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Abstract. By considering the Fibonacci numbers combinatorially, as counting the number
of tilings of a strip of blocks with squares and dominoes, we introduce a graph that represents
the sequence of Fibonacci numbers. Additionally, we consider individual graphs representing
each Fibonacci number. Finally, we consider the graphic structure of these Fibonacci graphs
and show how certain graphic properties relate to some well-known identities of the Fibonacci
numbers.

1. Introduction

Having been studied for centuries, the Fibonacci numbers are one of the better-known inte-
ger sequences. Countless books and articles have been published about this number sequence
and its many different generalizations, [4, 1, 5] for example. In an attempt to understand the
many different properties this sequence possesses, people have studied them using a variety of
approaches and techniques, including matrix methods, analysis, and combinatorial arguments.
Despite this long history, the idea of using a graph to represent the sequence has not been
explored.

We attempt to rectify this situation by introducing an infinite graph that represents the
entire Fibonacci sequence. In addition, we introduce a collection of graphs, where each graph
represents a Fibonacci number. After introducing these graphs, and showing how they relate
to the Fibonacci numbers, we next consider the relationship between properties of the graphs
and the corresponding properties of the Fibonacci sequence. Although we do not use these
graphs to obtain any additional identities for the Fibonacci sequence, we hope that they can
be used in the future to determine new identities, or new combinatorial proofs for already
known identities.

2. The Fibonacci Graphs

In addition to the recursive definition of the Fibonacci numbers

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n > 1,

there are a variety of additional equivalent definitions for the Fibonacci numbers. One such
definition of interest will be the combinatorial definition involving coverings by squares and
dominoes.

Let fn be the number of ways to tile a strip of n blocks with squares and dominoes. It is a
standard exercise to show that fn = Fn+1. For example, for n = 5, the set of all tilings of a
5-strip is {s5, s3d, s2ds, sds2, ds3, sd2, dsd, d2s}, where s denotes a square tile and d denotes a
domino. Notice that there are eight such tilings and F6 = 8. See [2] for explanations regarding
this particular definition of fn.

To construct the infinite graph Fib, we will use the collection of all such tilings as the set
of vertices. We let W denote the set of all words, including the empty word (1), in symbols s
and d:

W = {1, s, d, s2, s3, sd, ds, d2, s4, s2d, sds, ds2, . . .}.
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Considering the elements of W as tilings of strips of blocks, it is natural for each s in the word
to contribute one to the length and each d to contribute two to the length of the word. With
this in mind, we define:

Definition 2.1. Given w ∈ W, the length of w, |w|, is defined to be |w| = ns(w) + 2nd(w),
where ns(w) is the number of times s appears in w and nd(w) is the number of times d appears
in w.

Additionally, there are some natural “moves” to translate one word in W into another word
in W:

Definition 2.2. Given w,w′ ∈ W, we will say that w and w′ are adjacent if and only if one
of the following holds:

(1) w = w1sdw2 and w′ = w1dsw2 with w1, w2 ∈ W (adjacent s and d switch order).
(2) w = w1dw2 and w′ = w1s

2w2 with w1, w2 ∈ W (a d is converted to s2).
(3) |w| < |w′| and w′ = ww1 for some w1 ∈ W (w is a prefix of w′).
(4) |w| < |w′|, w = w1s and w′ = w1dw2 for some w1, w2 ∈ W (an s at the end of a word

is switched to a d and is the prefix of the longer word).

With this definition, we define the graph Fib as follows:

Definition 2.3. The graph Fib consists of the vertex set V = W and edge set E, where two
words in W will share an edge if they are adjacent.

If e is an edge between u and v and |u| = |v|, then we will call e a horizontal edge. If e is
an edge between u and v and |u| < |v|, then we will call e a vertical edge. The beginning of
Fib is shown in Figure 1 with horizontal edges shown as solid edges and vertical edges shown
as dashed edges.

Figure 1. Beginning of Fib

We assume that the reader has an understanding of basic graph theory concepts. We
recommend [3] by Chartrand and Lesniak for the basic definitions of graph theory. One
notation that we will repeatedly use is that of an induced subgraph.

Definition 2.4. If G is a graph and U is a subset of the vertices of G, then G[U ] will denote
the subgraph of G induced by U .
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Certain induced subgraphs of Fib will be useful to consider, in particular, the subgraphs
that represent each individual Fibonacci number. We will let Wn denote the set of all words
of length n. We will denote the subgraph of Fib induced by the words of length n by Fibn =
Fib[Wn]. Some examples of Fibn for various values on n are shown in Figure 2. It will also be
convenient to consider Fib restricted to words of a few different lengths. For this reason, we
will use Fibm,n to denoted the graph Fib[Wm ∪Wn]. Finally, we will denote the subgraph of
Fib induced by words of length at most n by Fib[n].

3. Properties of the Fibonacci Graphs

We first consider the number of vertices in each Fibn. Clearly, |V (Fib0)| = 1 and |V (Fib1)| =
1. For n ≥ 2, we partition Wn into two subsets: V1 = {ws | w ∈ Wn−1} and V2 = {wd | w ∈
Wn−2}. Clearly, V (Fibn) = V1 ∪V2 and V1 ∩V2 = ∅. Therefore, |V (Fibn)| = |V1|+ |V2|. Using
an inductive argument, it is also clear that |V1| = fn−1 and |V2| = fn−2. Thus, |V (Fibn)| = fn.
This justifies the name of the graphs Fib and Fibn.

We next consider some additional properties of the Fibonacci graphs Fib and Fibn. Most of
these properties reflect a similar property for the Fibonacci numbers. The combinatorial proof
of these properties for the Fibonacci numbers is the idea that underlies the proof for these
graphic properties. The combinatorial proof for these properties of Fibonacci numbers can be
found in [2]. Where possible, we will indicate the identity number from [2] that corresponds
to the graphic property. Before considering these properties, we need a few additional graph
theoretical definitions.

It is obvious that Fibn[V1] ∼= Fibn−1 and Fibn[V2] ∼= Fibn−2. Additionally, we need the
following two definitions.

Definition 3.1. Suppose G and H are graphs with vertex sets V and U , respectively. We
define the product G�H to be the graph with vertex set V × U and has (v, u) adjacent to
(v′, u′) if and only if v = v′ and u adjacent to u′ in H or u = u′ and v adjacent to v′ in G.

Definition 3.2. Suppose G,H1,H2, . . . ,Hn are graphs. We will say that G has partition

type 〈H1,H2, . . . ,Hn〉, G ∼ 〈H1,H2, . . . ,Hn〉, if there exists a partition (U1, U2, . . . , Un) of
the vertex set of G such that for all i = 1, . . . , n, G[Ui] ∼= Hi.

As the partition type of a graph has not been previously defined, we give an example of this
concept:

(a) Fib4 (b) Fib5 (c) Fib6

Figure 2. Fibn
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Example 3.3. Both C4 and K4 have partition type 〈P2, P2〉:
◦ ◦

◦ ◦

◦ ◦

◦ ◦
3.1. Fibonacci Identities. Many of the structural properties of Fibn and the other various
Fibonacci graphs arise from identities involving the Fibonacci numbers fn. The combinatorial
proofs of these identities are often the basis for the proofs of the structural properties. To
emphasize this relationship, we note the Fibonacci identities that we will mimic to determine
the properties of the Fibonacci graphs. Each of these identities – with either their proofs or
hints regarding their proofs – can be found in [2].

We now mention each identity, with its identity number from [2].

Proposition 3.4 (Identity 3). For m,n ≥ 0, fm+n = fmfn + fm−1fn−1.

Proposition 3.5 (Identity 13). For n ≥ 0, f2
n + f2

n+1 = f2n+2.

Proposition 3.6 (Identity 1). For n ≥ 0, f0 + f1 + f2 + · · ·+ fn = fn+2 − 1.

Proposition 3.7 (Identity 2). For n ≥ 0, f0 + f2 + f4 + · · ·+ f2n = f2n+1.

Proposition 3.8 (Identity 7). For n ≥ 1, 3fn = fn+2 + fn−2.

Proposition 3.9 (Identity 6). For n ≥ 0, f2n−1 =
∑n

k=1

(n
k

)

fk−1.

Proposition 3.10 (Identity 9). For n ≥ 0,
∑n

k=0 f
2
k = fnfn+1.

Proposition 3.11 (Identity 15). For n ≥ 0, f2n+2 = fn+1fn+2 − fn−1fn.

We now consider properties of Fib, Fibn, and related graphs. We begin with properties of
Fibn.

3.2. Properties of Fibn. The first thing we consider is the number of edges contained in
Fibn.

If we let En be the number of edges in Fibn, then E0 = 0, E1 = 0, and E2 = 1. Considering
V1 and V2 as before, En = En−1 +En−2 +B, where B is the number of edges between V1 and
V2. Figure 3 shows an example of Fib5 with the edges in B indicated with dashed lines.

Suppose u ∈ V1. Then, u = w1s
2 or u = w1ds. If u = w1s

2, then there is an edge between u

and w1d ∈ V2. Similarly, if u = w1ds, then there is an edge between u and w1sd ∈ V2. Thus,
each vertex u ∈ V1 has exactly one edge to a vertex in V2. Therefore, B = |V1| = Fn−1.

By combining these facts, with standard solution methods for solving recursive equations,
it is straightforward to prove the following results about the number of edges in Fibn:

Theorem 3.12. Suppose En is the number of edges in Fibn with n ≥ 0. Then,

(1) E0 = 0, E1 = 0, and for n ≥ 2, En = En−1 + En−2 + fn−1.
(2)

En =
n−2
∑

i=0

fi · fn−1−i.

(3) If α = 1+
√
5

2 and β = 1−
√
5

2 , then

En =
(n(5 +

√
5)− 6)αn − (n(5−

√
5)− 6)βn

10
√
5

.
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Figure 3. Fib5 with edges in B indicated

Figure 4. Fib6 has partition type 〈Fib3�Fib3,Fib2 �Fib2〉

From the work counting the number of edges in Fibn, we have already proven the following:

Lemma 3.13. For n > 0, Fibn ∼ 〈Fibn−1,Fibn−2〉.
Next, we consider some additional properties of the Fibonacci graphs Fibn. As appropriate,

we will indicate the Proposition that is the basis of each property after the statement of each
lemma.

Lemma 3.14. For n > 0 and 0 < k < n, Fibn ∼ 〈Fibk �Fibn−k,Fibk−1�Fibn−k−1〉. [Propo-
sition 3.4]

Proof. We partition Wn into two subsets:

A = {w ∈ Wn | w = w1 · w2 with w1 ∈ Wk and w2 ∈ Wn−k}
B = {w ∈ Wn | w = w1 · d · w2 with w1 ∈ Wk−1 and w2 ∈ Wn−k−1}

Clearly, Wn = A ∪ B. The result will be proven if Fibn[A] ∼= Fibk �Fibn−k and if Fibn[B] ∼=
Fibk−1�Fibn−k−1.

Suppose w, v ∈ A share an edge. If w = w1 · w2 and v = v1 · v2, then this implies that
either w1 = v1 and w2 and v2 are adjacent or w2 = v2 and w1 and v1 are adjacent. This
implies that Fibn[A] ∼= Fibk �Fibn−k. Similarly, Fibn[B] ∼= Fibk−1�Fibn−k−1. Thus, Fibn ∼
〈Fibk �Fibn−k,Fibk−1�Fibn−k−1〉. �

Figure 4 shows Fib6 with the given partition type exhibited. As a quick application of
Lemma 3.14, if the length of the word is 2n + 2 and k = n + 1, then we obtain the following
corollary:
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Corollary 3.15. For n ≥ 0, Fib2n+2 ∼ 〈Fibn�Fibn,Fibn+1�Fibn+1〉. [Proposition 3.5]

Next, we consider the partition type of Fibn+2 for n ≥ 0.

Proposition 3.16. For n ≥ 0, Fibn+2 ∼ 〈K1,Fib0,Fib1,Fib2, . . . ,Fibn〉. [Proposition 3.6]

Proof. We partition Wn+2 into subsets depending on the location of the final d. We let A−1 =
{sn+2} and Ai = {wdsn−i | w ∈ Wi} for i = 0, 1, . . . , n. Clearly, Wn+2 =

⋃n
i=−1Ai. It is clear

that Fib[A−1] ∼= K1. Similarly, by the definition of Ai for 0 ≤ i ≤ n, Fib[Ai] ∼= Fib[Wi] ∼= Fibi.
Combining these facts, Fibn ∼ 〈K1,Fib0,Fib1, . . . ,Fibn〉. �

From the last property of this section, we consider the partition type of Fibn for odd n.

Proposition 3.17. For n ≥ 0, Fib2n+1 ∼ 〈K1,Fib2,Fib4, . . . ,Fib2n〉. [Propsition 3.7]

Proof. Suppose n ≥ 0. Since 2n + 1 is odd, every word in W2n+1 must contain at least one
s. We partition W2n+1 into subsets depending on the location of the last s that occurs in the
word. The subword before this occurrence of s must have an even length, and the subword
after this occurrence of s must consist of a power of d. We let B2i = {wsdn−i | w ∈ W2i} for
i = 0, 1, 2, . . . , n. Clearly, Fib2n+1 ∼ 〈Fib[B0],Fib[B2], . . . ,Fib[B2n]〉. Additionally, Fib[B2i] ∼=
Fib[W2i] ∼= Fib2i, thus proving the result. �

3.3. Properties of Fib. We now consider properties of the graph Fib. We start by considering
an infinite graph that occurs as an induced subgraph of Fib.

Lemma 3.18. Fib contains an infinite number of copies of Fib as induced subgraphs.

Proof. Suppose w ∈ W. Define Vw = {ww′ | w′ ∈ W}. Consider the induced subgraph
Fib[Vw]. Clearly, Fib[Vw] ∼= Fib. Therefore, because W is infinite, Fib contains an infinite
number of induced subgraphs isomorphic to Fib itself. �

Lemma 3.19. Fibn�Fib is an induced subgraph of Fib for every n ≥ 0.

Proof. Let n > 0 be given. Similar to the proof of Lemma 3.14, we define A = {w ∈ W | w =
w1 · w2 with w1 ∈ Wn}. We show that Fib[A] ∼= Fibn�Fib.

Suppose v,w ∈ Fib[A] with v and w adjacent. Since v = v1v2, v1 ∈ Wn and w = w1w2,
w1 ∈ Wn, either v1 is adjacent to w1 in Wn with v2 = w2, or v1 = w1 and v2 is adjacent to w2

in W. Thus, Fib[A] ∼= Fibn�Fib. �

Proposition 3.20. For every n ≥ 0, Fib ∼ 〈Fib[n−1],Fibn�Fib,Fibn−1�Fib〉.
Proof. Let n ≥ 0. We partition W into 3 sets:

A = {w ∈ W | |w| ≤ n− 1}
B = {w ∈ W | w = w1 · w2 with w1 ∈ Wn}
C = {w ∈ W | w = w1dw2 with w1 ∈ Wn−1}.

Using the previous proof, Fib[N ] ∼= Fibn�Fib, Fib[C] ∼= Fibn−1�Fib, and Fib[A] ∼= Fib[n−1

by definition. Thus, Fib ∼ 〈Fib[n−1],Fibn�Fib,Fibn−1�Fib〉. �

3.4. Properties of Fibm,n. Next, we consider the structure of Fib over a few levels together.
We begin by considering when n−m = 4.

Proposition 3.21. For n ≥ 2, Fibn−2,n+2 ∼ 〈Fibn,Fibn,Fibn〉. [Proposition 3.8]
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Proof. We partition Wn−2 ∪Wn+2 into three subsets:

V1 = {w ∈ Wn+2 | w = w1s
2}

V2 = {w ∈ Wn+2 | w = w1d}
V3 = {w ∈ Wn+2 | w = w1ds} ∪Wn−2

Clearly, Fib[V1] ∼= Fibn and Fib[V2] ∼= Fibn. All that remains is to show that Fib[V3] ∼= Fibn.
Clearly, Fib[V3] has fn vertices. We associate each element of V3 with a word of length n

and then we will show that two words are adjacent in Fibn−2,n+2[V3] if and only if their
corresponding words are adjacent in Fibn. We associate w ∈ Wn−2 with wd ∈ Wn and
wds ∈ Wn+2 with ws ∈ Wn.

w1 ∈ Wn−2OO

��

Fib[V3] w2ds ∈ Wn+2OO

��
w1d ∈ Wn Fibn w2s ∈ Wn

We consider the nonobvious cases.
Assume that w1d is adjacent to w2s in Fibn. This implies that either w2 = w1s or that

w1 = w′
1s and w2 = w′

1d. For each case, we have the following diagrams:

w1OO

��

w1sdsOO

��

Fib[V3] w′
1sOO

��

w′
1d

2s
OO

��
w1d /o/o/o w1s

2 Fibn w′
1sd

/o/o/o w′
1ds

In either of these cases, from the definition of Fib, w1 is adjacent to w2ds.
Now, assume that w1 is adjacent to w2ds in Fib[V3]. Since |w1| = n− 2 and |w2ds| = n+2,

this implies that |w2| = |w1| + 1. We consider the cases. From the definition of Fib, either
w2 = w1s or w1 = w′

1s and w2 = w′
1d. In either case, we have the following diagrams:

w1OO

��

/o/o/o w1sdsOO

��

Fib[V3] w′
1sOO

��

/o/o/o w′
1d

2s
OO

��
w1d w1s

2 Fibn w′
1sd w′

1ds

In both of these cases, w1d is adjacent to w2s in Fibn. Thus, Fib[V3] ∼= Fibn. Therefore,
Fibn−2,n+2 ∼ 〈Fibn,Fibn,Fibn〉. �

Finally, we consider the structure of Fibm,n with n−m = 3.

Proposition 3.22. For n ≥ 2, Fibn−2,n+1 ∼ 〈Fibn,Fibn〉. [Proposition 3.9]

Proof. As above, we partition Wn−2 ∪Wn+1 into two subsets. Let V1 = {ws | ws ∈ Wn+1}
and V2 = {wd | wd ∈ Wn+1} ∪ Wn−2. It is clear that Fib[V1] ∼= Fibn, so all that remains is
to show that Fib[V2] ∼= Fibn as well. As before, we will define an association between each
element in V2 and a word in Wn. We associate w1 ∈ Wn−2 with w1d ∈ Wn and w2d ∈ Wn+1

with w2s ∈ Wn.

w1 ∈ Wn−2OO

��

Fib[V2] w2d ∈ Wn+1OO

��
w1d ∈ Wn Fibn w2s ∈ Wn
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As in the previous proof, we need to show that w1 and w2d are adjacent in Fib if and only
if w1d and w2s are adjacent in Fibn. Again, we consider the nonobvious cases. Suppose first
that w1d and w2s are adjacent in Fibn. This can occur if w2 = w1s, or if w1 = w′

1s and
w2 = w′

1d. Considering the diagrams:

w1OO

��

w1sdOO

��

Fib[V2] w′
1sOO

��

w′
1d

2

OO

��
w1d /o/o/o w1s

2 Fibn w′
1sd

/o/o/o w′
1ds

In either case, w1 and w2d are adjacent in Fib[V2].
Now, suppose w1 and w2d are adjacent in Fib[V2]. This implies, since |w1| = |w2d|− 3, that

|w1| = |w2| − 1. Either w2 = w1s or w1 = w′
1s and w2 = w′

1d. For either case, we consider the
diagrams:

w1OO

��

/o/o/o w1sdOO

��

Fib[V2] w′
1sOO

��

/o/o/o w′
1d

2

OO

��
w1d w1s

2 Fibn w′
1sd w′

1ds

In either case, w1d is adjacent to w2s in Fibn. Thus, Fib[V2] ∼= Fibn. This implies that
Fibn−2,n+1 ∼ 〈Fibn,Fibn〉. �

3.5. Properties of Fibn�Fibm. We finish with the properties of the product of two Fi-
bonacci graphs. For these products, some of the properties that hold for the Fibonacci se-
quence no longer hold for the graphs because the graphic structure is not preserved.

When considering the structure of Fibn�Fibm, it will be helpful to introduce the idea of a
common fault between two words u ∈ Wn and v ∈ Wm.

Definition 3.23. Given u ∈ Wn and v ∈ Wm, u and v will be said to have a common fault

at position i if u = u1u2 and v = v1v2 with u1, v1 = Wi.

Proposition 3.24. For n > 0, Fibn�Fibn+1 ∼ 〈Fib0�Fib0,Fib1 �Fib1, . . . ,Fibn�Fibn〉.
[Proposition 3.10]

Proof. Since for w ∈ Wn and w′ ∈ Wn+1, w = 1w and w′ = 1w′, they both have a common
fault at position 0. Therefore, every pair of words shares at least one common fault. We group
pairs of words depending on the location of the final common fault. For k = 0, . . . , n, define

Bk = {(w,w′) ∈ Wn ×Wn+1 | w and w′ have a final common fault at position k}.
Clearly, Wn ∪Wn+1 =

⋃n
k=0Bk.

Suppose (w,w′) ∈ Bk. Without loss of generality, assume n − k is even. This implies that

w = w1d
(n−k)/2 and w′ = w′

1sd
(n−k)/2 for w1, w

′
1 ∈ Wk. Thus,

(Fibn�Fibn+1)[Bk] = Fibn[Wk]�Fibn+1[Wk] ∼= Fibk �Fibk .

Combining these facts,

Fibn�Fibn+1 ∼ 〈Fib0�Fib0,Fib1 �Fib1, . . . ,Fibn �Fibn〉.
�

Our final proposition does not translate exactly from the identity on which it is based:

Proposition 3.25. For n ≥ 0, Fibn+1�Fibn+2 ∼
〈Fibn�Fibn+2,Fibn−1�Fibn+1,Fibn−1�Fibn〉. [Proposition 3.11]
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Proof. To prove this proposition, we will partition Wn+1 ×Wn+2 into three sets and show the
appropriate isomorphisms for the three induced subgraphs. Define the sets A, B, and C as
follows:

A = {(w,w′) ∈ Wn+1 ×Wn+2 | w = w1s}
B = {(w,w′) ∈ Wn+1 ×Wn+2 | w = w2d and w′ = w′

1s}
C = {(w,w′) ∈ Wn+1 ×Wn+2 | w = w2d and w′ = w′

2d}
Clearly, w1 ∈ Wn, w2 ∈ Wn−1, w

′
1 ∈ Wn+1, and w′

2 ∈ Wn. Thus,

(Fibn+1�Fibn+2)[A] = Fibn+1[Wn]�Fibn+2[Wn+2] ∼= Fibn�Fibn+2

(Fibn+1 �Fibn+2)[B] = Fibn+1[Wn−1]�Fibn+2[Wn+1] ∼= Fibn−1 �Fibn+1

(Fibn+1 �Fibn+2)[C] = Fibn+1[Wn−1]�Fibn+2[Wn] ∼= Fibn−1 �Fibn

This implies that

Fibn+1 �Fibn+2 ∼ 〈Fibn�Fibn+2,Fibn−1�Fibn+1,Fibn−1�Fibn〉.
�

Proposition 3.11 (Identity 15 from [2]) states that fn+1fn+2 = f2n+2 + fn−1fn. However,
when considering the structure of G = (Fibn+1�Fibn+2)[A∪B], there are the correct number
of vertices, but there are some words that are adjacent in Fib2n+2 that are not adjacent in G.
This shows that the structure of Fib is more restrictive than the corresponding identities for
the Fibonacci sequence (a result that is not surprising).

By adding a graphic structure to the sequence of Fibonacci numbers, we have been able to
apply known Fibonacci identities to develop structural properties of these graphs. There is
potential for this relationship to go in the other direction. Hopefully, structure properties of
Fib and Fibn will lead to new identities for the Fibonacci sequence.

Additionally, this technique can be applied to other number sequences that have a combi-
natorial interpretation. Applying this approach and relating graphic properties to sequence
identities for a variety of other number sequences is the topic of a future paper.
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