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Abstract. Zeckendorf proved that every integer can be written uniquely as a sum of nonad-
jacent Fibonacci numbers {1, 2, 3, 5, . . .}. This has been extended to many other recurrence
relations {Gn} (with their own notion of a legal decomposition). It has also been proved that
the distribution of the number of summands of an M ∈ [Gn, Gn+1) converges to a Gaussian
as n → ∞. We prove that for any nonnegative integer g, the average number of gaps of size
g in many generalized Zeckendorf decompositions is Cµn + dµ + o(1) for constants Cµ > 0
and dµ depending on g and the recurrence, the variance of the number of gaps of size g is
similarly Cσn+dσ + o(1) for constants Cσ > 0 and dσ, and the number of gaps of size g of an
M ∈ [Gn, Gn+1) converges to a Gaussian as n → ∞. We show this by proving a general result
on when an associated two-dimensional recurrence converges to a Gaussian, and additionally
re-derive other results in the literature.

1. Introduction

1.1. Previous Results. Zeckendorf [27] proved that if the Fibonacci numbers are defined
by F1 = 1, F2 = 2, and Fn+1 = Fn + Fn−1, then every integer can be written as a sum of
nonadjacent terms. The standard proof is by the greedy algorithm, although combinatorial
approaches exist (see [16]). More generally, one can consider other sequences of numbers and
rules for a legal decomposition, and ask when a unique decomposition exists, and if it does
how the summands are distributed.

There has been much work on these decomposition problems. In this paper, we concentrate
on decompositions of positive linear recurrences, defined below (see [1, 10] for signed decompo-
sitions, [9] for f -decompositions, [5, 6, 7] for decompositions of recurrences where the leading
term vanishes, and [8] for a lattice based example).

Definition 1.1. A positive linear recurrence sequence ( PLRS) is a nonconstant sequence {Gn}
satisfying

Gn = c1Gn−1 + · · · + cLGn−L (1.1)

with nonnegative integer coefficients ci, with c1, cL, L ≥ 1 and initial conditions G1 = 1 and
Gn = c1Gn−1 + c2Gn−2 + · · ·+ cn−1G1 + 1 for 1 < n ≤ L.

Definition 1.2 (Legal decomposition). For a positive linear recurrence sequence {Gn}, a legal
decomposition of an integer M > 0 is a decomposition

M =

N
∑

i=1

aiGN+1−i (1.2)

with a1 > 0 and the other ai ≥ 0, and one of the following two conditions holds.
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(1) N < L and ai = ci for 1 ≤ i ≤ N .
(2) There exists an s ∈ {1, . . . , L} such that

(i) a1 = c1, a2 = c2, . . ., as−1 = cs−1, and as < cs,
(ii) as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and

(iii) {bi}
N−s−ℓ
i=1 (with bi = as+ℓ+i) is either legal or empty.

Informally, a legal decomposition is one where we cannot use the recurrence relation to
replace a linear combination of summands with another summand, and the coefficient of each
summand is appropriately bounded. We conclude this section by describing previous results
on these sequences (see [12, 13, 14, 15, 19, 17, 22, 23, 24, 25, 26], especially [22] for proofs),
and then state our new theorems in Section 1.2.

Theorem 1.3 (Generalized Zeckendorf Theorem, [22]). Let {Gn} be a positive linear recurrence
sequence. Each integer M > 0 admits a unique legal decomposition.

Given a legal decomposition, we have the following definitions.

Definition 1.4 (Gaps of a decomposition). Suppose we are given a PLRS {Gn} and a legal
decomposition

M =

N
∑

i=1

aiGN+1−i = Gi1 +Gi2 + · · · +Gik , (1.3)

for some positive integer k = a1 + a2 + · · · + aN and i1 ≥ i2 ≥ · · · ≥ ik. The gaps in
the decomposition of M are the numbers i1 − i2, i2 − i3, . . ., ik−1 − ik (for example, 101 =
F10 + F5 + F3 + F1, and thus, has gaps 5, 2, and 2).

Definition 1.5 (Gap random variables). Given a PLRS {Gn} and a positive integer M , we
let kΣ(M) denote the number of summands in the decomposition of M and kg(M) the number
of gaps of size g in M ’s decomposition. Let KΣ,n be the random variable equal to kΣ(M) for
an M chosen uniformly from [Gn, Gn+1), and let Kg,n be a random variable equal to kg(M)
for an M chosen uniformly from [Gn, Gn+1). Thus, kg(M) is a decomposition of kΣ(M), as

kΣ(M) = 1 +

∞
∑

g=0

kg(M). (1.4)

The next result concerns the average number of summands in decompositions, generalizing
Lekkerkerker’s [18] work on this problem for the Fibonacci numbers.

Theorem 1.6 (Generalized Lekkerkerker’s Theorem for PLRS, [22]). Let {Gn} be a PLRS, let
KΣ,n be the random variable defined above, and let µn = E[KΣ,n]. Then, there exist constants
Cµ > 0, dµ, and γµ ∈ (0, 1), depending only on L and the ci’s of the recurrence relation such
that

µn = Cµn+ dµ +O(γnµ). (1.5)

Theorem 1.7 (Variance Is Linear for PLRS, [22]). Let {Gn} be a PLRS, let KΣ,n be the
random variable defined above, and let σ2

n = Var[KΣ,n]. Then, there exist constants Cσ > 0,
dσ, and γσ ∈ (0, 1) depending only on L and the ci’s of the recurrence relation such that

σ2
n = Cσn+ dσ +O(γnσ ). (1.6)

Theorem 1.8 (Gaussian Behavior for Number of Summands in PLRS, [22]). Let {Gn} be a
PLRS and let KΣ,n be the random variable defined above. The mean µn and variance σ2

n of
KΣ,n grow linearly in n, and (KΣ,n − µn)/σn converges weakly to the standard normal N(0, 1)
as n → ∞.
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Much less has been written on kg(M) and Kg,n. We show that similar Central Limit results
hold for gaps. The techniques we introduce to prove these results allow us to easily prove some
results already in the literature such as the three previous theorems.

Beckwith, et al. [2], Bower, et al. [4], and Dorward, et al. [11] explored the distribution of gaps
in Generalized Zeckendorf Decompositions arising from PLRS, proving (in the limit as n → ∞)
exponential decay in the probability that a gap in the decomposition of M ∈ [Gn, Gn+1) has
length g as g grows and determining that the distribution of the longest gap between summands
behaves similarly to what is seen in the distribution of the longest run of heads in tossing a
biased coin. We improve on the first result and establish lower order terms (the previous work
had O(1) instead of d + o(1) below), then prove the variance has a similar linear behavior,
and finally show Gaussian behavior for fixed g. See [20] for a similar analysis concentrating on
the Fibonacci case, where the simplicity of the defining recurrence allows simplifications in the
analysis.

1.2. New Results. We now state our new results.

Theorem 1.9 (Generalized Lekkerkerker’s Theorem for Gaps of Decompositions). Let g ≥ 0
be a fixed positive integer. Let {Gn} be a PLRS with the additional constraint that all ci’s
are positive. Suppose there exists n0 ∈ N such that Kg,n, the random variable defined above,
is nontrivial (i.e., is not the constant 0) for n ≥ n0. Let µg,n = E[Kg,n]. Then, there exist
constants Cµ,g > 0, dµ,g, and γµ,g ∈ (0, 1) depending only on g, L, and the ci’s of the recurrence
relation such that

µg,n = Cµ,gn+ dµ,g +O(γnµ,g). (1.7)

Theorem 1.10 (Variance Is Linear for Gaps of Decompositions). Let g ≥ 0 be a fixed positive
integer. Let {Gn} be a PLRS with the additional constraint that all ci’s are positive. Suppose
there exists n0 ∈ N such that Kg,n, the random variable defined above, is nontrivial for n ≥ n0.
Let σ2

g,n = Var[Kg,n]. Then, there exists constants Cσ,g > 0, dσ,g, and γσ,g ∈ (0, 1) depending
only on g, L, and the ci’s of the recurrence relation such that

σ2
g,n = Cσ,gn+ dσ,g +O(γnσ,g). (1.8)

These two theorems are intermediate results in the proof of the next theorem, which is the
main result of this paper. The next theorem proves we also obtain Gaussian behavior if we
fix the gap size and if that gap size occurs. Note there are never gaps of length 1 between
summands in Zeckendorf decompositions arising from Fibonacci numbers, and we must exclude
such cases.

Theorem 1.11 (Gaussian Behavior for Gaps of Decompositions). Let g ≥ 0 be a fixed positive
integer. Let {Gn} be a PLRS with the additional constraint that all ci’s are positive. Suppose
there exists n0 ∈ N such that Kg,n, the random variable defined above, is nontrivial for n ≥ n0.
Then, the mean µg,n and variance σ2

g,n of Kg,n grow linearly in n, and (Kg,n − µg,n)/σg,n
converges weakly to the standard normal N(0, 1) as n → ∞.

The key to the proof is Theorem 3.3, which states that certain two-dimensional recursions
exhibit Gaussian behavior. Theorem 3.3 generalizes the well-known result that the recurrence
an,k = an−1,k + an−1,k−1, which produces the binomials

(

n
k

)

, produces probability distribution
given by an,0, . . . , an,n that, when normalized, converge to a normal distribution. Our proof
shows that pg,n,k, the number of M ∈ [Gn, Gn+1) with exactly k gaps of size g, satisfies a
homogenous two-dimensional recursion that fits the framework of Theorem 3.3 (see Section 4).
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Similar to the work of Miller and Wang [22, 23], we use the method of moments to prove
that our random variables converge to Gaussians. More precisely, we prove that the moments
of the nth random variable Kg,n (or KΣ,n), µ̃n(m), satisfy

lim
n→∞

µ̃n(2m)

µ̃n(2)m
= (2m− 1)!! and lim

n→∞

µ̃n(2m+ 1)

µ̃n(2)
m+ 1

2

= 0. (1.9)

Whereas Miller and Wang use generating functions to directly compute the moments µ̃n(m),
we instead compute them recursively (see, for example, Theorem 3.7).

For the rest of the paper, we omit standard algebra. The reader interested in the details of
the omitted algebra should see [21] for the details.

1.3. Organization of Paper. In Section 2, we collect some notation and prior results to be
used throughout the paper. In Section 3, we prove Theorem 3.3, the key technical lemma of
the paper. In Section 4, Theorem 3.3 is used to prove Theorems 1.9, 1.10, and 1.11. In Section
5, we apply Theorem 3.3 to give alternate proofs of Theorems 1.6, 1.7, and 1.8, and conclude
in Section 6 with a discussion of future work and open questions.

2. Preliminaries

We first collect some notation used throughout the paper, then isolate two technical lemmas
on convergence, and then apply these to prove Gaussian behavior for certain two-dimensional
recurrences. This final result is the basis for the proof of our main result on Gaussian behavior
of gaps for a fixed g, Theorem 1.11.

2.1. Notation. For this paper, all big-Os are taken as n → ∞, unless otherwise specified.

For a polynomial A(x) =
∑d

k=0 akx
k, let

[

xk
]

(A(x)) = ak be the notation for extracting
the kth coefficient of A.

For a real number λ1 > 0, a polynomial A(x) has the maximum root property with maximum
root λ1 if λ1 is a root of A with multiplicity 1 and all other roots have magnitude strictly less
than λ1.

A sequence of real numbers {an} converges exponentially quickly to a if limn→∞ an = a and
there exists γ ∈ (0, 1) and a constant C such that |a− an| ≤ Cγn for all n (alternatively,
an = a+O(γn)).

Let d be a fixed positive integer, and let {An(x)} be a sequence of degree d polynomi-

als, where An(x) =
∑d

j=0 aj,nx
j . We say {An(x)} converges exponentially quickly to Ā(x) =

∑d
j=0 ājx

j if {aj,n}n∈N converges exponentially quickly to āj for j = 0, 1, . . . , d.

From the above definitions, we immediately obtain the following useful result.

Lemma 2.1. Let {an} and {bn} be sequences that converge exponentially quickly to a and b,
respectively. Then,

(1) {an + bn} converges exponentially quickly to a+ b,
(2) {an − bn} converges exponentially quickly to a− b,
(3) {an · bn} converges exponentially quickly to a · b,
(4) if bn 6= 0 for all n and b 6= 0, then {an/bn} converges exponentially quickly to a/b.
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2.2. Characteristic Polynomials. Appendix A of [2] provides the following useful results.

Theorem 2.2 (Generalized Binet’s Formula). Consider any linear recurrence of real numbers
(not necessarily a positive linear recurrence)

Gn = c1Gn−1 + · · · + cLGn−L (2.1)

with arbitrary initial conditions. Suppose the characteristic polynomial xL−(c1x
L−1+c2x

L−2+
· · · + cL) has the maximum root property with some maximum root λ1 > 0. Then, there exists
a constant a1 such that Gn = a1λ

n
1 + O(nL−2λn

2 ), where |λ2| < λ1 is the second largest root
in absolute value. Additionally, if a1 is positive (that is, Gn = Θ(λn

1 )), then for every fixed
positive integer i, Gn−i/Gn converges to 1/λi

1 exponentially quickly as n → ∞.

Theorem 2.3. Consider a PLRS {Gn} given by

Gn = c1Gn−1 + · · ·+ cLGn−L. (2.2)

Then, the characteristic polynomial xL − (c1x
L−1 + c2x

L−2 + · · · + cL) has the maximum root
property with maximum root λ1 > 1 and Gn = Θ(λn

1 ). In other words, the coefficient a1 given
by Theorem 2.2 is positive.

Note in Theorem 2.2, a1 is positive except for particular choices of initial conditions. For
example, if Gn = 5Gn−1−6Gn−2, we have Gn = a13

n+O(2n), unless we have initial conditions
G1 = α and G2 = 2α, in which case the 3n term vanishes.

3. Gaussian Behavior of 2D Recursions

The purpose of this section is to prove Theorem 3.3, the key ingredient to our main results.
We start with a few technical lemmas.

3.1. Convergence on Nonhomogenous Linear Recurrences with Noise. The following
two lemmas follow immediately from the previous definitions and book-keeping, and play a key
role in the convergence analysis later. In particular, these two lemmas allow us to determine
the exact behavior of the moments of our random variables Kg,n as we prove convergence to
the standard normal (see Lemmas 3.8 and 3.9).

Lemma 3.1. Let i0 be a positive integer. Let {rn}n∈N be a sequence of real numbers and for

each 1 ≤ i ≤ i0, let {si,n}n∈N be a sequence of nonnegative real numbers such that
∑i0

i=1 si,n = 1
for all n. With a slight abuse of notation, also suppose there exist constants r̄ and s̄i for
1 ≤ i ≤ i0, with γr, γs ∈ (0, 1) such that

rn = r̄ +O(γnr ) and si,n = s̄i +O(γns ). (3.1)

Furthermore, suppose the polynomial

S(x) = xi0 −

i0
∑

i=1

s̄ix
i0−i (3.2)

has the maximum root property with maximum root 1. Let {an}n≥n0
be a sequence with arbitrary

initial conditions an0
, . . . , an0+i0−1 and, for n ≥ n0 + i0,

an =

(

i0
∑

i=1

si,nan−i

)

+ rn. (3.3)
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Then, there exists a positive integer d and a real number γ ∈ (0, 1) such that

an =
r̄

∑i0
i=1 i · s̄i

· n+ d+O(γn). (3.4)

Roughly speaking, Lemma 3.1 is true because, modulo exponentially small terms, every an
is a constant plus the weighted average of previous an−i’s, so it should be linear in n.

Proof. It suffices to prove the lemma for n0 = 0. Let bn = an−
r̄

∑i0
i=1

i·s̄i
·n. Set γ = max(γr, γs).

Simple manipulations yield

bn =

i0
∑

i=1

si,nbn−i + r̄ ·

(

rn
r̄

−

∑i0
i=1 i · s̄i,n
∑i0

i=1 i · s̄i

)

=

i0
∑

i=1

si,nbn−i + r̄ · ((1 +O(γn))− (1 +O(γn)))

=

i0
∑

i=1

si,nbn−i +O(γn). (3.5)

We finish by showing that the sequence bn converges exponentially quickly to a constant.
Simple algebra yields that bn is bounded (see Appendix A of [21]). Then,

bn −

i0
∑

i=1

s̄ibn−i = bn −

i0
∑

i=1

si,nbn−i +

i0
∑

i=1

(si,n − s̄i)bn−i

≤ O(γn) +

i0
∑

i=1

O(γn) · bn−i ≤ O(γn). (3.6)

Thus, we can write

bn =

(

i0
∑

i=1

s̄ibn−i

)

+ f(n) (3.7)

for some function f : {i0, i0 + 1, . . . } → R such that f(n) = O(γn) as n → ∞. Let αf > 0 be
a constant such that |f(n)| ≤ αfγ

n.
From here, the intuition to the finish is as follows. If f(n) = 0 for all n, then Theorem 2.2

implies that bn approaches a constant exponentially quickly. However, since γ < 1, we have
that bn should still approach a constant exponentially quickly when f(n) = O(γn).

Let {b
(init)
n }n∈N, {b

(i0)
n }n∈N, {b

(i0+1)
n }n∈N, . . . be sequences defined (for m ≥ i0) by

b(init)
n =

{

bn 0 ≤ n ≤ i0 − 1
∑i0

i=1 s̄ib
(init)
n−i n > i0,

b(m)
n =







0 n < m
f(m) n = m

∑i0
i=1 s̄ib

(m)
n−i n > m.

(3.8)

By induction, we verify that

bn = b(init)
n +

∞
∑

m=i0

b(m)
n (3.9)
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for all n (see Appendix B of [21]). By the restrictions of si, the characteristic polynomials

of {b
(init)
n } and {b

(m)
n } are equal to S(x) in (3.2) and thus, have the maximum root property

with maximum root 1. Hence, by the generalized Binet’s formula, {b
(init)
n } and {b

(m)
n } all

converge to a constant. Suppose that {b
(init)
n } converges to b̄(init) and {b

(m)
n } converges to b̄(m)

for each m ≥ i0. Let λ2 < 1 be the second largest magnitude of a root of S(x). Choose
γ1 ∈ (max(γ, λ2), 1). By the generalized Binet’s formula,

b(init)
n − b̄(init) = O(ni0 · λn

2 ) ≤ O(γn1 ), (3.10)

so there exists α
(1)
b such that

∣

∣

∣
b(init)
n − b̄(init)

∣

∣

∣
≤ α

(1)
b γn1 . (3.11)

For all m, we can bound b
(m)
n similarly. However, note that for all m, {b

(m)
n /f(m)}n∈N is the

same sequence with the indices shifted. Thus, there exists α
(2)
b such that

∣

∣

∣
b(m)
n − b̄(m)

∣

∣

∣
≤ α

(2)
b f(m)γn−m

1 ≤ α
(2)
b αfγ

mγn−m
1 . (3.12)

Set αb = max(α
(1)
b , α

(2)
b ). Then,

|bn − b| ≤
∣

∣

∣
b(init) − b(init)

n

∣

∣

∣
+

∞
∑

m=i0

∣

∣

∣
b(m) − b(m)

n

∣

∣

∣

≤ αbγ
n
1 +

∞
∑

m=i0

αbαfγ
n
1

(

γ

γ1

)m

≤ γn1

(

αb + αbαf ·

(

γ

γ1

)i0

·
1

1− γ
γ1

)

= O(γn1 ) (3.13)

as desired. �

The next lemma generalizes Lemma 3.1.

Lemma 3.2. Let D be a nonnegative integer and let i0 be a positive integer. Let {Rn(x)}n∈N
be a sequence of D degree polynomials with Rn(x) =

∑D
j=0 rj,nx

j . For each 1 ≤ i ≤ i0, let

{si,n}n∈N be a sequence of nonnegative real numbers such that
∑i0

i=1 si,n = 1 for all n. Suppose
also that there exist a polynomial R̄(x) = r̄Dx

D + r̄D−1x
D−1 + · · ·+ r̄0 and real numbers s̄i for

1 ≤ i ≤ i0, with γr, γs ∈ (0, 1), such that, for all 0 ≤ j ≤ D and 1 ≤ i ≤ i0,

rj,n = r̄j +O(γnr ), and si,n = s̄i +O(γns ). (3.14)

Furthermore, suppose the polynomial, S(x) = xi0−
∑i0

i=1 s̄ix
i0−i has the maximum root property

with maximum root 1. Let {an}n≥n0
be a sequence with arbitrary initial conditions an0

, . . . ,
an0+i0−1, and for n ≥ n0 + i0,

an =

(

i0
∑

i=1

si,nan−i

)

+Rn(n). (3.15)

Then, there exists a degree D + 1 polynomial Q(x) and a γ1 ∈ (0, 1) such that

an = Q(n) +O(γn1 ), (3.16)
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where
[

xD+1
]

(Q(x)) =
r̄D

(D + 1)
∑i0

i=1 i · s̄i
. (3.17)

In contrast to Lemma 3.1, an is, modulo exponentially small terms, a D degree polynomial
in n plus the weighted average of previous an−i’s. Because for any D degree polynomial A(x),
the sum A(1)+A(2)+ · · ·+A(n) is an D+1 degree polynomial in n, we expect an to essentially
be a D + 1 degree polynomial in n.

Proof. We proceed by induction on D, the degree of the polynomials Rn(x). Lemma 3.1
establishes the base case D = 0. Now, assume D > 0 and that the assertion is true for D − 1.
Let bn = an − C · nD+1 for C = r̄D

(D+1)
∑i0

i=1
i·s̄i

. Straightforward manipulations yield

bn =

i0
∑

i=1

si,nbn−i +

D−1
∑

j=0

nj ·

[(

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

iD+1−j

)

+ rj,n

]

+ f(n) (3.18)

for some function f(n) ≤ O(γn0 ) for some γ0 ∈ (0, 1) (see Appendix C of [21]). The constant C
is chosen so that the right side contains an D − 1 degree polynomial in n, as opposed to a D

degree polynomial, which is the case in the recursion for {an}. Let R∗
n(x) =

∑D−1
j=0 r∗j,nx

j be
the polynomial given by

r∗0,n :=

(

i0
∑

i=1

Csi,n(−1)D+1

(

D + 1

0

)

iD+1

)

+ r0,n + f(n)

and r∗j,n :=

(

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

iD+1−j

)

+ rj,n (3.19)

for 1 ≤ j ≤ D − 1. Because, as n → ∞, si,n converges exponentially quickly to s̄i, rj,n
converges exponentially quickly to r̄j, and f(n) converges exponentially quickly to 0, we have
r∗j,n converges exponentially quickly to

lim
n→∞

r∗j,n =

(

i0
∑

i=1

Cs̄i(−1)D+1−j

(

D + 1

j

)

iD+1−j

)

+ r̄j (3.20)

for 0 ≤ j ≤ D − 1 by Lemma 2.1. Writing

bn =

(

i0
∑

i=1

si,nbn−i

)

+R∗
n(n), (3.21)

we can apply the induction hypothesis to bn to obtain a degree D polynomial Q∗(x) such that
bn = Q∗(n) +O(γn1 ) for some γ1 ∈ (0, 1). Set Q(x) = Q∗(x) +CxD+1. Then, Q(x) is a degree
D + 1 polynomial satisfying an = Q(x) +O(γn1 ), as desired. �

3.2. Gaussian Behavior of 2D Recursions. The result below is the key ingredient in prov-
ing Gaussian behavior of gaps.

Theorem 3.3. Let i0 and j0 be positive integers. Let ti,j be real numbers for 1 ≤ i ≤ i0
and 0 ≤ j ≤ j0 such that for all i, t̂i :=

∑j0
j=0 ti,j ≥ 0. Suppose that the polynomial T (x) =
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xi0 −
∑i0

i=1 t̂ix
i0−i has the maximum root property with some maximum root λ1. Suppose pn,k

is a two-dimensional recurrence sequence satisfying, for n ≥ n0,

pn,k =

i0
∑

i=1

j0
∑

j=0

ti,jpn−i,k−j. (3.22)

Furthermore, suppose pn,k ≥ 0 for all n and k, pn,k = 0 when n < 0 or k < 0, finitely many
pn,k are nonzero for n < n0, and

∑∞
i=0 pn,i = Θ(λn

1 ). Let Xn be the random variable whose
mass function is proportional to pn,k over varying k so that

Pr[Xn = k] =
pn,k

∑∞
i=0 pn,i

. (3.23)

Let

Cµ =

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

and Cσ =

∑i0
i=1

∑j0
j=0

ti,j
λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

(3.24)

be constants, and assume Cσ > 0. Then, there exist constants dµ, dσ ∈ R, and γµ, γσ ∈ (0, 1)
such that µn = Cµn + dµ + O(γnµ) and σ2

n = Cσn + dσ + O(γnσ ). Furthermore, (Xn − µn)/σn
converges weakly to the standard normal N(0, 1) as n → ∞.

In this theorem, imagine we have fixed a gap size g and think of pn,k as the number of
M ∈ [Gn, Gn+1) whose decomposition has exactly k gaps of size g. Under this interpretation,
the random variable Xn is identical to Kg,n. Note that T (x) having the maximum root property
does not make the condition

∑∞
i=0 pn,i = Θ(λn

1 ) redundant for reasons illustrated at the end
of Section 2.1. This condition is necessary in Corollary 3.6.

We approach this problem using the method of moments, a common method for proving
random variables converge in distribution to the standard normal distribution.

Lemma 3.4 (Method of Moments). Suppose X1,X2, . . . are random variables such that, for
all integers m ≥ 0 we have

lim
n→∞

E[X2m
n ] = (2m− 1)!! and lim

n→∞
E[X2m+1

n ] = 0. (3.25)

Then, the sequence X1,X2, . . . converges weakly in distribution to the standard normal N(0, 1).

The proof of Theorem 3.3 proceeds by using generating functions to compute the moments
of Xn. Let

Pn(x) =

∞
∑

k=0

pn,kx
k,

Ωn = Pn(1) =

∞
∑

k=0

pn,k,

P̃n,0(x) =
Pn(x)

xµ+1
,

P̃n,m(x) = (xP̃n,m−1(x))
′,

µ̃n(m) =
P̃n,m(1)

Ωn
. (3.26)
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Then, it follows from definitions that

µn =
P ′
n(1)

Pn(1)
,

µ̃n(m) = E[(Xn − µn)
m],

σ2
n = µ̃n(2). (3.27)

Now, we prove several lemmas about the above moments and generating functions. We ulti-
mately obtain a formula in Theorem 3.7 that recursively computes the moments µ̃n(m), which
yield Theorem 3.3.

The next lemma follows immediately from the definitions (see [21] for details).

Lemma 3.5. For n ≥ n0, we have

Pn(x) =

i0
∑

i=1

j0
∑

j=0

ti,jPn−i(x)x
j . (3.28)

From the above, we immediately deduce the following relations.

Corollary 3.6. For n ≥ n0, we have

Ωn = Pn(1) = P̃n,0(1) =

i0
∑

i=1

j0
∑

j=0

ti,jPn−i(1) =

i0
∑

i=1

j0
∑

j=0

ti,jΩn−i (3.29)

and

µn =

i0
∑

i=1

j0
∑

j=0

ti,jΩn−i

Ωn
(µn−i + j). (3.30)

By definition of Ωn, we have Ωn = Θ(λn
1 ), so by Theorem 2.2, we have for all i, Ωn−i/Ωn

converges exponentially quickly to 1/λi
1.

Theorem 3.7. For n ≥ n0, we have

µ̃n(m) =
m
∑

ℓ=0

(

m

ℓ

) i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ · µ̃n−i(m− ℓ). (3.31)

Proof. Applying Lemma 3.5, we find

P̃n,0(x) =

i0
∑

i=1

j0
∑

j=0

ti,jP̃n−i,0(x) · x
j+µn−i−µn . (3.32)

By induction, we can establish (see Appendix D of [21])

P̃n,m(x) =

i0
∑

i=1

j0
∑

j=0

ti,j

m
∑

ℓ=0

(

m

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x) · x

j+µn−i−µn (3.33)

so,

µ̃n(m) =
P̃n,m(1)

Ωn
=

1

Ωn

i0
∑

i=1

j0
∑

j=0

ti,j

m
∑

ℓ=0

(

m

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(1)

=

m
∑

ℓ=0

(

m

ℓ

) i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ · µ̃n−i(m− ℓ), (3.34)
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completing the proof. �

Our next goal is to prove

lim
n→∞

µ̃n(2m)

µ̃n(2)m
= (2m− 1)!! and lim

n→∞

µ̃n(2m+ 1)

µ̃n(2)
m+ 1

2

= 0. (3.35)

By Lemma 3.4, these equalities imply Theorem 3.3. To prove these equalities, we first show
µn is essentially linear in n. Then, we determine for all m, the behavior of µ̃n(m), the mth
moment of Xn −µn, up to an exponentially small term. We prove µ̃n(m) is a degree (at most,
if m is odd) ⌊m/2⌋ polynomial in n, and for even moments µ̃n(2m), we additionally compute
the leading coefficient of this polynomial. We rely heavily on Lemmas 3.1 and 3.2 to determine
the polynomial behavior of the moments.

Lemma 3.8. There exists a real number dµ and a γµ ∈ (0, 1) such that

µn = Cµ · n+ dµ +O(γnµ). (3.36)

Proof. Recall

Cµ =

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

. (3.37)

Choose si,n = Ωn−i

Ωn

∑j0
j=0 ti,j = Ωn−i

Ωn
t̂i and rn =

∑i0
i=1

∑j0
j=0

ti,j ·j·Ωn−i

Ωn
. Using Lemma 2.1 and

Corollary 3.6, we have, for each i, si,n converges exponentially quickly to s̄i =
1
λi
1

∑j0
j=0 ti,j = t̂i

and rn converges exponentially quickly to r̄ =
∑i0

i=1

∑j0
j=0

ti,j ·j

λi
1

. By Corollary 3.6, we have

µn =

(

i0
∑

i=1

si,nµn−i

)

+ rn. (3.38)

Furthermore, the polynomial S(x) = xi0 −
∑i0

i=1 s̄ix
i0−i satisfies S(x) = T (x/λ1), so S has the

maximum root property with maximum root 1. Then, by Lemma 3.1, there exist dµ ∈ R and
γµ ∈ (0, 1) such that

µn =
r̄

∑i0
i=1 is̄i

· n+ dµ +O(γnµ) = Cµ · n+ dµ +O(γnµ). (3.39)

�

Lemma 3.9. For each integer m ≥ 0, there exist γ2m, γ2m+1 ∈ (0, 1) and polynomials Q2m of
degree exactly m and Q2m+1 of degree at most m such that

µ̃n(2m) = Q2m(n) +O(γn2m)

and µ̃n(2m+ 1) = Q2m+1(n) +O(γn2m+1). (3.40)

Furthermore, if C2m = [xm]Q2m and C2m+1 = [xm]Q2m+1, then for all m ≥ 0, C2m =
(2m− 1)!! · Cm

σ (We take (−1)!! = 1).

The idea for the proof is as follows. In the calculation of µn(m) in Theorem 3.7, the co-
efficients of µn−i(m) sum to 1, the coefficients of µn−i(m − 1) sum to 0, and the coefficients
of µn−i(m − 2) sum to

(

m
2

)

· (constant). Thus, the mth moments can be written in the form
of (3.15), so we can apply Lemma 3.2 and compute the degrees and leading coefficients ap-
propriately. Because the coefficients of the (m − 1)th moments sum to 0, the degrees of the
polynomials increase by one with every two values of m, as opposed to every one.
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Proof. We proceed by induction on m. The base case m = 0 follows from noting that

µ̃n(0) = E[(Xn − µn)
0] = 1

and µ̃n(1) = E[(Xn − µn)
1] = 0 (3.41)

for all n ≥ n0. Now, assume the statement is true for m′ ≤ m. That is, there exist γ0, γ1, . . .,
γ2m−1 ∈ (0, 1) and polynomials Q0, Q1, . . ., Q2m−1, where Qk has degree k/2 when k is even,
and degree at most ⌊k/2⌋ when k is odd, such that

µ̃n(2m− 2) = Q2m−2(n) +O(γn2m−2)

and µ̃n(2m− 1) = Q2m−1(n) +O(γn2m−1). (3.42)

By induction, we may further assume C2m−2 = (2m− 3)!! ·Cm−1
σ . First, we compute µ̃n(2m).

Define a sequence of polynomials {Rn(x)} via

Rn(x) =

2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ ·Q2m−ℓ(x− i). (3.43)

Furthermore, set

si,n =
Ωn−i

Ωn

j0
∑

j=0

ti,j and s̄i =
1

λi
1

j0
∑

j=0

ti,j. (3.44)

Then,

µ̃n(2m) =

i0
∑

i=1

si,nµ̃n−i(2m) +Rn(n). (3.45)

Note Rn(x) is the sum of finitely many polynomials that, by Lemma 2.1, converges exponen-
tially quickly. Thus, Rn(x) converges exponentially quickly to

R̄(x) =

2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
ℓ ·Q2m−ℓ(x− i). (3.46)

Furthermore, we have deg R̄(x) ≤ m− 1 because each Rn(x) has degree at most m− 1. With
(3.46), we can compute [xm−1]R̄(x). Because Q2m−ℓ has degree at most m − 2 for ℓ ≥ 3 and
the coefficients in front of the Q2m−1 terms sum to 0, by the definition of Cµ, we have (see [21]
for details)

[xm−1](R̄(x)) =

2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

(

2m

ℓ

)

ti,j
λi
1

· (j − Cµi)
ℓ · [xm−1](Q2m−ℓ(x− i))

= C2m−2 ·

(

2m

2

) i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
2

= C2m−2 ·

(

2m

2

)

· Cσ ·

(

i0
∑

i=1

i · s̄i

)

. (3.47)

By Lemma 3.2, there exists a degree deg R̄(x)+ 1 polynomial Q2m(x) with xm coefficient C2m

and a γ2m ∈ (0, 1) such that

µn(2m) = Q2m(n) +O(γn2m) (3.48)
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and

C2m =
C2m−2 ·

(2m
2

)

· Cσ ·
(

∑i0
i=1 i · s̄i

)

m ·
∑i0

i=1 i · s̄i
= C2m−2 · (2m− 1) · Cσ. (3.49)

By the inductive hypothesis, we conclude C2m = (2m−1)!! ·Cm
σ . By our technical assumption,

Cσ 6= 0, so C2m 6= 0 and thus, the degree of Q2m is exactly m.
We can perform the same computation to show that the µ̃n(2m+1) can be expressed as the

sum of an mth degree polynomial in n and an exponentially small term. To see this, define a
sequence of polynomials {Rn(x)} via

Rn(x) =

2m+1
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ ·Q2m+1−ℓ(x− i). (3.50)

Just as in the 2mth moments case, set

si,n =
Ωn−i

Ωn

j0
∑

j=0

ti,j. (3.51)

Then,

µ̃n(2m+ 1) =

i0
∑

i=1

si,nµ̃n−i(2m+ 1) +Rn(n). (3.52)

Note that Rn(x) is the sum of finitely many polynomials that, by Lemma 2.1, converge expo-
nentially quickly. Thus, Rn(x) converges exponentially quickly to

R̄(x) =

2m+1
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
ℓ ·Q2m+1−ℓ(x− i). (3.53)

Furthermore, we have deg R̄(x) ≤ m−1. Indeed, Q2m has degree m, so to show that deg R̄(x) ≤
m− 1, we need to show that the coefficient of xm is 0. Looking at the xm coefficients of (3.53)
gives

[xm](R̄(x)) =

2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

(

2m

ℓ

)

ti,j
λi
1

· (j − Cµi)
ℓ · [xm](Q2m+1−ℓ(x− i))

= C2m ·

i0
∑

i=1

j0
∑

j=0

2m ·
ti,j
λi
1

· (j − Cµi)
1 = C2m · 2m · 0 = 0. (3.54)

The second to last equality follows from the definition of Cµ in (3.24). Again, applying Lemma
3.2 gives that there exists a degree deg R̄(x)+1 polynomial Q2m+1(x) such that µ̃n(2m+1) =
Q2m+1(n) +O(γn2m+1). Because deg R̄(x) + 1 ≤ m, this completes the induction. �

Proof of Theorem 3.3. Lemma 3.8 proves the first part of Theorem 3.3. Lemma 3.9 implies
that σ2

n = µ̃n(2) = Q2(n) + O(γn2 ). Writing Q2(n) = Cσn + dσ for some dσ ∈ R, we have
σ2
n = Cσn + dσ + O(γn2 ), proving the second part of Theorem 3.3. We finish the proof of

Theorem 3.3 by noting (3.35) is an immediate consequence of Lemma 3.9. �
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4. Gap Theorems

4.1. Gap Recurrence. We start by finding a recurrence relation for an M ∈ [Gn, Gn+1)
having exactly k gaps of size g. Recall that kg(M) denotes the number of gaps of size g in the
Zeckendorf decomposition of M .

Lemma 4.1. Let {Gn} be a positive linear recurrence with recurrence relation

Gn = c1Gn−1 + · · · + cLGn−L (4.1)

and ci > 0 for all i. Slightly abusing the notation (reusing the letter p), let

pg,n,k = |{M ∈ [Gn, Gn+1) : kg(M) = k}|. (4.2)

Define d0 = 0 and di = c1 + c2 + · · · + ci for 1 ≤ i ≤ L and set c∗i = ci for 1 ≤ i < L and
c∗L = cL − 1. Then, there exists n0 = L + g and k0 = dL such that, for n ≥ n0, k ≥ k0, and
g ≥ 2, we have

p0,n,k =

L
∑

i=1

ci−1
∑

j=1

p0,n−i,k−(di−1−(i−1)+(j−1)) +

L
∑

i=1

p0,n−i,k−(di−1−(i−1))

p1,n,k = p1,n−1,k +
L
∑

i=1

(ci − 1)p1,n−i,k−(i−1) +
L
∑

i=2

p1,n−i,k−(i−2)

+

L
∑

i=1

(ci − 1)
((

p1,n−i,k−i − p1,n−i,k−(i−1)

)

−
(

p1,n−i−1,k−i − p1,n−i−1,k−(i−1)

))

pg,n,k =
L
∑

i=1

cipg,n−i,k +
L
∑

i=1

c∗i ((pg,n+1−i−g,k−1 − pg,n+1−i−g,k)− (pg,n−i−g,k−1 − pg,n−i−g,k)) .

(4.3)

Proof. Define

qg,n,k = |{M ∈ [1, Gn) : kg(M) = k}| =
n−1
∑

i=1

pg,i,k; (4.4)

thus, whereas pg,n,k is the number of M in [Gn, Gn+1) such that kg(M) = k, qg,n,k is the

corresponding quantity for integers in [1, Gn). Set Hn,0 = 0 and Hn,i =
∑i

i′=1 ci′Gn+1−i′ so
that, for all n, Hn,L = Gn+1. Let

Γ = {(i, j) ∈ Z
2 : 0 ≤ i ≤ L− 1, 0 ≤ j ≤ ci+1 − 1, (i, j) 6= (0, 0)}. (4.5)

For n ∈ N and (i, j) ∈ Γ, let In,i,j = [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) be an interval of
integers. The c1 + c2 + · · ·+ cL − 1 intervals {In,i,j : (i, j) ∈ Γ} form a partition of [Gn, Gn+1),
and the sequential order of these intervals is equal to their lexicographical order by (i, j). For
each (i, j) ∈ Γ, we can express |{M ∈ In,i,j : kg(M) = k}| in terms of pg,n,k and qg,n,k with
smaller values of n. This is done by case work on whether the smallest term in Hn,i + jGn−i
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(either Gn+1−i or Gn−i depending on whether j = 0) is part of a gap of size g:

|{M ∈ In,i,0 : k0(M) = k}| = q0,n−i,k−(di−i)

|{M ∈ In,i,0 : k1(M) = k}| = q1,n−i,k−(i−1)

|{M ∈ In,i,0 : kg(M) = k}| = qg,n−i,k + pg,n+1−i−g,k−1 − pg,n+1−i−g,k

|{M ∈ In,i,j : k0(M) = k}| = q0,n−i,k−(di−i+(j−1))

|{M ∈ In,i,j : k1(M) = k}| = q1,n−i,k−i + pg,n−i−1,k−(i+1) − pg,n−i−1,k−i

|{M ∈ In,i,j : kg(M) = k}| = qg,n−i,k + pg,n−i−g,k−1 − pg,n−i−g,k (4.6)

(see Appendix E.1 of [21] for details). These formulas are clean because the number of size g
gaps in an M = Hn,i + jGn−i +M ′ ∈ In,i,j is the number of size g gaps in Hn,i + jGn−i plus
the number of size g gaps in M ′ plus possibly one more gap between the two decompositions.
By definition, for g ≥ 0 we have

pg,n,k =
∑

(i,j)∈Γ

|{M ∈ In,i,j : kg(M) = k}|. (4.7)

From this equation, we can substitute from (4.6), plug in the results for pg,n,k and pg,n−1,k in the
expression pg,n,k−pg,n−1,k, use the identity qg,n,k−qg,n−1,k = pg,n−1,k, and apply straightforward
manipulations to obtain the desired result (see Appendix E.2 of [21] for calculations). �

4.2. Proof of Gap Theorems. Lemma 4.1 allows us to apply Theorem 3.3 to the distribution
of the number of fixed sized gaps. The proof is essentially verifying that the conditions of
Theorem 3.3 are met by our gap recurrences.

Proofs of Theorems 1.9, 1.10, and 1.11. Recall that kg(M) denotes the number of gaps of size
g in the Zeckendorf decomposition of M . Let

pg,n,k = |{M ∈ [Gn, Gn+1) : kg(M) = k}| (4.8)

and let i0 = L+g and j0 = dL. By Lemma 4.1, for every g ≥ 0, there exist ti,j for 1 ≤ i ≤ L+g
and 0 ≤ j ≤ dL such that, for n > i0,

pg,n,k =

i0
∑

i=1

j0
∑

j=0

ti,jpg,n−i,k−j. (4.9)

Define t̂i =
∑j0

j=0 ti,j. Note that in each recursive formula of (4.3), the terms of the form

pg,n−x,y1 − pg,n−x,y2 contribute 0 to
∑j0

j=0 tx,j, and for each 0 ≤ i ≤ L − 1, the remaining

coefficients of pg,n−i−1,k (over varying k) sum to ci+1. From this, we conclude t̂i = ci for

1 ≤ i ≤ L and t̂i = 0 for L < i ≤ i0. Thus, the polynomial

T (x) = xi0 −

i0
∑

i=1

t̂ix
i0−i = xi0−L

(

xL −
L
∑

i=1

cix
L−i

)

(4.10)

has the maximum root property with some maximum root λ1 > 1, by Theorem 2.3. Also,
∑n

k=0 pg,n,k = Gn+1 −Gn = Θ(λn
1 ) by Theorems 2.2 and 2.3. Because pg,n,k counts something

that is well-defined when n ≥ 1 and k ≥ 0, we have pg,n,k ≥ 0 for all n and k; and pg,n,k = 0
for n < 0 or k < 0. Also, pg,n,k = 0 for all k ≥ n, because no M ∈ [Gn, Gn+1) can have a gap
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greater than n. Thus, there are finitely many pairs (n, k) with n ≤ i0 such that pg,n,k 6= 0.
Lastly, for every g, if the random variable Kg,n is nontrivial, then the ti,j satisfy

Cµ =

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

and Cσ =

∑i0
i=1

∑j0
j=0

ti,j

λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

. (4.11)

To prove Cµ > 0 and Cσ > 0, we split this into cases whether or not g = 0, g = 1, or g ≥ 2.
For each case we substitute into (4.11) and perform standard manipulations (see Appendix F
of [21]). Putting these observations together, the proofs follow by applying Theorem 3.3. �

5. Lekkerkerker and Gaussian Summands

We show the power of Theorem 3.3 by reproving Theorems 1.6, 1.7, and 1.8. We borrow from
the proof, given by Miller and Wang [22], of the recursion established for pn,k, the number of
M ∈ [Gn, Gn+1) with exactly k summands. This recursion is extracted as (5.1) from generating
functions in [22]. This recursion can also be found using techniques in the proof of Lemma 4.1;
the casework for number of summands is simpler than for gaps. Miller and Wang’s arguments
show the mean and variance grow linearly in n, but many technical calculations are needed to
show the linear coefficients are positive (which is a key ingredient in the proof of the Gaussian
behavior). See [7] for another approach, which bypasses the difficulties through an elementary
argument involving conditional probabilities, or [3] for a proof using Markov processes.

Similar to Section 4.2, the proof is essentially verifying that the conditions of Theorem 3.3
are met by the summands recursion given by Miller and Wang.

Proofs of Theorems 1.6, 1.7, and 1.8. Let pn,k be the number of M ∈ [Gn, Gn+1) with exactly

k summands. Then Pr[KΣ,n = k] =
pn,k∑

∞

k=0
pn,k

. Again, pn,k ≥ 0 for all n and k and pn,k = 0

for all n < 0 and k < 0. Also, pn,k > 0 for finitely many pairs with n < L as pn,k = 0 for all
k > n ·maxi(ci) and because each M has, for each a ∈ {1, . . . , n}, at most maxi(ci) copies of
Ga in each decomposition.

Define di = c1 + c2 + · · · + ci for 1 ≤ i ≤ L. By Proposition 3.1 from [23], pn,k satisfies, for
n ≥ L and k ≥ dL,

pn,k =

L
∑

i=1

dm−1
∑

j=dm−1

pn−i,k−j. (5.1)

For 1 ≤ i ≤ L and 0 ≤ j < dL, set ti,j to be 1 if di−1 ≤ j < di − 1 and 0 otherwise. Defining

t̂i =
∑dL−1

j=0 ti,j gives t̂i = ci, and the polynomial

T (x) = xi0 −

i0
∑

i=1

t̂ix
i0−i = xi0−L

(

xL −
L
∑

i=1

cix
L−i

)

(5.2)

has the maximum root property with some maximum root λ1 > 1 by Theorem 2.3. Also,
∑n

k=0 pg,n,k = Gn+1 − Gn = Θ(λn
1 ) by Theorems 2.2 and 2.3. Lastly, because all the ti,j are

nonnegative and tn−L,k−(dL−1) = 1 with k − (dL − 1) > 0, (3.24) tells us

Cµ =

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

≥

k−(dL−1)

λn−L
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

> 0. (5.3)
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Because t1,0 = 1 and all the ti,j are nonnegative, we have

Cσ =

∑i0
i=1

∑j0
j=0

ti,j
λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

≥

t1,0
λ1
1

· (0− Cµ1)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

> 0. (5.4)

Thus, we can apply Theorem 3.3, implying the theorems. �

6. Further Work and Open Questions

We end with a few natural questions for future work.

(1) Are there other two-dimensional recurrences to which we can apply our Central Limit
type result? The second author is investigating two-dimensional sequences and associ-
ated notions of legality with colleagues. These lead to recurrence relations, although
the resulting sequences do not have unique decomposition.

(2) Can one remove the constraint that every coefficient ci must be positive and obtain the
same results? Notice that with negative constraints, one loses some of the interpreta-
tions for the algebra.

(3) What is the rate at which Kg,n converges to a normal distribution?
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