
n }n≥0, 1 ≤

s ≤ r}, defined by

F (s)
n =

r−1∑

i=0

F
(s)
n−i−1 for n ≥ r, (1.2)

where the initial conditions F
(s)
n , for n = 0, 1, . . . , r − 1, are given by F

(s)
s−1 = 1 and F

(s)
n = 0

for 0 ≤ n 6= s − 1 ≤ r − 1. In the current literature, the most studied among the sequences

of the set F = {{F
(s)
n }n≥0, 1 ≤ s ≤ r} are {F

(1)
n }n≥0 and {F

(r)
n }n≥0, namely, the sequences of

generalized Fibonacci numbers, whose initial conditions are given by F
(1)
0 = 1 and F

(1)
n = 0

for 1 ≤ n ≤ r − 1 or F
(r)
r−1 = 1 and F

(r)
n = 0 for 0 ≤ n ≤ r − 2.

In this paper, we are interested in the fundamental role of the family of generalized Fibonacci

numbers of the set Fr = {{F
(s)
n }n≥0, 1 ≤ s ≤ r}. Principally, we describe explicitly the close

connection between the family of generalized Fibonacci numbers {F
(s)
n }n≥0, for 2 ≤ s ≤ r− 2,

and the the two fundamental generalized Fibonacci numbers {F
(1)
n }n≥0 and {F

(r)
n }n≥0. As

a consequence, we derive various new identities related to generalized Fibonacci numbers.
Moreover, we give a generalization of the Cassini identity and some related combinatorial
identities.

The content of this paper is organized as follows. In Section 2, we establish that the set

Fr = {{F
(s)
n }n≥0, 1 ≤ s ≤ r} is a fundamental set of solutions for the difference equation (1.1).

Moreover, the main role of the sequences {F
(1)
n }n≥0 and {F

(r)
n }n≥0 as important solutions of

equation (1.1) is studied. Section 3 is devoted to some identities related to the Fibonacci
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fundamental system. Some combinatorial identities are established. Section 4 concerns Cassini
identity and its generalization. A related combinatorial expression is proposed.

2. Study of the Fibonacci Fundamental System

2.1. Fibonacci Fundamental System. For the general Fibonacci difference equation (1.1),

we show that the set of generalized Fibonacci numbers sequences, Fr = {{F
(s)
n }n≥0, 1 ≤ s ≤

r}, represents r copies of solutions of equation (1.1), with mutually different sets of initial

values, F
(s)
j = δs−1,j (0 ≤ j ≤ r − 1, 1 ≤ s ≤ r), where δi,j is the Kronecker symbol. These

copies can be represented by the following compact form,
{

F
(s)
n+1 = F

(s)
n + · · ·+ F

(s)
n−r+1; for n ≥ r − 1,

F
(s)
n = δs−1,n; for 0 ≤ n ≤ r − 1.

(2.1)

And for a given solution {Fn}n≥0 of equation (1.1), with initial conditions F0 = α0, . . . , Fr−1 =

αr−1, we can verify easily that Fn =

r∑

s=1

αsF
(s)
n for every n ≥ 0. In other words, the set Fr =

{{F
(s)
n }n≥0; 1 ≤ s ≤ r} is a system generator for the vector space (over R) E

(r)
K

of solutions

of equation (1.1). We will establish that Fr = {{F
(s)
n }n≥0 ; 1 ≤ s ≤ r} is a fundamental

system of solutions for equation (1.1), namely, the sequences of generalized Fibonacci numbers

{F
(1)
n }n≥0, . . ., {F

(r)
n }n≥0 are linearly independent. To this end, we consider the Casoratian

matrix (see for example [2, 5]) associated with the set Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} given by

Ĉ(n) =




F
(1)
n · · · F

(j)
n · · · F

(r)
n

...
...

...
...

F
(1)
n+r−1 · · · F

(j)
n+r−1 · · · F

(r)
n+r−1


 . (2.2)

A direct verification shows that the Casoratian matrix (2.2) can be written in the form

Ĉ(n) = J ×Mn × J, where Mn =




F
(r)
n+r−1 · · · F

(j)
n+r−1 · · · F

(1)
n+r−1

...
...

...
...

F
(r)
n · · · F

(j)
n · · · F

(1)
n


 , (2.3)

where J = (bi, j)1≤i, j≤r is the antidiagonal unit matrix whose entries are given by bi, j = 1 for
i+ j = r+1 and bi, j = 0 otherwise. To begin our result, we recall the following useful lemma.

Lemma 2.1. (Rachidi et al., [1, 3]) For every n ≥ 0, we have

Mn = A
n,

where A is the classical companion matrix

A =




1 1 · · · 1
1 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0




. (2.4)
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Expression A
n given in Lemma 2.1 has been improved in [4, 6], when the companion matrix

A (of order r = 2) is related to the usual Fibonacci numbers. Combining (2.2) and Lemma
2.1, we derive the following property.

Proposition 2.2. Consider the set Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} of sequences of generalized

Fibonacci numbers (2.1). Then, the Casoratian matrix Ĉ(n) of the Fr and the matrix powers
A
n of the companion matrix (2.4) are similar. More precisely, we have

Ĉ(n) = JAnJ = (c
(n)
ij )1≤i, j≤r, (2.5)

where the entries c
(n)
ij are given by c

(n)
ij = F

(j)
n+i−1 (1 ≤ i, j ≤ r) and J = (bi, j)1≤i, j≤r is the

antidiagonal unit matrix, whose entries are given by bi, j = 1 for i + j = r + 1 and bi, j = 0
otherwise.

Theorem 2.3. The Casoratian, C(n), of the set Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} of sequences

of generalized Fibonacci numbers (2.1), is given by

C(n) = det[Ĉ(n)] = det[An] = det[A]n = (−1)n(r−1) 6= 0. (2.6)

Consequently, the set Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} is a fundamental system of solution for

equation (1.1).

The set Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} is called the Fibonacci fundamental system.

For example, in the case r = 3, the fundamental system F3 = {{F
(s)
n }n≥0; 1 ≤ s ≤ 3} is

given by
{

F
(s)
n+1 = F

(s)
n + F

(s)
n−1 + F

(s)
n−2, for n ≥ 2,

F
(s)
n = δs−1,n for 0 ≤ n ≤ 2,

(2.7)

with values described in Table 1.
n 0 1 2 3 4 5 6 7 8 9 10 11 ...

F
(1)
n 1 0 0 1 1 2 4 7 13 24 44 81 . . .

F
(2)
n 0 1 0 1 2 3 6 11 20 37 68 125 . . .

F
(3)
n 0 0 1 1 2 4 7 13 24 44 81 149 . . .

Table 1: List of generalized Fibonacci number of order r = 3.

Then, the Casoratian matrix associated with the set F3 = {{F
(s)
n }n≥0; 1 ≤ s ≤ 3} is

Ĉ(n) =




F
(1)
n F

(2)
n F

(3)
n

F
(1)
n+1 F

(2)
n+1 F

(3)
n+1

F
(1)
n+2 F

(2)
n+2 F

(3)
n+2


 , (2.8)

or

Ĉ(n) =




0 0 1
0 1 0
1 0 0







1 1 1
1 0 0
0 1 0




n


0 0 1
0 1 0
1 0 0


 ; (2.9)

with C(n) = det[Ĉ(n)] = det






1 1 1
1 0 0
0 1 0





n

= 1.
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By combining Lemma 2.1 and Proposition 2.2, we show that Ĉ(n + m) = JAn
A
mJ =

JAnJ · JAmJ , because the antidiagonal unit matrix J satisfies J · J = diag(1, . . . , 1). Hence,
we obtain the following property of the Casoratian matrix.

Corollary 2.4. Let Ĉ(n) be the Casoratian matrix of the Fibonacci fundamental system (2.1).
Then, for every n and m, we have the identity,

Ĉ(n +m) = Ĉ(n).Ĉ(m). (2.10)

Remark 2.5. We can establish that the set Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} of sequences of

generalized Fibonacci numbers is a fundamental system of solution for equation (1.1), using
some techniques of linear algebra. However, the usual method based on the Casoratian matrix
and the Casoratian is useful in the next sections.

2.2. Properties of the Fibonacci fundamental system. In this subsection, we are in-
terested in the study of the Fibonacci fundamental system. Some results are developed and
some classical results are obtained. To reach our goal, we start with the following elementary
lemma.

Lemma 2.6. Let E
(r)
K

be the vector space (over R) of solutions of equation (1.1). Con-

sider two sequences {F
[C1]
n }n≥0 and {F

[C2]
n }n≥0 of E

(r)
K

, whose initial conditions are C1 =
(α0, α1, . . . , αr−1) and C2 = (β0, β1, . . . , βr−1), respectively. Suppose there exist n0, m0, and
N in N such that

F
[C1]
j+n0

= F
[C2]
j+m0

for N ≤ j ≤ N + r − 1. (2.11)

Then, we have F
[C1]
n+n0

= F
[C2]
n+m0

for every n ≥ N .

Proof. Suppose there exist n0, m0, andN in N such that F
[C1]
n+n0

= F
[C2]
n+m0

forN ≤ n ≤ N+r−1.
Then, for n = N + r, we have

F
[C1]
N+r+n0

= F
[C1]
N+r−1+n0

+ F
[C1]
N+r−2+n0

+ · · ·+ F
[C1]
N+n0

(2.12)

= F
[C2]
N+r−1+m0

+ F
[C2]
N+r−2+m0

+ · · ·+ F
[C2]
N+m0

= F
[C2]
N+r+m0

.

Therefore, we show that F
[C1]
N+r+n0

= F
[C2]
N+r+m0

. And, an induction process in n allows us to

obtain F
[C1]
N+n+n0

= F
[C2]
N+n+m0

for every n ≥ N . �

Our study of the Fibonacci fundamental systems Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} is based

two main questions: “What is the closed connection between the components {F
(s)
n }n≥0 of the

Fibonacci fundamental systems Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r}? What is the role of the two

basic sequences of generalized Fibonacci numbers {F
(1)
n }n≥0 and {F

(r)
n }n≥0?”

Consider two basic sequences {F
(1)
n }n≥0 and {F

(r)
n }n≥0. For n = 1, . . . , r − 1, r we have

F
(1)
1 = · · · = F

(1)
r−1 = 0, F (1)

r = 1 and F
(r)
0 = F

(r)
1 = · · · = F

(r)
r−2 = 0, F

(r)
r−1 = 1. (2.13)

Hence, we observe that F
(1)
j+1 = F

(r)
j = 0 for j = 0, . . . , r − 2 and F

(1)
r = F

(r)
r−1 = 1. Hence,

applying Lemma 2.6 allows us to obtain F
(1)
n+1 = F

(r)
n for every n ≥ 0. Thus, we have the

following proposition.
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Proposition 2.7. Let Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} be the Fibonacci fundamental system.

Then, we have

F
(1)
n+1 = F (r)

n for every n ≥ 0 or equivalently F (1)
n = F

(r)
n−1 for every n ≥ 1. (2.14)

For r = 4 and 4 ≤ n ≤ 11, Proposition 2.7 can be verified in Table 1. Now, what about the

closed relation between the two sequences {F
(1)
n }n≥0 and {F

(r)
n }n≥0 with the other sequences

{F
(s)
n }n≥0 for 2 ≤ s ≤ r − 1? For reason of clarity, consider the case r = 4. A simple

computation shows that the first terms of the F
(j)
n for 1 ≤ j ≤ 4 are given in Table 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 ...

F
(1)
n 1 0 0 0 1 1 2 4 8 15 29 56 . . .

F
(2)
n 0 1 0 0 1 2 3 6 12 23 44 85 . . .

F
(3)
n 0 0 1 0 1 2 4 7 14 27 52 100 . . .

F
(4)
n 0 0 0 1 1 2 4 8 15 29 56 108 . . .

Table 2: List of generalized Fibonacci number of order r = 4.

Following Table 2, we show that for 4 ≤ n ≤ 11,

F (2)
n = F (1)

n +F
(1)
n−1 = F

(4)
n−1+F

(4)
n−2 and F (3)

n = F (1)
n +F

(1)
n−1+F

(1)
n−2 = F

(4)
n−1+F

(4)
n−2+F

(4)
n−3. (2.15)

This result suggests that for r = 4 and 2 ≤ j ≤ 3, the general term F
(j)
n is expressed in

terms of F
(1)
n or F

(4)
n as F

(j)
n = F

(1)
n + · · · + F

(1)
n−j+1 for n ≥ j − 1 or equivalently F (j)

n =

F
(4)
n−1 + · · ·+F

(4)
n−j for n ≥ j. We can establish that the conjecture is verified for r ≥ 3 and, for

fixed r, 2 ≤ j ≤ r − 1. We have the following result.

Proposition 2.8. Let Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} be the Fibonacci fundamental system.

Then, for every j (2 ≤ j ≤ r − 1), the general term F
(j)
n of sequence of generalized Fibonacci

numbers {F
(j)
n }n≥0 is expressed in terms of the sequence of generalized Fibonacci numbers F

(1)
n

or F
(r)
n as follows,

F (j)
n = F (1)

n + · · · + F
(1)
n−j+1 for n ≥ j − 1 or F (j)

n = F
(r)
n−1 + · · · + F

(r)
n−j for n ≥ j. (2.16)

Proof. We proceed by induction. To show that expression (2.16) is valid for j = 2, we set

w
(2)
n = F

(1)
n +F

(1)
n−1 for n ≥ 1. It is clear that the sequence {w

(2)
n }n≥1 satisfies (1.1) with initial

conditions

w
(2)
1 = 1, w(2)

s = 0 for 2 ≤ s ≤ r − 1 and w(2)
r = 1. (2.17)

For {F
(2)
n }n≥0, we have

F
(2)
1 = 1, F (2)

s = 0 for 0 ≤ s ≤ r − 1 and F (2)
r = 1. (2.18)

Hence, we have F
(2)
1 = w

(2)
1 = 1, F

(2)
s = w

(2)
s = 0 for 0 ≤ s ≤ r − 1, and F

(2)
r = w

(2)
r = 1. By

Lemma 2.6, we derive that F
(2)
n = w

(2)
n for every n ≥ 1. Thus, we obtain

F (2)
n = F (1)

n + F
(1)
n−1 for every n ≥ 1. (2.19)

For 3 ≤ j ≤ r − 1, suppose that F
(j)
n = F

(1)
n + · · ·+ F

(1)
n−j+1 for every n ≥ j − 1. Consider the

sequence {w
(j+1)
n }n≥1 defined by w

(j+1)
n = F

(1)
n + F

(j)
n−1 for every n ≥ j, since F

(j)
n−1 is defined

for n − 1 ≥ j − 1. For F
(j)
n−1, the first r terms are F

(j)
n−1 = 0 for 1 ≤ n 6= j ≤ r − 1, F

(j)
j = 1,
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and F
(j)
r = 1. Since F

(1)
0 = 1 and F

(1)
n = 0 for n = 1, . . . , r − 1, by summing F

(1)
n + F

(j)
n−1

(1 ≤ n ≤ r), we derive that

w(j+1)
n = 0 for 1 ≤ n 6= j ≤ r − 1 and w

(j+1)
j = 1. (2.20)

Comparing expression (2.20) with the sequence {F
(j+1)
n }n≥0 shows that

w(j+1)
n = F (j+1)

n = 0 for 1 ≤ n 6= j ≤ r − 1, w
(j+1)
j = F

(j+1)
j = 1, and w(j+1)

r = F (j+1)
r = 1.

(2.21)

Since the sequence {w
(j+1)
n }n≥1 satisfies expression (1.1), Lemma 2.6 allows us to get

F
(j+1)
n = w

(j+1)
n = F

(1)
n + w

(j)
n . Therefore, we derive that F

(j+1)
n = F

(1)
n + · · · + F

(1)
n−j+1

for every n ≥ j. �

Propositions 2.7 and 2.8 explain the closed relationship between the elements of the Fi-
bonacci fundamental system of sequences of the generalized Fibonacci numbers (2.1) of order

r ≥ 3, especially, the important role of the two basic sequences {F
(1)
n }n≥0 and {F

(r)
n }n≥0.

Therefore, for reason of simplicity, we adopt the notation

Fn−1 = F (1)
n = F

(r)
n−1 for every n ≥ 1 or equivalently Fn = F

(1)
n+1 = F (r)

n for every n ≥ 0.
(2.22)

3. Some Identities and Their Combinatorial Aspect

3.1. Some Identities Related to the Fibonacci Fundamental System. As a conse-
quence of Propositions 2.2, 2.7, and 2.8, we exhibit some identities satisfied by the elements

of the Fibonacci fundamental system. Lemma 2.1 shows that the entries a
(n)
i,j of the matrix

powers An are given by the following compact formula.

a
(n)
i,j = F

(r−j+1)
n+r−i . (3.1)

Consider the two powers matrices Am = (a
(m)
ij )1≤i, j≤r and A

n = (a
(n)
ij )1≤i, j≤r, for m ≥ 0 and

n ≥ 0 in N. Since A
m+n = A

m
A
n = A

n
A
m = (a

(m+n)
ij )1≤i, j≤r, we derive

a
(m+n)
ij =

r∑

k=1

a
(m)
ik a

(n)
kj =

r∑

k=1

a
(n)
ik a

(m)
kj . (3.2)

Application of this identity and expression (3.1) permits us to obtain the following formula
related to the sequences of the Fibonacci fundamental system,

F
(q)
m+n+p =

r∑

d=1

F
(d)
m+pF

(q)
n+d−1 =

r∑

d=1

F
(d)
n+pF

(q)
m+d−1 (3.3)

for any integers m,n ≥ 0 and every p, q (1 ≤ p, q ≤ r). According to Proposition 2.8, we know

that F
(j)
n = F

(r)
n−1 + · · · + F

(r)
n−j = Fn−1 + · · · + Fn−j for 2 ≤ j ≤ r − 1 and n ≥ j. Therefore,

for 1 ≤ q ≤ r − 1, we have

F
(q)
m+n+p =

r∑

d=1

[
d∑

i=1

Fm+p−i

]


q∑

j=1

Fn+d−j−1


 . (3.4)
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For q = r, we obtain

F
(r)
m+n+p =

r∑

d=1

F
(d)
m+pF

(r)
n+d−1 =

r∑

d=1

F
(d)
n+pF

(r)
m+d−1. (3.5)

In summary, we have the following result.

Theorem 3.1. Let Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} be the Fibonacci fundamental system. Then,

for every n and m (n ≥ 0 and m ≥ 0) and q (1 ≤ q ≤ r), we have the following identities.

Fm+n =
r∑

d=1

d∑

j=1

Fm−jFn+d−1 (3.6)

and

q∑

k=1

Fn+n−k =

r∑

d=1

∑

1≤i≤d, 1≤j≤q

Fn−iFn+d−j−1. (3.7)

To illustrate the content of Theorem 3.1, we consider cases r = 2 and r = 3. A direct
computation using (3.6) allows us to obtain the corollary.

Corollary 3.2. The usual Fibonacci numbers {Fn}n≥0 (r = 2) verify the identity,

Fm+s = Fm−1Fs + FmFs+1, (3.8)

for every n ≥ 2 and s ≥ 0. The generalized Fibonacci numbers {Fn}n≥0 of order r = 3 satisfy
the identity

Fm+s = FmFs+2 + (Fm−1 + Fm−2)Fs+1 + Fm−1Fs, (3.9)

for every n ≥ 2 and s ≥ 0.

Formulas (3.8) and (3.9) show that the computation of Fm+s can be derived from the
knowledge of Fm, Fm−1, Fs+1, and Fs. Similarly, formula (3.8) permits us to compute Fm+s

from the knowledge of Fm, Fm−1, Fm−2, Fs+2, Fs+1, and Fs.

3.2. Combinatorial aspect of the Fibonacci fundamental system. Several methods
were used to establish combinatorial expressions for generalized Fibonacci sequences (see [7,
8, 9]). Let {un}n≥0 be the sequence defined by

un = ρ(n+ 1, r) =
∑

k0+2k1+···+rkr−1=n−r+1

(k0 + · · ·+ kr−1)!

k0!k1! · · · kr−1!
for n ≥ r, (3.10)

with ur−1 = ρ(r, r) = 1 and ur = ρ(n, r) = 0 for 0 ≤ n ≤ r. Using the identity

(k0 + · · ·+ kr−1)!

k0!k1! · · · kr−1!
=

r−1∑

i=0

(k0 + · · ·+ kr−1 − 1)!

k0!k1! · · · ki−1!(ki − 1)!ki+1 · · · kr−1!
, (3.11)

we derive that

un =
∑

k0+2k1+···+rkr−1=n

r−1∑

i=0

(k0 + · · ·+ kr−1 − 1)!

k0! . . . ki−1!(ki − 1)!ki+1 · · · kr−1!
=

r−1∑

i=0

un−i (3.12)

for every n ≥ r.
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Proposition 3.3. (Combinatoric expression of generalized Fibonacci numbers) Consider the

generalized Fibonacci numbers {Fn}n≥0, where Fn = F
(r)
n . Then, we have the combinatoric

expression,

Fn =
∑

k0+2k1+···+rkr−1=n−r+1

(k0 + · · ·+ kr−1)!

k0!k1! · · · kr−1!
for n ≥ r, (3.13)

where Fr−1 = F
(r)
r−1 = 1 and Fn = F

(r)
n = 0 for 0 ≤ n ≤ r − 2.

For example, when r = 2, the sequence {F
(2)
n }n≥0 represents the well-known sequence of

Fibonacci numbers of order 2, whose initial conditions are F
(2)
n = δ1,n for n = 0, 1. Therefore,

we recover the known combinatorial expression given by

F (2)
n = ρ(n+ 1, 2) =

∑

k0+2k1=n−1

(k0 + k1)!

k0!k1!
for n ≥ 2, (3.14)

with F
(2)
0 = 0 and F

(2)
1 = 1. Expression (3.14) can also take the following form,

F (2)
n =

n−1∑

k=0

[

n− k − 1

2

]

∑

p=0

(
k + p

k p

)
for n ≥ 2, (3.15)

where

(
k + p

k p

)
=

(k + p)!

k! p!
and [x] means the integer part of x.

If we let r = 3, the sequence {F
(3)
n }n≥0 represents the generalized Fibonacci numbers of

order 3 with the initial conditions F
(3)
n = δ2,n for n = 0, 1, 2. Then, its combinatorial

expression is given by,

F (3)
n = ρ(n + 1, 3) =

∑

k0+2k1+3k2=n−2

(k0 + k1 + k2)!

k0!k1!k2!
for n ≥ 3, (3.16)

with F
(3)
0 = F

(3)
1 = 0 and F

(3)
2 = 1 (see more values in Table 1). Expression (3.16) can also

take a form similar to (3.15).
More generally, a direct application of Propositions 2.7 and 2.8 leads to the combinatorial

formulation of the elements of the Fibonacci fundamental system.

Proposition 3.4. Let Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} be the Fibonacci fundamental system.

The combinatorial expression of each element {F
(s)
n }n≥0, where 1 ≤ s ≤ r, is given by

F (r)
n = Fn = ρ(n+ 1, r) for n ≥ r + 1 (3.17)

and

F (s)
n =

s∑

j=1

ρ(n + s− j, r) for 2 ≤ s ≤ r, (3.18)

with n ≥ r + s, where the ρ(n, r) are given by (3.10).
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Proof. Since F
(1)
n = F

(r)
n−1 = Fn−1, we obtain F (1)

n = Fn−1 = ρ(n, r) for every n ≥ r + 1. For
2 ≤ j ≤ r − 1, formulas (2.16) and (3.10) give expression (3.17), namely,

F (s)
n = Fn−1 + · · ·+ Fn−s =

s∑

j=1

ρ(n− j + 1, r). (3.19)

�

A direct application of Theorem 3.1 and Proposition 3.4 establishes some combinatorial
identities involving the expressions of ρ(n, j) and ρ(n, r). More precisely, we have the combi-
natorial identities given in the following corollary.

Corollary 3.5. The combinatorial expressions of the generalized Fibonacci numbers identities
(3.6) and (3.7) are given by

ρ(m+ s+ 1, r) =
r∑

d=1

d∑

j=1

ρ(m− j + 1, r)ρ(s + d, r) (3.20)

and
q∑

k=1

ρ(n+ s− k + 1, r) =

r∑

d=1

∑

1≤i≤d, 1≤j≤q

ρ(n− i+ 1, r)ρ(s + d− j, r). (3.21)

It seems that the combinatorial expressions (3.20) and (3.21) are not in the current literature.
In the particular case of r = 2, the formulas of Corollary 3.5 show that the combinatorial
identity (3.20) takes the form,

ρ(m+ s+ 1, r) = ρ(m, r)ρ(s+ 1, r) + ρ(m+ 1, r)ρ(s, r) (3.22)

for every n ≥ 2 and s ≥ 0. And for r = 3, we have the identity

ρ(m+s+1, r) = ρ(m+1, r)ρ(s+2, r)+(ρ(m, r)+ρ(m−1, r)ρ(s, r)+ρ(m, r)ρ(s+1, r) (3.23)

for every n ≥ 2 and s ≥ 0.

4. Generalized Cassini Identity of the Fibonacci Fundamental System

4.1. Generalized Cassini Identity. Proposition 2.2 gives the Casoratian matrix Ĉ(n) as-
sociated with the Fibonacci fundamental system

Ĉ(n) = J × A
n × J,

where J is the antidiagonal unit matrix given in Proposition 2.2 and A is the companion matrix

(2.4) . Therefore, the Casoratian of the Fibonacci fundamental system {{F
(j)
n }n≥0, 1 ≤ j ≤ r}

is given by

C(n) = det[Ĉ(n)] = det[A]n = (−1)n(r−1). (4.1)

For r = 2, Proposition 2.7 shows that F
(1)
n+1 = F

(2)
n = Fn, where {Fn}n≥0 is the sequence of

usual Fibonacci numbers. Thus, the Casoratian (4.1) is given by

C(n) = det[An] =

∣∣∣∣∣
F

(2)
n+1 F

(1)
n+1

F
(2)
n F

(1)
n

∣∣∣∣∣ =
∣∣∣∣
Fn+1 Fn

Fn Fn−1

∣∣∣∣ = Fn+1Fn−1 − F 2
n = (−1)n. (4.2)

Therefore, Cassini identity is given by the Casoratian of the Fibonacci fundamental system
related to the sequence of Fibonacci numbers. It seems natural to assert that the general-
ized Cassini identity is the Casoratian of the Fibonacci fundamental systems. However, in
expression (4.1), it is clear that the Casoratian depends on all the elements of the Fibonacci
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fundamental system. Because of this, it cannot give an adequate generalization of Cassini
identity. Expression (4.1) of the Casoratian must be expressed only with the aid of the gener-
alized Fibonacci numbers. To state our generalization, some useful algebraic properties of the
determinant of matrix will be used. We consider the family of Fibonacci column vectors,

−→
F (j, n) = (F (j)

n , F
(j)
n+1, . . . , F

(j)
n+r−1)

t for n ≥ r − 1, (4.3)

where 1 ≤ j ≤ r. It is easy to show that the Fibonacci Casoratian matrix is

Ĉ(n) = [
−→
F (1, n), . . . ,

−→
F (j, n), . . . ,

−→
F (r, n)], (4.4)

where
−→
F (j, n) (1 ≤ j ≤ r) represents the vector columns. Now, the results of Proposition 2.8

imply that the the vectors column
−→
F (j, n) (1 ≤ j ≤ r) satisfy the following recursive relation:

−→
F (r, n) =

−→
F (1, n + 1),

−→
F (j, n) =

−→
F (1, n) + · · ·+

−→
F (1, n − j + 1) for 2 ≤ j ≤ r, (4.5)

where n ≥ j + 1. For 2 ≤ j ≤ r − 1, the former expression can be written in the form

−→
F (j, n) =

j−1∑

s=0

−→
F (1, n − s) =

−→
F (j − 1, n) +

−→
F (1, n − j + 1) (4.6)

for n ≥ j− 1. For j = r− 1, expression (4.6) and the determinant identity det(−→x 1, . . . ,
−→x s−1,

−→y ,−→y ,−→x s+2, . . . ,
−→x r) = 0 show that the Casoratian of the Fibonacci fundamental system can

be reduced to the form

C(n) = det([
−→
F (1, n),

−→
F (2, n), . . . , ,

−→
F (r − 2, n),

−→
F (1, n − r + 2),

−→
F (r, n)]) (4.7)

for every n ≥ r. By iteration of the preceding process to the other vectors column
−→
F (j, n)

(2 ≤ j ≤ r − 2) and taking into account that F
(1)
n+1 = F

(r)
n , we establish that

C(n) = det([
−→
F (1, n), . . . ,

−→
F (1, n − j), . . . ,

−→
F (1, n − r + 2),

−→
F (1, n + r − 1)]). (4.8)

In (4.8), the vectors column
−→
F (1, n − j) (0 ≤ j ≤ r − 1) must be in descending order from

left to right in the expression of the determinant. Specifically, the Cassini identity is obtained
from the Casoratian C(n) as

det([
−→
F (1, n + 1),

−→
F (1, n), . . . ,

−→
F (1, n − j), . . . , ,

−→
F (1, n − r + 2)) = ε.C(n), (4.9)

where ε = −1 or + 1. It is equivalent to perform a permutation of the vectors column
−→
F (1, n − j) in the determinant defining the Casoratian. This permutation is a cycle defined
by σr = τ1,2 ◦ τ2,3 ◦ · · · ◦ τj,j+1 ◦ · · · ◦ τr−1,r, where τi,j (i 6= j) is the transposition that permutes

i and j. A straightforward computation, using F
(1)
n = F

(r)
n−1 = Fn−1, gives

det(C̃(n)) = ε(σr)C(n), (4.10)

where ε(σr) = (−1)r−1 is the signature of σr ∈ Sr and C̃(n) is the matrix given by

C̃(n) = [
−→
F (n),

−→
F (n− 1), . . . ,

−→
F (n− j), . . . ,

−→
F (n− r + 1)], (4.11)

called the Cassini matrix and whose entries are given by C̃
(n)
i,k = Fn−k+i. Summarizing, the

preceding argument allows us to formulate the following general result.
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Theorem 4.1. Let Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} be the Fibonacci fundamental system and

C(n) its related Casoratian. Then, the associated generalized Cassini identity of order r ≥ 3
is given by

det([
−→
F (n),

−→
F (n− 1), . . . ,

−→
F (n− r + 1)]) = (−1)(n+1)(r−1) (4.12)

for every n ≥ r − 2. Moreover, the generalized Cassini identity of order r can be formulated
as follows: ∑

σ∈Sr

ε(σ)Fn−σ(1)+1 · · ·Fn−σ(r)+r = ε(σr)C(n) = (−1)(n+1)(r−1), (4.13)

where Sr is the group of permutations of {1, 2, . . . , r}, ε(σ) is the signature of σ ∈ Sr, and
σr = τ1,2 ◦ τ2,3 ◦ · · · ◦ τj,j+1 ◦ · · · ◦ τr−1,r, with τi,j (i 6= j) is the transposition.

Proof. Following the preceding discussions, we have established identity (4.10), namely,

det(C̃(n)) = det[
−→
F (n),

−→
F (n− 1), . . . ,

−→
F (n − j), . . . ,

−→
F (n − r + 1)] = ε(σr)C(n).

On the other hand, for Theorem 2.3, we have

C(n) = det[C̃(n)] = det[An] = det[A]n = (−1)n(r−1) 6= 0.

Recall that the determinant of every square matrix M = (aij)1≤i,j≤r of order r can be
expressed in terms of the permutation group Sr of {1, 2, . . . , r} as follows:

det[M ] =
∑

σ∈Sr

ε(σ)a1σ(1) · · · arσ(r),

where ε(σ) is the signature of σ ∈ Sr. For

M = C̃(n) = [
−→
F (n),

−→
F (n− 1), . . . ,

−→
F (n− j), . . . ,

−→
F (n− r + 1)],

we have entries a
(n)
ij = Fn+i−j. Hence, for every σ ∈ Sr, a

(n)
iσ(i) = Fn+i−σ(i). Therefore, we

obtain the result

det[C̃(n)] =
∑

σ∈Sr

ε(σ)Fn−σ(1)+1 · · ·Fn−σ(r)+r = ε(σr)C(n) = (−1)(n+1)(r−1).

�

Theorem 4.1 shows that the generalized Cassini identity is expressed in terms of the Ca-
soratian of the Fibonacci fundamental system. Moreover, in the determinant form of the
generalized Cassini Identity, only the usual generalized Fibonacci numbers {Fn}n≥0 defined

by Fn = F
(r)
n = F

(1)
n+1 appear.

Generalized Cassini identity for r = 2. Let S2 be the group of permutations of {1, 2}
with two elements, identity e, and the transposition σ2 = τ1,2. Then, we have ε(e) = 1 and
ε(σ2) = (−1)1 = −1. Application of Theorem 4.1 shows that

det([
−→
F (n),

−→
F (n− 1)]) =

∑

σ∈S2

ε(σ)Fn−σ(1)+1Fn−σ(2)+2 (4.14)

= ε(e)FnFn + ε(σ2)Fn−1Fn+1 = F 2
n − Fn−1Fn+1.
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On the other hand, we have det([
−→
F (n),

−→
F (n − 1)) = ε(σ2) · C(n) = (−1)(n+1). Therefore, we

obtain

det([
−→
F (n),

−→
F (n− 1)]) = F 2

n − Fn−1Fn+1 = (−1)(n+1).

We see that we can recover expression (4.2), namely, Fn−1Fn+1 − F 2
n = (−1)n.

Generalized Cassini identity for r = 3. Let S3 be the group of permutations of {1, 2, 3}
with six elements, identity e, and transpositions τ1,2, τ1,3, τ2,3, τ1,3 ◦ τ2,3, σ3 = τ1,2 ◦ τ2,3.
Then, we have the signatures ε(e) = 1; ε(τ1,2) = ε(τ1,3) = ε(τ2,3) = (−1)1 = −1, and
ε(τ1,3 ◦ τ2,3) = ε(σ2) = (−1)2 = 1. Application of Theorem 4.1 shows that

det([
−→
F (n),

−→
F (n− 1),

−→
F (n− 2)]) = ε(σ3).C(n) = (−1)2(−1)n(3−1) = 1. (4.15)

A long straightforward computation shows that the preceding expression takes the form

det([
−→
F (n),

−→
F (n− 1),

−→
F (n− 2)]) =

∑

σ∈S3

ε(σ)Fn−σ(1)+1Fn−σ(2)+2Fn−σ(3)+3

= FnFnFn − Fn−1Fn+1Fn − Fn−2FnFn+2 − FnFn−1Fn+1

+ Fn−2Fn+1Fn+1 + Fn−1Fn−1Fn+2.

Therefore, expression (4.15) results in the identity

Fn(F
2
n − Fn+1Fn−1) + Fn−2(F

2
n+1 − Fn+2Fn)− 3Fn+1FnFn−1 = 1. (4.16)

Generalized Cassini identity for r = 4. Similarly, for r = 4 we have the action of the 24 el-

ements of the permutation group S4. Application of Theorem 4.1 shows that det([
−→
F (n),

−→
F (n−

1),
−→
F (n− 2),

−→
F (n− 3)]) = ε(σ4) ·C(n) = ε(σ4) · (−1)3n, where ε(σ4) = (−1)3 is the signature

of σ4 = τ1,2 ◦ τ2,3 ◦ τ3,4. Thus, this expression takes the form

det([
−→
F (n), . . . ,

−→
F (n− 3)]) =

∑

σ∈S4

ε(σ)Fn−σ(1)+1 · · ·Fn−σ(4)+4 = (−1)n+1. (4.17)

4.2. Generalized Cassini Identity and Combinatorics. The combinatorial properties of
the generalized Fibonacci numbers identities (3.6) and (3.7) and those of Cassini’s identity
can lead to some other identities between the ρ(n, r). More precisely, expression (3.10) (see
Proposition 3.3) and Theorem 4.1 permit to us to find new Fibonacci combinatorial identities.

Theorem 4.2. Let Fr = {{F
(s)
n }n≥0; 1 ≤ s ≤ r} be the Fibonacci fundamental system. Then,

the generalized Cassini identity of order r takes the following combinatorial form.

∑

σ∈Sr

ε(σ)

[
r∏

i=1

ρ(n− σ(i) + i+ 1, r)

]
= (−1)(n+1)(r−1), (4.18)

where Sr is the group of permutations of the set {1, 2, . . . , r} and ε(σ) is the signature of
σ ∈ Sr.

Proof. A substitution of expression (3.17) in identity (4.13) of Theorem 4.1 allow us to obtain
expression (4.18). �
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Specially, for r = 2, the usual Cassini identity is given by

ρ(n+ 2, 2)ρ(n, r) − ρ(n+ 1, r)2 = (−1)n. (4.19)

The generalized combinatorial Cassini identity of order r = 3 is given by

ρ(n+ 1, 3)
(
ρ(n+ 1, 3)2 − ρ(n+ 2, 3)ρ(n, 3)

)
+ ρ(n+ 2, 3)2ρ(n− 1, 3)

−ρ(n+ 3, 3)ρ(n + 1, 3)ρ(n − 1, 3) − 3ρ(n + 2, 3)ρ(n + 1, 3)ρ(n, 3) = 1. (4.20)

To the best of our knowledge, Theorems 4.1 and 4.2 are not in the current literature,
regarding the combinatorial aspect related to generalized Fibonacci numbers.

5. Concluding Remarks and Perspective

The results obtained in this study show the importance of the Casoratian matrix and Ca-
soratian method in connection with the companion matrix. For expression (1.1) considered as
the difference equation, the two basic solutions play an important role, for the fundamental
Fibonacci system and for the generalization of Cassini’s identity.

Our method can also give similar results for other generalizations of the Fibonacci numbers
or Pell numbers. Some preliminary results have been obtained in this direction.
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