A FAMILY OF NONLINEAR RECURRENCES AND THEIR LINEAR
SOLUTIONS

ROGER C. ALPERIN

ABSTRACT. We solve a second order recurrence; the solutions are second order linear recur-
rences. Some solutions are related to Fibonacci sequences.

1. NONLINEAR RECURRENCE

We consider a nonlinear recurrence relation (with parameters p and ¢) and show that its
sequence solutions are second order linear recurrences. For special values of the parameters
this is related to Fibonacci sequences, see Section 2.

For constants p and g with initial values ug = a and u; = b, the nonlinear recurrence relation
is

un—l—l(un - un—l) - PU% — UpUp—1 — (. (1)
Lemma 1.1.

ugz—l + U% - (p + 1)unun—1 +q _
Up—1 — Un

na2+b2—(p—|—1)ab+q

Proof. For n = 1, the equation of the lemma follows immediately from the definition.
Assume this has been shown for n. We will check this for n + 1. Substitute the recurrence
relation
puy, — UpUn—1 — ¢

Up4+1 =

into ) )
Uy + Up4+1 — (p + 1)un+1un +4q

Up — Un+1
and simplify to get
L upy +up = (P Duntp_1 +4q
Up—1 — Un '
The result follows. U

Theorem 1.2. The solutions to this nonlinear recurrence satisfy the second order linear re-

currence s
a®+b°— (p+1)ab+
Unt1 = (P + Dy — Up—1 + (=1)" b(ﬁ a ) q. (2)

Proof. Using
pu% — UpUpn—1 — (¢
(un - un—l)

Uy tun — (P Duguno 44

Up+1 — (p + 1)un + Up—1 = - (p + 1)un + Unp—1

Up—1 — Un
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and Lemma 1.1 gives the desired result. O
1.1. p = 0. The sequence is periodic of period 6.
1.2. p= —1. The sequence is periodic of period 4.
1.3. p = —2. The sequence is periodic of period 6.
2. FIBONACCI-RELATED SEQUENCES

Theorem 2.1. Forp=2,qg=1, and n >0,

Ana® + B,b* + Cpab+ D,
b—a '

Un42 =

2b%2—ab—1

_ a?46b%2—5ab—2
—a and ug = £ 22242

Proof. It can be shown that us = — , so the base case for an

induction is valid and
Ap=0, Ay =1, By=2, Bi=6, Cy=—1, C; = -5, Dy =—1, D; = —2.
Assume that the cases of n and n + 1 have been shown. Then,

i1 @+ 0% — 3ab+ 1

Unp+2 = 3un+1 — Uy, + (—1) b—a

Thus, A,, By, and D,, satisfy

oy = 301 — Op—o + (_1)n+1'

Its generating series «(x) satisfies

E Qppox™ 2 = 3z E 1z — 22 g anz" — 2 g (—1)"ax",

n>0 n>0 n>0 n>0
which gives
2
x
—ap — =3 — — 2 _ .
a(z) — ag — a1z = 3z(a(z) — ap) — a(z)x T+ 2
So,
a(z) = ag + (a1 — 2a9)x + (=1 — 3ag + oy )2?
N (1+2)(1 — 3z + 22) '
Thus,
D(x) =
€Tr) =
(1+2z)(1 — 3z +22)’
2+ 2z — 22
B(x) = +2r —x 7
(1+2)(1 — 3z + 22)
x
A(x) = .
e gy
Let ¢, = —C,,. Summing the generating function
Z cpa” = 3x Z Cn_qz" = 22 Z Cn_oa™ 2 -3 Z(—l)"z".
n>2 n>2 n>2 n>2
So,

c(x) — cop — crx = 3a(c(x) — ¢o) — c(z)a” —
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Hence,
—1 -3z + 22
(1+2)(1 -3z +22)

C(x) =
(]

The sequence given by D,y is —F,F,+1, n > 1 [1, A001654], and C,_; is F3+1 - F,% +
Froi1F,, n > 1 [1, A236428], for the Fibonacci sequence F,,. This leads to other Fibonacci
identities as illustrated by the examples below.

2.1. Examples from OEIS]1].
p=2,qg=1,a=0,b=1 A007598, squares of Fibonacci
p=2,qg=1,a=1,b=2 A001519
p=2,qg=1,a=1,b=3 A061646
p=2,qg=1,a=1,b=5 A236428
p=2qg=1a=2b=3 A248161
For the proof of the first item p =2, ¢ =1, a = 0, and b = 1, using the formulas above,
Bn—l + Dn—l = Fn+1Fn +2F, 1 by — Fy oF, 1
= n+1Fn+Fn—an+Fn—l(Fn _Fn—2)
= Fo(Fpy1 + Fo1) + F2_ | = F(F, +2F, 1) + F2_,

_ 12
_Fn+1

22.¢q=0,p=2.
Theorem 2.2. If q=0,p=2, andn >0,
(Fn—i-la - Fn+3b)(Fna - Fn+2b)

Ynt2 = b—a
Proof. We can see that us = —b(b zb) and ug = (azz)ﬂ Using the same notation as in
the proof of the previous theorem, we have that A =0, A =1, By = 2, B; = 6, C’O =—1,
and Cl = —5, so as before A( ) = m, An = FnFn+1, B( ) W—?j% and

Clw) = it Ths,
B,_1=2F,F,1+2F, 1F, — F, oF,
= Fy B+ F2, (3)
= Fnp1Fnqo,

and
Cn—l = _FnFn+l - 3Fn—1Fn + Fn—2Fn—l

—Fn_1Fy — Fg-i-l
= - n—an+1 - Fn—an - FnFn+1
= - n—an+2 - FnFn—l—la
and the desired result follows. O
23. p=2,q=1.
Corollary 2.3. Ifg=1,p=2, andn > 0,

o (Fn—l—la - Fn+3b)(Fn n+2b) FooFni
Un42 = b—a .
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3. INTEGER SEQUENCE EXAMPLES
Suppose a and b are integers.

Proposition 3.1. The constant term in the formula for u,41 is an integer for given integers
P, q, a, and b if and only if (a —b) | (p — 1)ab — q. For b= a £ 1, this is always true.

Proof. The conclusion follows immediately from
o102+ b2 —2ab— (p—1)ab+q

Unt1 = (P + Dup —up—1 + (—1)

a—b
= (P4 Dtn —up1 + (=) Ha—b - %).

Corollary 3.2. Suppose g =p — 1 and a = 1. Then the sequence is integral.
Corollary 3.3. Fora=1,b=p, and g =p — 1, the sequence i$ Up+1 = Py — Up_1-
Proof. Ifa = 1, b = p, and ¢ = p—1, then a®+b>—(p+1)ab+q = 1+p*—p(p+1)+p—1=0. O

3.1. Examples from OEIS[1].
ep=3qg=2,a=1,b=3 A001835
p=3,g=2,a=1,b=4 A214998
p=3,¢q=2,a=1,b=5 A120893
p=3,g=2,a=1,b=7 A217233
p=5,qg=4,a=1,b=5 A001653
p=5,qg=4,a=1,b=6 A218990
p=10,g=9,a=1,b=10 A078922

REFERENCES
[1] N. J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, http://oeis.org
MSC2010: 11B39, 11D09

DEPARTMENT OF MATHEMATICS, SAN JOSE STATE UNIVERSITY, SAN JOSE, CA 95192
Email address: rcalperin@gmail.com

NOVEMBER 2019 321



