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Abstract. We present a short alternative proof of congruences for Lucas sequences. We also
mention a known connection with Honda’s work on formal groups.

1. Introduction

Let Dn(x, y) and En(x, y) denote the Dickson polynomials of the first and second kind,
respectively, as defined in [6]. We adopt Schur’s notation En(x, y) = En−1(x, y). The values
of Dickson polynomials at integers are called Lucas sequences. For a prime number p, let νp
denote the additive p-adic valuation. The purpose of this note is to give a short and elementary
proof of the following congruences for Lucas sequences.

Theorem 1.1. Let p be a prime number, a, b ∈ Z, and n ≥ 1.
(i) We have

Dpn(a, b) ≡ Dn(a, b) (mod p1+νp(n)).

(ii) We have

Epn(a, b) ≡

(

D

p

)

En(a, b) (mod p1+νp(n)),

where D = a2 − 4b and
(

D
p

)

is the Kronecker symbol (cf. [5]).

These congruences are due to Robbins [7]. Robbins’ proof is elementary, but rather long.
Young [11] utilized p-adic methods to obtain (ii). In [10], Young interpreted generalized
Dickson polynomials as coefficients of the canonical invariant differential of a certain formal
group. That the formal group is strongly isomorphic over an appropriate ring to the formal
multiplicative group then yields congruences for generalized Dickson polynomials (Theorem 3
and Corollary C in [10]), of which (i) and (ii) are special cases.

Our method is different from previous ones. We use polynomial properties of Dickson
polynomials (Lemma 2.1) to derive integer congruences for the values of those polynomials.
This makes the proof of Theorem 1.1 efficient.

2. Dickson Polynomials

Dickson polynomials of the first and second kind, respectively, are defined by recurrence
formulas

Dn(x, y) = xDn−1(x, y)− yDn−2(x, y) (n ≥ 2), (2.1)

En(x, y) = xEn−1(x, y)− yEn−2(x, y) (n ≥ 2),
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with D0(x, y) = 2, D1(x, y) = x, E0(x, y) = 1, and E1(x, y) = x. They are characterized by
the identities

Dn(u1 + u2, u1u2) = un1 + un2 , (2.2)

En(u1 + u2, u1u2) =
un+1
1 − un+1

2

u1 − u2
for indeterminates u1 and u2. Moreover, they have explicit expressions

Dn(x, y) =

⌊n/2⌋
∑

j=0

n

n− j

(

n− j

j

)

(−y)jxn−2j, (2.3)

En(x, y) =

⌊n/2⌋
∑

j=0

(

n− j

j

)

(−y)jxn−2j

for n ≥ 1. Recall that we adopt Schur’s notation

En(x, y) = En−1(x, y) (n ≥ 1).

The following identities are easily shown.

Lemma 2.1.

Dmn(x, y) = Dm(Dn(x, y), y
n), (2.4)

Emn(x, y) = Em(Dn(x, y), y
n)En(x, y). (2.5)

Dn(x, y)
2 − (x2 − 4y)En(x, y)

2 = 4yn. (2.6)

∂

∂x
Dn(x, y) = nEn(x, y) (n ≥ 1), (2.7)

∂

∂y
Dn(x, y) = −nEn−1(x, y) (n ≥ 2).

3. Congruences

Let p be a fixed prime number. We start with polynomial congruences.

Lemma 3.1. In the ring Z[x, y], we have the following congruences:

Dp(x, y) ≡ xp (mod p), (3.1)

Ep(x, y) ≡ (x2 − 4y)(p−1)/2 (mod p). (3.2)

Note that (3.2) makes sense even for p = 2.

Proof. The congruence (3.1) follows from (2.3). The congruence (3.2) for p = 2 is clear. If p
is odd, then

Ep(u1 + u2, u1u2) =
up1 − up2
u1 − u2

≡ (u1 − u2)
p−1 =

(

(u1 + u2)
2 − 4u1u2

)(p−1)/2
,

which implies (3.2). �

Let νp denote the additive p-adic valuation, extended to f ∈ Z[x]:

νp(f) = max{k ; f ≡ 0 (mod pk)}.

The following Lemma is essentially the “lifting the exponent” lemma in [8], where νp(En(a, b))
is investigated.

AUGUST 2019 261



THE FIBONACCI QUARTERLY

Lemma 3.2. Let f, g, h ∈ Z[x] and put k = νp(g − h). If k ≥ 1, then

νp(f(g)− f(h)) ≥ k + νp(df/dx).

Proof. Let n ≥ 1. It follows from

gn − hn =

n
∑

j=1

(

n

j

)

(g − h)jhn−j =

n
∑

j=1

n

j

(

n− 1

j − 1

)

(g − h)jhn−j

that νp(g
n − hn) ≥ νp(n)− νp(j) + kj for some j ≥ 1. Since

j ≥ pνp(j) ≥ 1 + (p− 1)νp(j) ≥ 1 + νp(j),

we find that
νp(g

n − hn) ≥ νp(n)− νp(j) + kj ≥ k + νp(n).

If f(x) =
∑

n anx
n, then we have

νp(f(g) − f(h)) ≥ k +min{νp(an) + νp(n);n ≥ 1} = k + νp(df/dx)

as desired. �

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. (i) Applying Lemma 3.2 to (f, g, h) = (Dn(x, b
p),Dp(a, b), a

p) and using
(2.4), we obtain

Dpn(a, b) = f(g) ≡ f(h) = Dn(a
p, bp) (mod p1+νp(n)),

since we have νp(g − h) ≥ 1 by (3.1) and νp(df/dx) ≥ νp(n) by (2.7). Applying Lemma 3.2 to
(f, g, h) = (Dn(a

p, x), bp, b) and then to (f, g, h) = (Dn(x, b), a
p, a), we obtain similarly

Dn(a
p, bp) ≡ Dn(a

p, b) ≡ Dn(a, b) (mod p1+νp(n)).

(ii) First, we notice the congruence

Ep(Dn(a, b), b
n) ≡

(

(a2 − 4b)En(a, b)
2
)(p−1)/2

(mod p), (3.3)

which follows from (2.6) and (3.2) and makes sense even for p = 2. Using (2.5) and (3.3)
one deduces, by induction on νp(n), that νp(En(a, b)) ≥ νp(n) if p|D = a2 − 4b, and that
νp(En(a, b)) ≥ 1 + νp(n) if p|En(a, b). So, the claimed congruence holds true if p|DEn(a, b),
both sides being zero.

Suppose p ≥ 3 and p ∤ DEn(a, b). By (2.6), Theorem 1.1 (i), and that bpn ≡ bn (mod p1+νp(n)),
we obtain

Epn(a, b)
2 − En(a, b)

2 ≡ 0 (mod p1+νp(n)). (3.4)

On the other hand, it follows from (2.5) and (3.3) that

Epn(a, b) ≡

(

D

p

)

En(a, b) (mod p),

so the desired congruence follows from (3.4).
The remaining case is where p = 2 and a and En(a, b) are odd. We note that

(

D
2

)

= (−1)b

in this case. Since E2n(a, b) = Dn(a, b)En(a, b), what we have to show is

Dn(a, b) ≡ (−1)b (mod 21+ν2(n)). (3.5)

As shown in the proof of (i), the left side of (3.5) remains unchanged if a or b is replaced by
its square. The proof of (3.5) is therefore reduced to the case (a, b) = (1, 0) or (1, 1). By (2.2)
we have Dn(1, 0) = 1, so (3.5) holds true if (a, b) = (1, 0). By the recurrence (2.1), we see
that the sequence {Dn(1, 1)}n≥0 is 6-periodic, starting with 2, 1,−1,−2,−1, 1. Because we
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are assuming En(1, 1) is odd, Dn(1, 1) is also odd by (2.6). Putting these together, we have

Dn(1, 1) ≡ −1 (mod 21+ν2(n)), so (3.5) holds true if (a, b) = (1, 1).
This completes the proof. �

4. Concluding Remark

We mention a connection with Honda’s work on formal groups. Coleman and McGuinness
[2] showed that, over a field K of characteristic zero, any formal group that is a rational
function is of the form

F (X,Y ) =
X + Y − aXY

1− bXY
(4.1)

for some a, b ∈ K (see also Bismuth [1], Walker [9]).

Proposition 4.1. Let a, b ∈ Z and D = a2−4b. The formal group (4.1) is strongly isomorphic
over Z to the formal group G, which is obtained from the Dirichlet L-function

∑∞
n=1

(

D
n

)

n−s

(cf. Honda [3, Theorem 4]).

Proof. We follow the terminology of Honda [4]. One sees that the invariant differential of F is

ω =
dX

1− aX + bX2
,

and the transformer

f(X) =

∫

ω =
∞
∑

n=1

En(a, b)
Xn

n
.

By Theorem 1.1 (ii), we have

pf(X)−

(

D

p

)

f(Xp) ∈ pZp[[X]],

which means that the transformer f is of type p−
(

D
p

)

T , the same type as the formal group G

in [3, Theorem 4]. Because this holds for all primes p, and because the type of a formal group
determines its strong isomorphism class over Zp ([4, Theorem 2]), we complete the proof. �

We remark that this is known. In [12], Young constructed the isomorphism between F and
G directly and used it to prove quadratic reciprocity.
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