SOME EXTENDED GIBONACCI POLYNOMIAL SUMS WITH
DIVIDENDS

THOMAS KOSHY

ABSTRACT. We investigate some gibonacci polynomial sums, and extract their implications
to the Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev
families. We also explore the graph-theoretic interpretations of the gibonacci polynomial
sums and the corresponding Jacobsthal versions.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(z)zp41(x)+
b(x)z, (), where x is an arbitrary complex variable; a(z),b(z), zo(x), and z;(z) are arbitrary
complex polynomials; and n > 0 [8, 9].

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and
Chebyshev polynomials of both kinds belong to this extended family. They are denoted
by fu(2), ln(x), Pn(2), @n(2), Jn(2), jn(z), Val2), va(2), Ta(x), and Un(z), respectively.
Correspondingly, we have the numeric counterparts F,, = f,(1), L, = l,(1), P, = pn(1),
Qn =2qn(1), J, = Jn(2), and j, = jn(2) [4, 5, 8, 9]. Clearly, J,(1) = F,, and j,(1) = L,,.

1.1. Bridges Among the Subfamilies. By virtue of the relationships in Table 1, every
ginonacci result has a Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev com-
panion, where i = /—1 [5, 8, 9].

Jn(z) = 2" V2f, (1)) jn(x) = 221, (1/V7)
V() =" fo(—ix) vp(x) = "1, (—ix)
Un(z) = Voy1(22) 2T, (x) = v, (22)
Table 1: Links Among the Subfamilies
In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(x). We let g, = f,, or l,, and omit

much of the basic algebra.
Finally, let t¢,, denote the nth triangular number n(n + 1)/2, where n > 1.

2. GIBONACCI SUMS

With this background, we begin our investigation of four gibonacci sums. Our discourse
hinges on recursive technique [1, 10] and the following gibonacci properties [10], where A2 =
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%+ 4:
Jon = faln xfn+ln:2fn+l
I — A f2 = 4(-1)" 20— 12 = foafa
2y — 12y =D foafo fon + 22 = 2fnfat

f2n - xfrzz = 2fnfn—l'

Theorem 2.1. Let m be a positive integer. Then,

Zf2mk2f2mk = fomtn- (2.1)

k=1
Proof. Let A, and B, denote the left side and right side of the summation formula, respec-
tively. Then,

_ 2 2
Bp—Bp1 = mn(n+1) — Jmn(n—1)
g2 2
- mn2+mn mn2—mn
= f2mn2 f2mn
A, — A,_1.

So A, — B, =A,_1—B,_1, and hence A, — B, = A1 — B1 = f22m — f22m =0. Thus, A4, = B,
as desired. O

In particular, we have

n

2
E for2for = far;
=1

n
2
> furfw = i
k=1

n n
It then follows that Z ForaFop, = F22tn [12] and Z FyoFy = F42tn’ respectively.
k=1 k=1

Theorem 2.2. Let m be a positive integer. Then,

n
2 Fomagzfompn = Fomg g (2.2)
Proof. Let A, and B, denote t]flzlleft side and right side of the formula, respectively. Then,
By = Bp-1 = f22mfnfn+1 - f22mfnfn71
- %fzn-i-mxf% o %fzn—mxf%
= f2mf2n f2mxf%
= A,—A,_1.

Consequently, A, — B, = A, 1 —Bn1 = A — By = f2 _— f2 =0. So, A, = B, as
desired. H
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It follows from formula (2.2) that

n
2 .
D foppforn = Fapapans
k=1
n
2
Zf4l‘f;§f4f2k = f4fnfn+1'
k=1

n n
Consequently, Z Fyp2Fop,, = F22F7LFn+1 [12] and Z Fyp2Fyp,, = F42FnFn+17 respectively.
k=1 k=1

For example,
3

> Fyp2Fap, =2,149,991,424 = Fipp,.
k=1
The next two theorems establish the Lucas companions of Theorems 2.1 and 2.2.

Theorem 2.3. Let m be a positive integer. Then,

A" fompz fomk = By, — 4 (2.3)
k=1
Proof. Let A, be the left side of the summation formula and B, its right side. We then have
B,—-B,1 = l72nn(n+1) - l72nn(n—1)
= l?nnz-l—mn - l?nn2 —mn
= A2f2mn2 f2mn
= A, —A,_1.
Then A, — B, = Ay—1 — Bp—1 = A; — By = A%*f3 — (13, —4) = 0. Thus, A4, = B, as
expected. O

Because lgp, ends in 2 [10], the right side does not contain a constant term, which is
consistent with the left side.
In particular, formula (2.3) implies

n
5> Pz Famk = L3y, — 4.
k=1
Consequently, L3, =4 (mod 5).

Theorem 2.4. Let m be a positive integer. Then,

n
A? Z f2m:cf£f2mf2k = l%mfnfnﬂ —4. (2'4)
Proof. Let A, denote the left sl;gel of the formula and B,, its right side. Then,
Bn = Bp1 = lgmfnfn+1 - lgmfnfnﬂ
- lgnfzn-i-mxf% - l72nf2n—m1‘f%
= A2f2mf2n f2m:cf,%
= A,—A,_1.
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So A, — B, = A,_1—B,_1 = A1 — B = Azfzzmx — (l%mm —4) = 0. Thus, A, = B, as

desired. O
It follows by Theorem 2.4 that

n
2
5 Z F2mF,§F2mF2k = L2anFn+1 —4
k=1
2.1. Graph-Theoretic Interpretations. Theorems 2.1 through 2.4 can be interpreted using
graph-theoretic tools. To this end, consider the weighted digraph D, with vertices v; and vs
in Figure 1 [7]. It follows by induction

ix
¥

Vv
Vi 2

[ §

FiGure 1. Fibonacci Digraph Dy

. . ) . 1
from its weighted adjacency matriz Q) = ﬁ 0] that
n __ fn+1 fn
Q |: fn fn—1:| ’
where n > 1 [7].
A walk from vertex v; to vertex v; is a sequence vi-€;-viq1-----vj_1-€;_1-v; of vertices vy,

and edges ej,, where edge ey, is incident with vertices v;, and vi41. The walk is closed if v; = v;;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

The following theorem provides a powerful tool for computing the sum of the weights of
walks of length n from v; to v; [7].

Theorem 2.5. Let A be the weighted adjacency matriz of a weighted and connected digraph
with vertices v1,vs,...,vg. Then the ijth entry of the matriz A™ gives the sum of the weights
of all walks of length n from v; to v;, where n > 1.

The next result follows from this theorem.
Corollary 2.6. The ijth entry of Q™ gives the sum of the weights of all walks of length n
from v; to v; in the weighted digraph Dy, where 1 <1i,j < n.
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Consequently, the sum of the weights of all closed walks of length n originating at v is
fn+1, and that of closed walks of length n originating at vy is f,—1. So, the sum of the weights
of all closed walks of length n is fr,11 + fn—1 = ln.

With this background, we are ready for the interpretations.

Formula (2.1): Let aj and by, denote the sums of the weights of closed walks of lengths 2mk? —1
and 2mk — 1 originating at vy, respectively. Then,

> arbe = Y a2 fomk
k=1

k=1
2
= f2mtn
_ (sum of the weights of closed walks of 2
o length 2mt,, — 1 originating at v ’

For example, when m = 1 and n = 3, we have

doaby = fi+ fsfa+ fisfo
k=1

= 222 +202% + 1722 + 832216 + 24862 4 4744212
+ 577620 + 43522° + 189725 + 4202 + 3622

2
= f3~47

as expected.
Formula (2.3): Let ¢, denote the sum of the weights of closed walks of length fy,,.2_1 and dj
that of those of length fo,,,_1 originating at v;. Then,

A epde = A fornz famk
k=1

k=1
_ 2
- l2mtn —4

_ (sum of the weights of closed walks 2 4
o of length 2mt,, originating at v ’

Formulas (2.2) and (2.4) can be interpreted similarly.

2.2. Pell Implications. Because p,(z) = f,(2z) and ¢,(x) = 1,,(2z), it follows from Theo-
rems 2.1 through 2.4 that

n
Zp2mk2p2mk = p%mtn;
k=1
n
2 .
Zp2m:cf£p2mf2k = Pomfyfogrr
k=1
n
4(:172 + 1) Zp2mk2p2mk = qgmtn - 4;
k=1
n
2 2
4(1' + 1) Zmexf£p2mf2k = q2mfnfn+1 - 4
k=1
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Consequently, we have

n
E 2 .

P2mk2 Popie = P2mtn7
k=1

n
E _ 2 .
PQmFE P2mF2k - P2anFn+1 ’
k=1

n
2 Zp2mk2P2mk = Q%mtn -1
k=1

n
E _ 2
2 PQmFE P2mF2k - Q2anFn+1 -1
k=1

As an example, suppose we let m = 2 and n = 3. Then,

3
2% PyPir, = 590,436,102, 659, 356, 800
k=1

2
Q4F3F4 - 17

as expected.

3. JACOBSTHAL IMPLICATIONS

It follows by the relationships J,(z) = =™V/2f, (1/y/x) and j, () = 2"/?1,(1/\/z) that
Theorems 2.1 through 2.4 have Jacobsthal consequences as well:

me(n—k)(n+k+1)J2mk2 (@) ok (2) = Ja () (3.1)
k=1
Z x2m(fnfn+1_fk:fk+1)J2mmf£ (@) Jamfy, () = Jzsznan (z); (3.2)
k=1
k=1

n
(43) + 1) Z l‘2m(fnfn+1_fkfk+1)J2mmf]3 ($)J2mf2k (:L') — j22mfnfn+1 (:L') _ 41,2mfnfn+1' (3'4)
k=1
The proofs are straightforward. In the interest of brevity, we will confirm formulas (3.3)
and (3.4) only, and omit the other two.

Proof of Formula (3.3): Replace z with 1/4/z in Formula (2.3). Multiplying the resulting
equation by z™"+1) yields

(4a + 1) Z pUn—k)(n+k+1) [x(2mk2—1)/2f2mk2] [x(2mk_1)/2f2mk
k=1

_ [xmn(n+1)/2l xmn(n—l—l)

2
mn(n+1:| -4

(Ao +1) > 2RO I o () ok () = Go, () — 427,
k=1
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where g, = gn(l/ﬁ)
Proof of Formula (3.4): Replace z with u = 1/4/z in formula (2.4). Multiply the resulting
equation by ?™fnfr+1 We then obtain

(4 + 1)2 22 frt1=Fifrtr) [33(2m:cf;3—1)/2f2mgcfl3 (u)] [x(2mf2k—1)/2f2mf2k (u)
k=1

2
= |2 Ry g ()] AP

n
(dz+1)) x2m(f”f"“_fkfk“)<]2mxfg (@) Tamf, () = G, gy, (2) — da?TInIn,
k=1
3.1. Graph-Theoretic Interpretations. Next, we interpret formulas (3.1) and (3.2) using
the weighted digraph Do in Figure 2 with vertices v; and wve. Its weighted adjacency matrix
1 x| .
M = [1 0} yields
M Jnt1(x)  zJy(z) '
In(x)  xJp_1(z)

Vv
Vi 2

[EEWY §

FIGURE 2. Jacobsthal Digraph Do

So, the sum of the closed walks of length n from v; to itself is J,41(x), and that from vy
to itself is xJ,—1(x). Consequently, the sum of the weights of all closed walks of length n is
Jnt1(z) + xJp_1(x) = jn(z) [10].

We are now ready for the interpretations.

Formula (3.1): Let aj and by, denote the sums of the weights of closed walks of lengths 2mk? —1
and 2mk — 1 originating at vy, respectively. Then,

Z xm(n—k)(n—i—k—i—l)akbk _ Z xm(n—k)(n+k+1)J2mk2 ($)J2mk (:E)

k=1 k=1
= ']22mtn (:E)
_ sum of the weights of closed walks 2
~\of length 2m¢t, — 1 originating at vy} °
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Formula (3.2): Let ¢ be the sum of the weights of closed walks of length f2mxf,§—1v and dy,
that of those of length fo,r,, —1, all originating at v;. Then,

n n
Z $2m(fnfn+1_fkfk+l)ckdk — Z $2m(fnfn+1_fkfk+1)szxfg (2)Jam f, ()
k=1 k=1
2
Jom g fur ()

sum of the weights of closed walks of 2
length 2mf, fn+1 — 1 originating at vy )

The interpretations of formulas (3.3) and (3.4) follow similarly.
3.2. Some Special Cases. It follows from formula (3.1) that
22(n—k)(n+k+l)J2k2 J2k — J22tn

k=1
For example,

4
> 20RO 7o Ty = 122,167, 725,625 = J75.
k=1
Formula (3.2) implies that

n
nJn+1— =J
Z4f fnt1 fkfk+1J2mf;3J2f2k - J2fnfn+1'

k=1
Consequently,
n
FnFrnp1—Fi L =J;
24 Tk k+1J2FIfJ2F2k = JQFnFnH'
k=1
For example,
4
Z4F4F5_Fka+1J2FIfJ2F2k = 128,102, 389,162, 151,481 = 357,913,9412 - J22F4F5.
k=1

It also follows from formula (3.2) that

n
Z A7(Pr P11 =Py Pry1)
k=1

_ 72
J4mP,§ Jampy, = J2mPnPn+1’

As an example,

2
Z4P2P3—Pkpk+1J4P5 Jop,, = 122,167,725,625 = J3p, p,.
k=1
From formula (3.3), we get

n
9> 2RO 7o Tor = gy, — 4T (3.5)
k=1
For example,

93" 20-REH) 1o Toy, = 1,099, 509, 530,625 = j3,, — 4%+,
k=1
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Formula (3.5) has an interesting byproduct:

o _ J7(mod9) ifn=1 (mod 3)
Jatn 4 (mod 9) otherwise.

It follows from formula (3.4) that

n
FnFpy1—FpFr =2 — 4fnfna
9 E 4-ntn + J2F,?‘]2F2k = J2F By — AT '

k=1
For example,
4
9Z4F4F5—Fka+1J2F5 Jary, = 1,152,921,502,459, 363,329 = j3p, p — AFF5TL
k=1

It follows from equations (3.1) and (3.3), and (3.2) and (3.4) that

(42 + D)y (®) = G, () — 4277 (3.6)
(4'1" + 1)J22mfnfn+1 (':L') = J%mfnfn+1 (IE) - 4$2mfnf7l+1’ (37)

respectively.
Let A =t, or F,,F, 1. It then follows from equations (3.6) and (3.7) that

9J5, = Jja — MY (3.8)
9T = i — 4, (3.9)
respectively.
For example,
3, — 44l = 1,099,509,530,625 = 9J3, ;
i, — 447 = 281,474,943,156,225 = 9J3;
Jap — 44 = 1,152,921,502,459,363,329 = 9J3;
Jipp, — 442 = 281,474,943,156,225 = 9J7p b,

Because Ja,, = JpJn [10], equations (3.8) and (3.9) imply that
Jox = iy + AR, — 4L
In addition, they yield two interesting congruences:

. 6 (mod 10) 1if A is odd
Jox + Jn { ( )

4 (mod 10) otherwise;
JAH + 2, = 4 (mod 10).

For instance, when n = 3, A = 6. Then Jg, = 5 (mod 10) and jsy = 7 (mod 10); so
J2, + 72, =4 (mod 10).
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4. VIETA AND CHEBYSHEV IMPLICATIONS

Finally, it follows by the relationships in Table 1 that formulas (2.1) through (2.4) also have
Vieta and Chebyshev companions:

D (R e () Vo () = Vidy, (2);
k=1
D Vouer2 (@ Vamp (@) = Vap 0, (@);
k=1
(2% —4)) (=~ ROy o (2)Vamk(2) = 03y, (2) — 4
k=1

($2 - 4) Z V2mxf§ (x)‘/mezk (l‘) = U%mfnfn+1 ($) —4.
k=1

In the interest of brevity, we omit their confirmations.
The Chebyshev counterparts now follow by the relationships U, (x) = V,41(2x) and 2T, (x) =
vn (22).
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