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Abstract. We explore the periodicity of the ones digits in the sequences {Cn}, {Ctn},
{C2tn}, {C4tn}, {Cttn

}, {C8ttn
}, {Ct

n2
}, and CCn

, where Cn denotes the nth Jacobsthal or
Jacobsthal-Lucas number, and tn the nth triangular number.

1. Introduction

Extended gibonacci numbers zn are defined by the recurrence zn = azn−1 + bzn−2, where a,
b, z1, and z2 are arbitrary integers; and n ≥ 3. Suppose a = 1 and b = 2. When z1 = 1 = z2,
zn = Jn, the nth Jacobsthal number ; and when z1 = 1 and z2 = 5, zn = jn, the nth Jacobsthal-

Lucas number [1, 4].
The numbers Jn and jn can also be defined explicitly by the Binet-like formulas [3, 4]

3Jn = 2n − (−1)n and jn = 2n + (−1)n.

Clearly, Jn and jn are odd; and jn is a Mersenne number when n is odd. In the interest of
brevity and convenience, we let Cn = Jn or jn, and n ≥ 1.
1.1. A Digraph Model for Cn. To see the graph-theoretic interpretation of Cn, consider
the weighted digraph D in Figure 1 with vertices v1 and v2. The number of closed walks of
length n, originating at v1, is Jn+1 and that of those originating at v2 is 2Jn−1. So, the total
number of walks of length n is Jn+1 + 2Jn−1 = jn [5, 4].

Figure 1. Jacobsthal Digraph D

Next, we study the periodicity of the ones digits in Jacobsthal and Jacobsthal-Lucas num-
bers.
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2. Periodicity of the Sequence {Cn (mod 10)}

Let Gn = Fn or Ln, where Fn denotes the nth Fibonacci number and Ln denotes the nth
Lucas number. It is well-known that the sequence {Gn (mod 10)} is periodic with

period =

{

60 if Gn = Fn

12 otherwise;

see Corollary 23.4 in [3], and [7]. This result has a Jacobsthal companion, as the following
theorem shows.

Theorem 2.1. The sequence {Cn (mod 10)} is periodic with period 4. The repeating block

is
{

1135 if Cn = Jn

1577 otherwise.

Proof. The proof employs the following facts [2]:
• If ab ≡ ac (mod m) and (a,m) = 1, then b ≡ c (mod m).
• If (a,m) = 1, then a is invertible modulo m.

Suppose Cn = Jn and n = 4k + r, where 0 ≤ r ≤ 3. Then,

3Jn = 24k+r − (−1)4k+r

≡ 6 · 2r − (−1)r (mod 10)

Jn ≡ 2r+1 − 7(−1)r (mod 10).

When r = 1, Jn ≡ 4 + 7 ≡ 1 (mod 10); when r = 2, Jn ≡ 8− 7 ≡ 1 (mod 10); when r = 3,
Jn ≡ 6 + 7 ≡ 3 (mod 10); and when r = 0, Jn ≡ 2− 7 ≡ 5 (mod 10).

On the other hand, let Cn = jn. Then, jn = 24k+r + (−1)4k+r ≡ 6 · 2r + (−1)r (mod 10).
When r = 1, jn ≡ 6 · 2 − 1 ≡ 1 (mod 10); when r = 2, jn ≡ 6 · 4 + 1 ≡ 5 (mod 10); when

r = 3, jn ≡ 6 · 8− 1 ≡ 7 (mod 10); and when r = 0, jn ≡ 6 + 1 ≡ 7 (mod 10).
The given result now follows by combining the two cases. �

3. Periodicity of the Sequence {Ctn(mod 10)}

We now investigate the periodicity of the sequence {Ctn (mod 10)}, where tn denotes the
nth triangular number n(n+1)/2. It follows from the digraph model that the digraph contains
Jtn closed walks of length tn−1 originating at v1, and jtn closed walks of length tn originating
at v2.

The following theorem gives the period and the repeating block of the sequence.

Theorem 3.1. The sequence {Ctn(mod 10)} is periodic with period 8. The repeating block is

{

13113155 if Cn = Jn

17557177 otherwise.

Proof. The proof will use the explicit formula for Cn and congruence modulo 10.

Part 1. Let Cn = Jn and n = 8k + r, where 0 ≤ r ≤ 7. Because 6n ≡ 6 (mod 10) for n ≥ 1,
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we have

3Jtn = 2(n
2+n)/2 − (−1)(n

2+n)/2

= 2[(8k+r)2+(8k+r)]/2 − (−1)(8k+r)(8k+r+1)/2

= 232k
2

· 24k(2r+1) · 2r(r+1)/2 − (−1)r(r+1)/2

≡ 6k
2

· 6k(2r+1) · 2r(r+1)/2 − (−1)r(r+1)/2 (mod 10)

≡ 6 · 2r(r+1)/2 − (−1)r(r+1)/2 (mod 10)

Jtn ≡ 7 · 6 · 2r(r+1)/2 − 7(−1)r(r+1)/2 (mod 10)

≡ 2 · 2r(r+1)/2 − 7(−1)r(r+1)/2 (mod 10). (3.1)

Now, consider congruence (3.1) for each value of r:
When r = 1 and when r = 6 ≡ −2 (mod 8), Jtn ≡ 2 · 2 + 7 ≡ 1 (mod 10).
When r = 2 and when r = 5 ≡ −3 (mod 8), Jtn ≡ 2 · 8 + 7 ≡ 3 (mod 10).
When r = 3, Jtn ≡ 2 · 26 − 7 ≡ 8− 7 ≡ 1 (mod 10).
When r = 4, Jtn ≡ 2 · 210 − 7 ≡ 8− 7 ≡ 1 (mod 10).
When r = 7 ≡ −1 (mod 8) and when r = 0, Jtn ≡ 2− 7 ≡ 5 (mod 10).

Combining all cases, we get the desired result.

Part 2. Let Cn = jn and n = 8k + r, where 0 ≤ r ≤ 7. Then,

jtn ≡ 6 · 2r(r+1)/2 + (−1)r(r+1)/2 (mod 10). (3.2)

Consequently, by congruence (3.2), we have:
When r = 1 and when r = 6 ≡ −2 (mod 8), jtn ≡ 6 · 2− 1 ≡ 1 (mod 10).
When r = 2 and when r = 5 ≡ −3 (mod 8), jtn ≡ 6 · 23 − 1 ≡ 7 (mod 10).
When r = 3, jtn ≡ 6 · 26 + 1 ≡ 5 (mod 10).
When r = 4, jtn ≡ 6 · 210 + 1 ≡ 5 (mod 10).
When r = 7 ≡ −1 (mod 8) and when r = 0, jtn ≡ 6 + 1 ≡ 7 (mod 10).

The given result now follows by combining the eight cases. �

For example, Jt12 = J78 ≡ 1 (mod 10); Jt13 = J91 ≡ 3 (mod 10); jt12 = j78 ≡ 5 (mod 10);
and jt13 = j91 ≡ 7 (mod 10), as expected.
An Observation. Let x1x2 . . . x8 and w1w2 . . . w8 denote the repeating blocks in
{Jtn(mod 10)} and {jtn(mod 10)}, respectively. Considering each block as a word, the sub-
words x1x2 . . . x6, x7x8, w1w2 . . . w6, and w7w8 are all palindromic.

Next, we establish an elegant theorem. Its proof hinges on the following lemma.

Lemma 3.2. Let n be a positive integer. Then, 5 · 2tn ≡ 0 (mod 10).

The proof is a straightforward application of induction; so we omit it here. We are now
ready for the theorem.

Theorem 3.3. If u ≡ v (mod 8), then Ctu ≡ Ctv (mod 10).
Proof. Because u ≡ v (mod 8), u = v + 8m for some integer m. Then, tu = tv+8m.
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Suppose Cn = Jn. By Lemma 3.2, we have

3Jtv = 2tv − (−1)tv

Jtv ≡ 7 · 2tv − 7(−1)tv (mod 10);

3Jtu = 2tu − (−1)tu

= 2tv+8m − (−1)tv+8m

≡ 6 · 2tv − (−1)tv (mod 10)

Jtu ≡ 2 · 2tv − 7(−1)tv (mod 10);

Jtu − Jtv ≡ −5 · 2tv (mod 10)

≡ 0 (mod 10).

Thus, Jtu ≡ Jtv (mod 10).
On the other hand, let Cn = jn. Again by Lemma 3.2, we have

jtv = 2tv + (−1)tv ;

jtu = 2tu + (−1)tu

= 2tv+8m + (−1)tv+8m

≡ 6 · 2tv + (−1)tv (mod 10)

jtu − jtv ≡ 5 · 2tv (mod 10)

≡ 0 (mod 10)

jtu ≡ jtv (mod 10).

Combining the two cases, we get the desired result. �

Theorem 3.1 is a byproduct of this theorem, as the following corollary reveals.

Corollary 3.4. The sequence {Ctn(mod 10)} is periodic with period 8.

Proof. Let u = n + 8 and v = n. Then, by Theorem 3.3, Ctn+8
≡ Ctn(mod 10). When

0 ≤ k < 8, (n + k) − n 6≡ 0 (mod 8); consequently, {Ctn(mod 10)} is periodic with period 8,
as desired. �

Theorem 3.3 has additional consequences. To this end, we need the following result.

Lemma 3.5. Let k be an integer ≥ 4. Then, tn+2k ≡ tn (mod 8).

Proof.

2
(

tn+2k − tn
)

=
(

n+ 2k
)(

n+ 2k + 1
)

− n(n+ 1)

= 2k+1n+ 2k(2k + 1)

tn+2k − tn = 2kn+ 2k−1(2k + 1)

≡ 0 (mod 8). �

Corollary 3.6. The sequence {Cttn(mod 10)} is periodic with period 16.

Proof. Because tn+16 − tn = 16n + 8 · 17 ≡ 0 (mod 8), {tn (mod 8)} is periodic with period
16. So, by Theorem 3.3, Cttn+16

≡ Cttn(mod 10); thus {Cttn(mod 10)}n≥1 is periodic. When

Cn = Jn, the first repeating block is 1113531135311155 and when Cn = jn, the corresponding
block is 1517775577715177. Because both consist of 16 digits, the period of the sequence is
16. �
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Using a similar technique, it follows that the sequence {Ctttn
(mod 10)} is periodic with

period 32: Ctttn+32
≡ Ctttn

(mod 10). More generally, the sequence {Cγ (mod 10)} is periodic

with period 2k, where γ = tt...t
n+2k

and k ≥ 3.

Next, we examine the periodicity of the sequence {C2tn (mod 10)}.

Theorem 3.7. The sequence {C2tn(mod 10)} is periodic with period 4. The repeating block

is
{

1155 if Cn = Jn

5577 otherwise.

Proof. Let Cn = Jn and n = 4k + r, where 0 ≤ r ≤ 3. Then,

3J2tn ≡ 6 · 2r(r+1) − 1 (mod 10)

J2tn ≡ 2 · 2r(r+1) − 7 (mod 10).

When r = 1, J2tn ≡ 8 − 7 ≡ 1 (mod 10); when r = 2, J2tn ≡ 2 · 26 − 7 ≡ 1 (mod 10); and
when r = 3 ≡ −1 (mod 4) and when r = 0, J2tn ≡ 2− 7 ≡ 5 (mod 10).

The given result now follows.
The case Cn = jn follows similarly. �

For example, J2t5 ≡ 1 ≡ J2t6 (mod 10) and J2t7 ≡ 5 ≡ J2t8(mod 10); and j2t5 ≡ 5 ≡ j2t6
(mod 10) and j2t7 ≡ 7 ≡ j2t8(mod 10).

Next, we explore the periodicity of the sequence {C4tn(mod 10)}.

Theorem 3.8.

C4tn ≡

{

5 (mod 10) if Cn = Jn

7 (mod 10) otherwise.

Proof. The proofs follow from the facts that 3J4tn ≡ 6n(n+1)/2 − 1 (mod 10) and j4tn ≡

6n(n+1)/2 + 1 (mod 10). �

For example, J4t5 ≡ 5 ≡ J4t6(mod 10) and j4t5 ≡ 7 ≡ j4t6(mod 10).
Theorem 3.8 has interesting consequences. It follows from the summation formula [6]

n
∑

k=1

4(n−k)(n+k+1)J2
4k2J4k = J2

4tn (3.3)

that
n
∑

k=1

4(n−k)(n+k+1)J2
4k2J4k ≡ 5 (mod 10).

As an example,

n
∑

k=1

4(n−k)(n+k+1)J2
4k2J4k = 418J2

4 + 414J16J8 + 48J36j12 + j64J16

= 6 · 5 + 6 · 5 · 5 + 6 · 5 · 5 + 5 · 5 (mod 10)

≡ 5 (mod 10)

≡ J2
4t4 (mod 10).

326 VOLUME 57, NUMBER 4



PERIODICITY OF ONES DIGITS IN JACOBSTHAL NUMBERS

The summation formula (3.3) has a semi-counterpart for the Jacobsthal-Lucas subfamily
[6]:

9

n
∑

k=1

4(n−k)(n+k+1)J2
4k2J4k = j24tn − 4 · 42tn . (3.4)

Then also,
n
∑

k=1

4(n−k)(n+k+1)J2
4k2J4k ≡ −9 + 4 · 6 (mod 10)

≡ 5 (mod 10).

It follows from formulas (3.3) and (3.4) that [6]

9J2
4tn = j24tn − 4 · 42tn . (3.5)

For example, j24t2 − 4 · 42t2 = 16, 769, 025 = 9J2
4t2

.
Formula (3.5) has a byproduct:

J2
4tn + j24tn ≡ 4 (mod 10).

Theorem 3.1 indeed confirms this congruence.
As an example, J2

4t4 + j24t4 = 366, 503, 875, 9252 + 1, 099, 511, 627, 7772 ≡ 4 (mod 10).
We now study the periodicity of the sequence {Ct

n2
(mod 10)} using modulus 4.

4. Periodicity of the Sequence {Ct
n2
(mod 10)}

Let n = 4k + r, where 0 ≤ r ≤ 3. Then,

Jt
n2

≡ 2 · 2r
2(r2+1)/2 − 7(−1)r

2(r2+1)/2 (mod 10);

jt
n2

≡ 6 · 2r
2(r2+1)/2 + (−1)r

2(r2+1)/2 (mod 10).

Using these congruences, we can find the periodicity of the sequence and the repeating
block, as stated in the following theorem. In the interest of brevity, we omit the details.

Theorem 4.1. The sequence {Ct
n2
(mod 10)} is periodic with period 4. The repeating block

is
{

1115 if Cn = Jn

1517 otherwise.

For example, Jt
42

≡ 2 − 7 ≡ 5 (mod 10) and jt
42

≡ 6 + 1 ≡ 7 (mod 10). Theorem 3.1
confirms these values, as expected.

We now study the Jacobsthal sequences with nested triangular subscripts.

5. Periodicity of the Sequence {Cttn(mod 10)}

Theorem 2.1, coupled with Theorem 3.1, can be employed to study the periodicity of the
sequence {Cttn(mod 10)}. Recall that the sequences {Cn (mod 10)} and {Ctn(mod 10)} are
both periodic with periods 4 and 8, respectively. So, we can interpret Theorem 3.1 as follows:
By replacing the n in A = {Cn (mod 10)} with tn, we obtain the subsequence B = {Ctn

(mod 10)} with period twice that of A, namely 8.
Using this argument, it follows that the period of the sequence C = {Cttn(mod 10)} is

twice that of B, namely, 16. Computationally, we can confirm that the repeating block is
1113531135311155 if Cn = Jn, and 1517775577715177 if Cn = jn.

Thus, we have the following result; see Figure 2.
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C
B

A

Figure 2: Sets of sequences A, B, and C

Theorem 5.1. The sequence {Cttn(mod 10)} is periodic with period 16. The repeating block

is
{

1113531135311155 if Cn = Jn

1517775577715177 otherwise.

For example, 3Jtt10 = 21540 − 1 ≡ 5 (mod 10) and hence, Jtt10 ≡ 5 (mod 10); and 3Jtt13 =

24186 − 1 ≡ 3 (mod 10); so Jtt13 ≡ 1 (mod 10).
Next, we investigate a related subsequence with a unique residue in both cases.

5.1. Related Sequence {C8ttn(mod 10)}. Notice that n2(n+ 1)2 + 2n(n + 1) ≡ 0 (mod 8);

so n2(n+1)2 +2n(n+1) = 8m for some integer m ≥ 1. Then, 3J8ttn = 28m− 1 ≡ 5 (mod 10)

and hence, J8ttn ≡ 5 (mod 10); and j8ttn = 28m + 1 ≡ 7 (mod 10).
Thus,

C8ttn ≡

{

5 (mod 10) if Cn = Jn

7 (mod 10) otherwise.

For example, 3J8tt11 = 28·2211−1 ≡ 5 (mod 10) and hence, J8tt11 ≡ 5 (mod 10). In addition,

j8tt11 = 28·2211 + 1 ≡ 7 (mod 10).
Next, we explore the periodicity of the sequence {CCn

}.

6. Periodicity of the Sequence {CCn
(mod 10)}

It follows by induction that 24
n

≡ 6 (mod 10) when n ≥ 1. We will employ this result in
our exploration.

Part 1. Consider JJn . Clearly, JJ1 = 1; so we let n ≥ 2. Because Jn is odd, then 3JJn − 1 =

2Jn = 2[2
n−(−1)n]/3. Letting A = 3JJn − 1, this implies A3 = 22

n−(−1)n ; notice that A is even.

Case 1. Let n = 2k, where k ≥ 1. Then A3 = 22
2k−1 = 24

k−1; so 2A3 = 24
k

≡ 6 (mod 10).
Because A is even, this implies A3 ≡ 8 (mod 10) and hence, A ≡ 2 (mod 10). This yields
JJn ≡ 1 (mod 10).

Case 2. Let n = 2k + 1. Then, A3 = 22
2k+1+1 = 2

(

24
k
)2

≡ 2 (mod 10); so A ≡ 8 (mod 10).

This implies JJn ≡ 3 (mod 10).
Thus,

JJn ≡

{

1 (mod 10) if n > 1 and is even

3 (mod 10) if n > 1 and is odd,

where JJ1 = 1.

Part 2. Now consider Jjn . Because Jj1 = 1, we let n ≥ 2.
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Case 1. Let n = 2k, where k ≥ 1. Then, 3Jjn = 22
2k+1 + 1 = 2 · 24

k

+ 1 = 2 · 6 + 1 ≡ 3
(mod 10); so, Jjn ≡ 1 (mod 10).

Case 2. Let n = 2k+1. Let B = 3Jjn ; then, 2(B−1) = 22·4
k

≡ 6 (mod 10). So, B−1 ≡ 3 or 8
modulo 10, and hence, B ≡ 4 or 9 modulo 10. Because B is odd, this forces B ≡ 9 (mod 10).
Consequently, 3Jjn ≡ 9 (mod 10) and hence, Jjn ≡ 3 (mod 10).

Thus,

Jjn ≡

{

1 (mod 10) if n > 1 and is even

3 (mod 10) if n > 1 and is odd,

where Jj1 = 1.

Part 3. Consider jJn . Clearly, jJn = 1; so we let n ≥ 2. Then,

(jJn + 1)3 = 23Jn

= 22
n−(−1)n . (6.1)

Case 1. Let n = 2k, where k ≥ 1. Then,

(jJn + 1)3 = 22
2k−1

2 (jJn + 1)3 ≡ 6 (mod 10).

Because jn is odd, this implies jJn + 1 ≡ 2 (mod 10). So, jJn ≡ 1 (mod 10).

Case 2. Let n = 2k + 1. It then follows from equation (6.1) that

(jJn + 1)3 = 22
2k+1+1

= 2
(

24
k
)2

≡ 2 (mod 10).

Then, jJn + 1 ≡ 8 (mod 10); so, jJn ≡ 7 (mod 10).
Thus,

jJn ≡

{

1 (mod 10) if n > 1 and is even

7 (mod 10) if n > 1 and is odd,

where jJ1 = 1.

Part 4. Now consider jjn . Because jjn = 1, we let n ≥ 2. The odd parity of jn yields

jjn = 2jn + (−1)jn

= 22
n+(−1)n − 1.

Case 1. Let n = 2k, where k ≥ 1. Then,

jjn = 22
2k+1 − 1

= 2 · 24
k

− 1

≡ 1 (mod 10).

Case 2. Let n = 2k + 1. Then,

jjn = 22
2k+1−1 − 1

2(jjn + 1) ≡ 6 (mod 10).
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Because jjn is odd, this implies jjn + 1 ≡ 8 (mod 10); so, jjn ≡ 7 (mod 10). Thus,

jjn ≡

{

1 (mod 10) if n > 1 and is even

7 (mod 10) if n > 1 and is odd,

where jj1 = 1.
Combining the four parts, we have the following result.

Theorem 6.1.

JCn
≡

{

1 (mod 10) if n > 1 and is even

3 (mod 10) if n > 1 and is odd;

jCn
≡

{

1 (mod 10) if n > 1 and is even

7 (mod 10) if n > 1 and is odd,

where CC1
= 1.

It now follows that the sequences {JCn
(mod 10)} and {jCn

(mod 10)} are both periodic with
period 2, where n ≥ 2. Their repeating blocks are 13 and 17, respectively.
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