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Abstract. We solve a second order recurrence; the solutions are second order linear recur-
rences. Some solutions are related to Fibonacci sequences.

1. Nonlinear Recurrence

We consider a nonlinear recurrence relation (with parameters p and q) and show that its
sequence solutions are second order linear recurrences. For special values of the parameters
this is related to Fibonacci sequences, see Section 2.

For constants p and q with initial values u0 = a and u1 = b, the nonlinear recurrence relation
is

un+1(un − un−1) = pu2n − unun−1 − q. (1)

Lemma 1.1.

u2
n−1 + u2n − (p + 1)unun−1 + q

un−1 − un
= (−1)n

a2 + b2 − (p+ 1)ab+ q

b− a
.

Proof. For n = 1, the equation of the lemma follows immediately from the definition.
Assume this has been shown for n. We will check this for n+ 1. Substitute the recurrence

relation

un+1 =
pu2n − unun−1 − q

(un − un−1)
into

u2n + u2
n+1 − (p+ 1)un+1un + q

un − un+1

and simplify to get

−
u2
n−1 + u2n − (p+ 1)unun−1 + q

un−1 − un
.

The result follows. �

Theorem 1.2. The solutions to this nonlinear recurrence satisfy the second order linear re-

currence

un+1 = (p + 1)un − un−1 + (−1)n
a2 + b2 − (p+ 1)ab+ q

b− a
. (2)

Proof. Using

un+1 − (p+ 1)un + un−1 =
pu2n − unun−1 − q

(un − un−1)
− (p+ 1)un + un−1

= −
u2
n−1 + u2n − (p+ 1)unun−1 + q

un−1 − un
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and Lemma 1.1 gives the desired result. �

1.1. p = 0. The sequence is periodic of period 6.

1.2. p = −1. The sequence is periodic of period 4.

1.3. p = −2. The sequence is periodic of period 6.

2. Fibonacci-Related Sequences

Theorem 2.1. For p = 2, q = 1, and n ≥ 0,

un+2 =
Ana

2 +Bnb
2 + Cnab+Dn

b− a
.

Proof. It can be shown that u2 = 2b2−ab−1
b−a

and u3 = a
2+6b2−5ab−2

b−a
, so the base case for an

induction is valid and

A0 = 0, A1 = 1, B0 = 2, B1 = 6, C0 = −1, C1 = −5, D0 = −1, D1 = −2.

Assume that the cases of n and n+ 1 have been shown. Then,

un+2 = 3un+1 − un + (−1)n+1 a
2 + b2 − 3ab+ 1

b− a
.

Thus, An, Bn, and Dn satisfy

αn = 3αn−1 − αn−2 + (−1)n+1.

Its generating series α(x) satisfies
∑

n≥0

αn+2x
n+2 = 3x

∑

n≥0

αn+1x
n+1 − x2

∑

n≥0

αnx
n − x2

∑

n≥0

(−1)nxn,

which gives

α(x)− α0 − α1x = 3x(α(x) − α0)− α(x)x2 −
x2

1 + x
.

So,

α(x) =
α0 + (α1 − 2α0)x+ (−1− 3α0 + α1)x

2

(1 + x)(1 − 3x+ x2)
.

Thus,

D(x) =
−1

(1 + x)(1− 3x+ x2)
,

B(x) =
2 + 2x− x2

(1 + x)(1− 3x+ x2)
,

A(x) =
x

(1 + x)(1− 3x+ x2)
.

Let cn = −Cn. Summing the generating function
∑

n≥2

cnx
n = 3x

∑

n≥2

cn−1x
n−1 − x2

∑

n≥2

cn−2x
n−2 − 3

∑

n≥2

(−1)nxn.

So,

c(x)− c0 − c1x = 3x(c(x) − c0)− c(x)x2 −
3x2

1 + x
.
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Hence,

C(x) =
−1− 3x+ x2

(1 + x)(1− 3x+ x2)
.

�

The sequence given by Dn−1 is −FnFn+1, n ≥ 1 [1, A001654], and Cn−1 is F 2
n+1 − F 2

n +
Fn+1Fn, n ≥ 1 [1, A236428], for the Fibonacci sequence Fn. This leads to other Fibonacci
identities as illustrated by the examples below.

2.1. Examples from OEIS[1].

• p = 2, q = 1, a = 0, b = 1 A007598, squares of Fibonacci
• p = 2, q = 1, a = 1, b = 2 A001519
• p = 2, q = 1, a = 1, b = 3 A061646
• p = 2, q = 1, a = 1, b = 5 A236428
• p = 2, q = 1, a = 2, b = 3 A248161

For the proof of the first item p = 2, q = 1, a = 0, and b = 1, using the formulas above,

Bn−1 +Dn−1 = Fn+1Fn + 2Fn−1Fn − Fn−2Fn−1

= Fn+1Fn + Fn−1Fn + Fn−1(Fn − Fn−2)

= Fn(Fn+1 + Fn−1) + F 2
n−1 = Fn(Fn + 2Fn−1) + F 2

n−1

= F 2
n+1.

(3)

2.2. q = 0, p = 2.

Theorem 2.2. If q = 0, p = 2, and n ≥ 0,

un+2 =
(Fn+1a− Fn+3b)(Fna− Fn+2b)

b− a
.

Proof. We can see that u2 = − b(a−2b)
b−a

and u3 = (a−2b)(a−3b)
b−a

. Using the same notation as in
the proof of the previous theorem, we have that A0 = 0, A1 = 1, B0 = 2, B1 = 6, C0 = −1,

and C1 = −5, so as before A(x) = x

(1+x)(1−3x+x2)
, An = FnFn+1, B(x) = 2+2x−x2

(1+x)(1−3x+x2)
, and

C(x) = −1−3x+x2

(1+x)(1−3x+x2)
. Thus,

Bn−1 = 2FnFn+1 + 2Fn−1Fn − Fn−2Fn−1

= FnFn+1 + F 2
n+1, (3)

= Fn+1Fn+2,

and
Cn−1 = −FnFn+1 − 3Fn−1Fn + Fn−2Fn−1

= −Fn−1Fn − F 2
n+1

= −Fn−1Fn+1 − Fn−1Fn − FnFn+1

= −Fn−1Fn+2 − FnFn+1,

and the desired result follows. �

2.3. p = 2, q = 1.

Corollary 2.3. If q = 1, p = 2, and n ≥ 0,

un+2 =
(Fn+1a− Fn+3b)(Fna− Fn+2b)− Fn+2Fn+1

b− a
.
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3. Integer Sequence Examples

Suppose a and b are integers.

Proposition 3.1. The constant term in the formula for un+1 is an integer for given integers

p, q, a, and b if and only if (a− b) | (p − 1)ab − q. For b = a± 1, this is always true.

Proof. The conclusion follows immediately from

un+1 = (p+ 1)un − un−1 + (−1)n−1 a
2 + b2 − 2ab− (p − 1)ab + q

a− b

= (p+ 1)un − un−1 + (−1)n−1(a− b−
ab(p − 1)− q

a− b
).

�

Corollary 3.2. Suppose q = p− 1 and a = 1. Then the sequence is integral.

Corollary 3.3. For a = 1, b = p, and q = p− 1, the sequence is un+1 = pun − un−1.

Proof. If a = 1, b = p, and q = p−1, then a2+b2−(p+1)ab+q = 1+p2−p(p+1)+p−1 = 0. �

3.1. Examples from OEIS[1].

• p = 3, q = 2, a = 1, b = 3 A001835
• p = 3, q = 2, a = 1, b = 4 A214998
• p = 3, q = 2, a = 1, b = 5 A120893
• p = 3, q = 2, a = 1, b = 7 A217233
• p = 5, q = 4, a = 1, b = 5 A001653
• p = 5, q = 4, a = 1, b = 6 A218990
• p = 10, q = 9, a = 1, b = 10 A078922
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