
THE p-ADIC VALUATION OF LUCAS SEQUENCES

WHEN p IS A SPECIAL PRIME

CHRISTIAN BALLOT

Abstract. The behavior of the p-adic valuation of the terms of Lucas sequences has basically
been known since the seminal work of Lucas in 1878, although it has been revisited many
times with partial or complete results. However, the assumption always seems to be that
the parameters P and Q of the recursion are coprime, i.e., that the sequence is regular. We
complete the picture by evaluating the valuation of Lucas sequences with respect to a special
prime, i.e., one dividing P and Q.

1. Introduction

Given two integers P and Q, Q 6= 0, one defines a pair of Lucas sequences {U, V }. Both U
and V satisfy the second-order linear recursion

Xn+2 = PXn+1 −QXn, (1)

for all n ≥ 0, X = U or V . The fundamental sequence U has initial values U0 = 0 and U1 = 1,
whereas the companion, or associate sequence V satisfies V0 = 2 and V1 = P . Therefore, both
U and V have integral terms. Lucas studied many properties of these two sequences in his
seminal memoir [6]. Even today, they continue to be an object of study and curiosity for many
amateurs and researchers and have found numerous applications. We refer the reader to the
book [9] and, for their arithmetic properties, to the fourth chapter of that book.

The rank of appearance of a prime p is the smallest index n > 0, if it exists, such that
p | Un. A regular prime p is one that does not divide gcd(P,Q). All primes p ∤ Q admit a rank
of appearance denoted by ρ = ρ(p). The rank exponent ν of p is the full exponent of p that
divides Uρ, i.e., the p-adic valuation of Uρ, νp(Uρ), which we also write as pν ||Uρ. Note that
if Uρ = 0, then ν = +∞. A regular prime that divides Q does not have a rank.

If p ∤ Q, then the p-adic valuation of all U and V terms is well-known (see e.g., [2, 1, 4, 5,
6, 8, 9]). For instance, if p ≥ 3, then for all n ≥ 1

νp(Un) =

{

0, if ρ ∤ n;

(ν − 1) + νp(n), if ρ | n. (2)

With a few caveats, the same phenomenon occurs for the prime p = 2. The valuation is positive
if and only if ρ | n, and, with a starting value of ν for the valuation of Uρ, higher valuations
appear exactly as they enter n in Uρn, a phenomenon known as the lifting-of-the-exponent.

It is worth stressing that the hypothesis that U be regular, i.e., that gcd(P,Q) = 1, is not
necessary and that the p-adic valuation of U and V , p ∤ Q, obeys the same rules regardless of
the value of gcd(P,Q).

In this note, we address the problem of determining the p-adic valuation of the terms of
Lucas sequences when p is a special prime, that is, one that divides gcd(P,Q). The exponents
of p in P and Q are denoted by a and b throughout. Thus, we have pa ||P and pb ||Q, where
a and b are positive integers, unless P = 0 in which case a = +∞. It is clear from (1) that
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these p-adic valuations will accrue as n gets larger. Whatever the positive values of a and b,
there is an obvious lower bound for νp(Un) given in the next theorem.

Theorem 1.1. Suppose p is a special prime, i.e., p divides gcd(P,Q). Then,

νp(Un) ≥
⌊

n

2

⌋

for all n ≥ 1.

Proof. We proceed by induction on n after noting that as U1 = 1 and U2 = P , we clearly have
νp(U1) = 0 ≥ ⌊12⌋ and νp(U2) ≥ 1 = ⌊22⌋. Suppose n ≥ 3 and νp(Uk) ≥ ⌊k2⌋ for k = n − 2 and
n− 1. Then,

νp(Un) ≥ min{νp(PUn−1), νp(QUn−2)}
≥ 1 + min{νp(Un−1), νp(Un−2)}

= 1 +

⌊

n− 2

2

⌋

=

⌊

n

2

⌋

.

�

Theorem 1.1 marks a clear difference with regular primes as the limit of νp(Un) tends to
infinity as n → ∞. The real question is whether, as for regular primes, a complete simple
description of these valuations can be achieved. Lurking behind the steady growth, is there
also a full regularity and an occasional presence of the lifting of the exponent? We were not
sure. Some numerical experiments such as the following were definitely helpful.

I. (P,Q) = (6, 3), p = 3, a = b = 1

n 2 3 4 5 6 7 8 9 10 11 12 13
ν3(Un) 1 1 2 2 5 3 4 4 5 5 8 6

n 14 15 16 17 18 19 20 21 22 23 24
ν3(Un) 7 7 8 8 12 9 10 10 11 11 14

– TABLE 1 –

Table 1 seems to suggest the conjecture

ν3(Un) =

⌊

n

2

⌋

+
(

1 + ν3(n)
)

· [6 | n],

where we used the Iverson symbol ‘[−]’ defined in (3).

II. (P,Q) = (5, 10), p = 5, a = b = 1

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
ν5(Un) 2 2 3 3 4 4 6 5 6 6 7 7 8 8 9 9 11 10

n 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
ν5(Un) 11 11 12 12 13 13 14 14 16 15 16 16 17 17 18 18

n 38 39 40 41 42 43 44 45 46 47 48 49 50 51
ν5(Un) 19 19 21 20 21 21 22 22 23 23 24 24 27 25

– TABLE 2 –
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Table 2 suggests the conjecture

ν5(Un) =

⌊

n

2

⌋

+ ν5(n) · [10 | n].

Although we give the complete and compact result we sought within this introduction, we
retained the sinuous order in which we addressed the problem in Section 2, where proofs
are given. Instead of only adopting, as usual, the somewhat dull theorem-followed-by-proof
presentation, we left much of the research scaffolding in place, increasing the length of the
note — proofs can be shortened, some omitted — and on occasions making our foolishness
conspicuous, but hopefully making for a more pleasant read.

Here is our main theorem, a summary of the various partial theorems of Section 2.

Theorem 1.2. Suppose U(P,Q) is a fundamental Lucas sequence, where P = paP ′, Q = pbQ′,
p ∤ P ′Q′ for some prime p and positive a and b with possibly a = +∞. Then for all n ≥ 1,

νp(Un) =

{

(n− 1)a, if b > 2a;

(n− 1)a+ νp(U
′
n), if b = 2a,

where U ′ = U(P ′, Q′), whereas, for b < 2a, we find that

νp(U2n+1) = bn, (n ≥ 0), and

νp(U2n) = bn+ (a− b) + νp(n) + λn,

where

λn =

{

νp(P
′2 −Q′), if 2 ≤ p ≤ 3, 2a = b+ 1, and p | n;

0, otherwise.

Surprisingly, perhaps, at first sight, the prime 2 and the prime 3 show idiosyncracies not
shared by other primes. The prime 3, as a regular prime, does not stand out, only the prime
2 does. But, this is not entirely true. The rank exponent of a regular prime p ≥ 5 that divides
P 2 − 4Q is always 1. Only the primes 2 and 3 do not necessarily follow this rule. Note that
special primes divide P 2 − 4Q. We point out that our results include the case of degenerate
Lucas sequences, i.e., sequences for which there exists an n > 0 with Un = 0. For instance, if
λn = +∞, then U2n = 0, a degenerate case the theorem allows.

Because U2n = UnVn, we see that νp(Vn) = νp(U2n) − νp(Un). Hence, we obtain the
immediate corollary.

Corollary 1.3. With the same notation and hypotheses as in Theorem 1.2, for all n ≥ 1 we
have

νp(Vn) =

{

na, if b > 2a;

na+ νp(V
′
n), if b = 2a,

where V ′ = V (P ′, Q′), whereas, for b < 2a, we obtain

νp(V2n+1) = bn+ a+ νp(2n+ 1) + µn, (n ≥ 0), and

νp(V2n) =











bn, if p ≥ 3;

bn+ 1, if p = 2 and, if 2a > b+ 1 or 2 | n;
bn+ 1 + ν2(P

′2 −Q′), if p = 2, 2a = b+ 1 and 2 ∤ n,

where

µn =

{

νp(P
′2 −Q′), if p = 3, 2a = b+ 1, and n ≡ 1 (mod 3);

0, otherwise.
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We use the Iverson symbol [−], a boolean function that may only take two values 1 or 0. If
P is a statement, then

[P] =

{

1, if P is true;

0, otherwise.
(3)

There are two formulas of Lucas that we use in Section 2. Lucas [7, p. 312] observes that
each Un, n ≥ 1 is a polynomial in P and Q, which is homogeneous in P and

√
Q of degree

n− 1. We give these polynomials for 1 ≤ n ≤ 5 below.

n 1 2 3 4 5
Un 1 P P 2 −Q P 3 − 2PQ P 4 − 3P 2Q+Q2

Lucas [6, p. 207] derives a formula for these polynomials, namely for all n ≥ 1.

Un = Φ(n) =

⌊(n−1)/2⌋
∑

k=0

(−1)k
(

n− k − 1

k

)

Pn−1−2kQk. (4)

(One may check that (Φ(n)) satisfies recursion (1) and that Φ(1) = 1 = U1 and Φ(2) = P =
U2.)

Secondly, we recall that if P 2 − 4Q 6= 0, then

Un =
αn − βn

α− β
and Vn = αn + βn,

where α and β are the zeros of x2 − Px+Q. Thus, we see that

Ukn(P,Q) =
αkn − βkn

α− β
=

αk − βk

α− β
· α

kn − βkn

αk − βk
= Uk(P,Q) · Un(Vk, Q

k). (5)

Note that the identity Ukn(P,Q) = Uk(P,Q) · Un(Vk, Q
k) remains valid if P 2 − 4Q = 0, when

Un(P,Q) = nαn−1.

2. The Proofs

There are two cases, namely b > 2a and b = 2a, where describing the valuations of all Un is
a simple task.

The case b > 2a.

Theorem 2.1. Suppose p divides P and Q with pa ||P and pb ||Q where b > 2a. Then,

νp(Un) = (n− 1)a

for all n ≥ 1.

Proof. We proceed by induction on n. Clearly, νp(U1) = 0 = (1 − 1)a and νp(U2) = νp(P ) =
a = (2− 1)a.

Assuming n ≥ 3 and νp(Uk) = (k − 1)a for k = n− 1 and n− 2, we obtain

νp(PUn−1) = a+ (n− 2)a = (n− 1)a,

νp(QUn−2) = b+ (n− 3)a > 2a+ (n− 3)a = (n − 1)a.

Thus, νp(PUn−1) < νp(QUn−2). Hence,

νp(Un) = νp(PUn−1 −QUn−2) = νp(PUn−1) = (n− 1)a,

finishing the proof. �
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For the case b = 2a, the p-adic valuation of Un is expressed in terms of the p-adic valuation
of another Lucas sequence U ′ = U(P ′, Q′) with respect to which p is regular.

Theorem 2.2. Suppose p is a special prime with pa ||P and pb ||Q and b = 2a. Then for all
n ≥ 1,

νp(Un) = (n − 1)a+ νp(U
′
n),

where U ′ = U(P ′, Q′), P = paP ′, and Q = pbQ′.

Proof. By (4), for all n ≥ 1, we find that

Un =
∑

k≥0

(−1)k
(

n− k − 1

k

)

p(n−1−2k)a(P ′)n−1−2k · p2ka(Q′)k

= p(n−1)a
∑

k≥0

(−1)k
(

n− 1− k

k

)

(P ′)n−1−2k(Q′)k = p(n−1)aΦn(P
′, Q′) = p(n−1)aU ′

n,

which proves the claim. �

Finally, we tackle the case b < 2a.

Theorem 2.3. Suppose p is a special prime, P = paP ′, Q = pbQ′ with b < 2a and p ∤ P ′Q′.
Then, for all n ≥ 0,

νp(U2n+1) = bn. (6)

If p ≥ 5, then we find that

νp(U2n) = bn+ (a− b) + νp(n) (7)

for all n ≥ 1. Moreover, whether p ≥ 5, or p = 2 or 3,

νp(U2n) = bn+ (a− b) (8)

for all n ≥ 1 prime to p. For p = 3, equation (7), i.e.,

ν3(U2n) = bn+ (a− b) + ν3(n) (9)

also holds for all n ≥ 1, if 2a > b+1 or if Q′ ≡ 2 (mod 3). But if 2a = b+1, Q′ ≡ 1 (mod 3),
and 3 | n, then

ν3(U2n) > bn+ (a− b) + ν3(n). (10)

Proof. By (4), we obtain

U2n+1 =

n
∑

k=0

(−1)k
(

2n− k

k

)

P 2n−2kQk.

The p-adic valuation of P 2n−2kQk is 2na−(2a−b)k, a strictly decreasing function of k. Hence,

it reaches a minimum only at k = n. As
(

2n−n
n

)

= 1, νp(U2n+1) is the value of 2na− (2a− b)k
at k = n, i.e., bn. This proves (6).

Again using (4), we find that

U2n =

n−1
∑

k=0

(−1)k
(

2n− 1− k

k

)

P 2n−1−2kQk.
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Putting ℓ = n− k, we get

U2n =

n
∑

ℓ=1

(−1)n−ℓ

(

n+ ℓ− 1

n− ℓ

)

P 2ℓ−1Qn−ℓ

=

n
∑

ℓ=1

(−1)n−ℓaℓP
2ℓ−1Qn−ℓ,

where

aℓ =

(

n+ ℓ− 1

2ℓ− 1

)

. (11)

Now, the p-adic valuation of P 2ℓ−1Qn−ℓ is (2a− b)ℓ+ nb− a, a strictly increasing function
of ℓ. Thus, it is minimal for ℓ = 1 and equal to

nb+ (a− b).

Clearly, if we find out that

νp(a1PQn−1) < νp(aℓP
2ℓ−1Qn−ℓ) for all 2 ≤ ℓ ≤ n, (12)

then

νp(U2n) = νp(a1PQn−1) = νp(a1) + nb+ (a− b).

Since a1 = n, condition (12) certainly holds if p ∤ n. In particular, (8) holds.
Thus, from now on we assume p | n. A necessary condition for (12) to fail is the existence

of some ℓ, 2 ≤ ℓ ≤ n, for which

νp(aℓ) + (2a− b)ℓ+ nb− a ≤ νp(a1) + (2a− b) + nb− a,

i.e., an ℓ such that

νp

(

a1
aℓ

)

≥ (2a− b)(ℓ− 1). (13)

Observing that for all ℓ ≥ 2

aℓ =
(n + ℓ− 1) . . . (n− ℓ+ 1)

(2ℓ− 1)!

=
(n + ℓ− 1)(n − ℓ+ 1)

(2ℓ− 2)(2ℓ − 1)
aℓ−1

=
n2 − (ℓ− 1)2

2(ℓ− 1)(2ℓ − 1)
aℓ−1,

we obtain that
a1
aℓ

=
2ℓ−1(ℓ− 1)!

∏ℓ−1
k=1(2k + 1)

∏ℓ−1
k=1(n

2 − k2)
. (14)

Since (ℓ − 1)! divides any product of ℓ − 1 consecutive integers, it divides
∏ℓ−1

k=1(n
2 − k2).

Therefore, for p odd,

νp
(a1
aℓ

)

≤ νp
(

ℓ−1
∏

k=1

(2k + 1)
)

= νp
(

(2ℓ− 1)!
)

− νp
(

(ℓ− 1)!
)

.

Combining the above inequality with (13), we see that we must have

ℓ− 1 ≤ (2a− b)(ℓ− 1) ≤ νp
(

(2ℓ− 1)!
)

− νp
(

(ℓ− 1)!
)

. (15)
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However, using the (near-obvious) formula of Legendre for the p-adic valuation of factorials,
namely

νp(n!) =
∑

k≥1

⌊

n

pk

⌋

,

we see that

νp((2ℓ− 1)!) <
∑

k≥1

2ℓ− 1

pk
=

2ℓ− 1

p− 1
≤

{

2ℓ
4 ≤ ℓ− 1, if p ≥ 5;
2ℓ−1
2 < ℓ, if p = 3

(16)

for all 2 ≤ ℓ ≤ n. If p ≥ 5, then, by (15) and (16), we must have

ℓ− 1 ≤ νp
(

(2ℓ− 1)!
)

< ℓ− 1,

a contradiction. Therefore, (7) holds. If p = 3 and (12) fails, then by (15) and (16), we see
that

ℓ− 1 ≤ (2a− b)(ℓ− 1) ≤ ν3
(

(2ℓ− 1)!
)

− ν3
(

(ℓ− 1)!
)

≤ ℓ− 1− ν3
(

(ℓ− 1)!
)

for some 2 ≤ ℓ ≤ n. This forces 2a − b = 1 and ν3
(

(ℓ − 1)!
)

= 0. Thus, 2 ≤ ℓ ≤ 3. But,

by (11), a3 =
(n+2

5

)

and 3 | n implies that ν3(a1/a3) = 1. So for ℓ = 3, (13) is not satisfied

because (2a − b)(ℓ − 1) = 2. For ℓ = 2, a2 =
(n+1

3

)

, and ν3(a2) = ν3(a1) − 1. Thus, (13) is
satisfied. The 3-adic valuation of U2n is then often decided by

nPQn−1 − a2P
3Qn−2,

i.e., if ν3(nPQn−1 − a2P
3Qn−2) = ν3(nPQn−1), then (9) holds, whereas if ν3(nPQn−1 −

a2P
3Qn−2) > ν3(nPQn−1), then (10) is true. It remains to find explicit conditions under

which the former case holds. Now, as 2a = b+ 1,

nPQn−1 − a2P
3Qn−2 = nPQn−2

(

Q− n2 − 1

6
P 2

)

= nPQn−2

(

3bQ′ − n2 − 1

2
32a−1P ′2

)

=
n

2
3nb+a−bP ′Q′n−2

(

2Q′ − (n2 − 1)P ′2
)

,

implying that

ν3(nPQn−1 − a2P
3Qn−2) = ν3(n) + nb+ (a− b) + ν3(2Q

′ + P ′2 − n2P ′2).

As 32 divides n2P ′2, we see our two final claims, (9) and (10), hold. �

Numerical experiments seem to suggest that simple regularity also rules the 3-adic valuation
of the terms U2n when 3 | n, 2a = b+ 1, and Q′ ≡ 1 (mod 3). Hence, we hope to improve on
inequality (10). Besides Table 1, we give numerical tables for a couple of additional cases.

III. (P,Q) = (3, 12), a = b = 1, Q′ = 4 ≡ 1 (mod 3)

n 3 6 9 12 15 18 21 24 27
ν3(U2n) 5 8 12 14 17 21 23 26 31

– TABLE 3 –
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IV. (P,Q) = (36, 27), a = 2; b = 3, Q′ = 1

n 3 6 9 12 15 18 21 24 27
ν3(U2n) 10 19 29 37 46 56 64 73 84

– TABLE 4 –

Table 3 suggests we conjecture for U(3, 12),

ν3(U2n) = n+
(

1 + ν3(n)
)

· [3 | n],
whereas Table 4 suggests for U(36, 27) the conjecture

ν3(U2n) = 3n− 1 +
(

1 + ν3(n)
)

· [3 | n].
So the question arises as to whether one may replace (10) with

ν3(U2n) = bn+ (a− b) + (c+ ν3(n)) · [3 | n],
for some c ≥ 1?

Thus, we suppose that 2a = b + 1, Q′ ≡ 1 (mod 3), and 3 | n. Putting n = 3k, we recall
that, by (5),

U2n = U6k = U6(P,Q) · Uk(V6, Q
6). (17)

However, the Lucas sequence U ′ = U(V6, Q
6) is such that a′ = ν3(V6) = 3b and b′ = ν3(Q

6) =
6b. That is, we are in the case b′ = 2a′. Indeed, let us check that ν3(V6) = 3b. We have
V6 = V 2

3 − 2Q3 and V3 = P (P 2 − 3Q). Since ν3(V3) = a+ 2a+ ν ′, where ν ′ = ν3(P
′2 −Q′),

ν3(V
2
3 ) = 6a+ 2ν ′ ≥ 3b+ 3 + 2 = 3b+ 5, (18)

whereas ν3(2Q
3) = 3b. Thus, using Theorem 2.2, we find that

ν3(U
′
k) = (k − 1)a′ + ν3

(

Uk(V6/3
3b, Q6/36b)

)

.

We claim the rank of 3 in U(V6/3
3b, Q6/36b) is 3 and its rank exponent is 1. Indeed, Q6/36b =

Q′6 and U3(V6/3
3b, Q′6) = (V6/3

3b)2 −Q′6. A simple calculation gives
(

V6

33b

)2

−Q′6 =
P 4(P 2 − 3Q)2

36b
− 4Q′3P

2(P 2 − 3Q)2

33b
+ 3Q′6. (19)

By (18), the 3-adic valuation of the first two terms on the right side of (19) is at least 5, but
the term 3Q′6 has 3-adic valuation 1, proving our claims. We go back to evaluating ν3(U2n)
using (17). Therefore, again as b′ = 2a′, we deduce from Theorem 2.2 and from (2) that

ν3(U
′
k) = (k − 1)a′ + (1− 1) + ν3(k).

Since U6 = U3V3 = (P 2 −Q)V3, ν3(U6) = b+ (3a+ ν ′). Hence,

ν3(U2n) = ν3(U6) + ν3(U
′
k) = (3a+ b+ ν ′) + ((k − 1)3b + ν3(k))

= 3a− 2b+ nb+ ν ′ + ν3(k) = bn+ (a− b) + 1 + ν ′ + (ν3(n)− 1)

= bn+ (a− b) + ν3(n) + ν ′.

Combining this result with (9) we have the special theorem.

Theorem 2.4. Suppose 3 is a special prime, P = 3aP ′, Q = 3bQ′ with b < 2a and 3 ∤ P ′Q′.
Then for all n ≥ 1, we find that

ν3(U2n) = bn+ (a− b) + ν3(n) + ν3(P
′2 −Q′) · [2a = b+ 1] · [3 | n],

with the use of the Iverson symbol.
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In the course of proving Theorem 2.3, we omitted to treat the 2-adic valuation of terms
U2n when 2 | n. Indeed, there seemed to be a bifurcation in evaluating νp(a1/aℓ) from its
expression in (14), depending on whether p were odd or even. This is not as true as it may
seem. Indeed, we recall that

U2n =
n
∑

ℓ=1

(−1)n−ℓaℓP
2ℓ−1Qn−ℓ,

with aℓ =
(n+ℓ−1

2ℓ−1

)

. We usually expect the 2-adic valuation of U2n to be given by the first

term a1PQn−1. For this to fail, we saw that condition (13) had to hold for some 2 ≤ ℓ ≤ n.
However, from (14), we obtain

ν2(a1/aℓ) = ℓ− 1 + ν2
(

(ℓ− 1)!
)

− ν2
(

ℓ−1
∏

k=1

(n2 − k2)
)

≤ ℓ− 1 + ν2
(

(ℓ− 1)!
)

− 2ν2
(

(ℓ− 1)!
)

= ℓ− 1− ν2
(

(ℓ− 1)!
)

,

because the product
∏ℓ−1

k=1(n
2 − k2) contains two factors, each a product of ℓ− 1 consecutive

integers. That is, each such factor is a multiple of (ℓ − 1)!. Using (13), we must have the
double inequality

ℓ− 1 ≤ (2a− b)(ℓ− 1) ≤ ℓ− 1− ν2
(

(ℓ− 1)!
)

,

which may only hold if 2a− b = 1 and ν2
(

(ℓ−1)!
)

= 0, i.e., if 2a− b = 1 and ℓ = 2. Therefore,
if 2a ≥ b+ 2, then

ν2(U2n) = ν2(a1PQn−1) = ν2(n) + a+ (n− 1)b = nb+ (a− b) + ν2(n). (20)

Thus, if 2a = b + 1, then ν2(U2n) is often determined by the 2-adic valuation of nPQn−1 −
(n2−1)n

6 P 3Qn−2. Instead, we turn to the method used for p = 3 in (17). Thus, we write, with
n = 2k,

U2n = U4k = U4 · Uk(V4, Q
4).

As U4 = P (P 2−2Q) and 2a = b+1, we see that ν2(U4) = a+2a+ν2(P
′2−Q′), where P ′ and

Q′ are defined as in Theorems 2.2 or 2.3. Noting that ν2(P
4) = 2b + 2, ν2(4P

2Q) = 2b + 3,
and ν2(2Q

2) = 2b + 1, we see that a′ := ν2(V4) = 2b + 1, since V4 = P 4 − 4P 2Q+ 2Q2. Now
b′ := ν2(Q

4) = 4b. Hence, the prime 2 is special in U(V4, Q
4) with 2a′ = 4b + 2 ≥ b′ + 2.

Therefore, using (6) and (20) and writing ν ′ = ν2(P
′2 −Q′), we obtain

ν2(U2n) = ν2(U4) + ν2
(

Uk(V4, Q
4)
)

= (3a+ ν ′) +

{

b′(k − 1)/2, if 2 ∤ k;

b′k/2 + (a′ − b′) + ν2(k/2), if 2 | k;

= a+ b+ 1 + ν ′ +

{

bn− 2b, if 2 ∤ k;

bn+ (1− 2b) + (ν2(n)− 2), if 2 | k;
= bn+ (a− b) + ν2(n) + ν ′.

With the next theorem, we complete the description of the p-adic valuation of terms of a Lucas
sequence U in all cases. The next theorem combines (8) and the information we just gathered
for n even.
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Theorem 2.5. Suppose 2 is special, P = 2aP ′, Q = 2bQ′ with b < 2a and 2 ∤ P ′Q′. Then for
all positive n, we find that

ν2(U2n) = bn+ (a− b) + ν2(n) + ν2(P
′2 −Q′) · [2a = b+ 1] · [2 | n],

with the use of the Iverson symbol.

(Note that ν2(U2n) may be +∞ if U2 = P = 0 and n ≥ 1, or if 2a = b+1, U4 = P (P 2−2Q) =
0, and 2 | n.)

3. Epilogue

As mentioned in the introduction, we can prove those results, using the same elementary
tools, in a much more effective and concise way [3]. This can be achieved by using the technique
of Theorem 2.2 even in the more difficult case 2a > b.

The lower bound obtained in Theorem 1.1 can be improved if we know the values of a and
b. Indeed, since each Un is a polynomial in P and Q, homogeneous of degree n− 1 in P , and√
Q, each term of that polynomial is of the form

P λ(
√

Q )2µ = P λQµ,

with λ+ 2µ = n− 1. Thus,

νp(P
λQµ) = λa+ µb = λa+ 2µ

b

2

≥ (λ+ 2µ) ·min

{

a,
b

2

}

= (n− 1) ·min

{

a,
b

2

}

.

The same inductive proof of Theorem 1.1 may also be used. Since each Vn is a polynomial
in P and Q, homogeneous of degree n in P and

√
Q, we obtain the following theorem, also

valid, of course, if p is regular.

Theorem 3.1. If p is a prime and pa ||P , pb ||Q, then for all n ≥ 1,

νp(Un) ≥
⌈

(n− 1) ·min

{

a,
b

2

}⌉

;

νp(Vn) ≥
⌈

n ·min

{

a,
b

2

}⌉

.

To bring up another insight, the referee made the following comment. By extending the
p-adic valuation to the quadratic field Q(α), there are two cases to consider. When b > 2a, the
roots α and β have distinct valuations, say νp(α) = a for the dominant root and νp(β) = b− a
for the root of larger valuation; however when b ≤ 2a the two roots have the same valuation
b/2. This gives an idea as to why the cases b > 2a and b = 2a are the simplest cases. From
the Binet formula

Un =
αn − βn

α− β
=

αn

α− β

(

1−
(

β

α

)n)

,

one can read directly, say, the result of Theorem 2.1. Also, the lower bound obtained in
Theorem 3.1 is easily seen by observing that

min {νp(α), νp(β)} = min

{

a,
b

2

}

.
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