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Abstract. In this note, we first show a connection between the complete central coefficients
of the Pascal rhombus and the row sums of the left-bounded rhombus. Then, we introduce
the concept of parametric Pascal rhombus and left-bounded parametric rhombus, and give
the Riordan array characterizations for them. Moreover, we use the reflection principle to
prove a relationship between the entries of the parametric Pascal rhombus and the left-
bounded parametric rhombus. By applying this result, we show that the complete central
coefficients of the parametric Pascal rhombus are the same as the row sums of the left-
bounded parametric rhombus. Finally, we present several examples to illustrate that numerus
combinatorial sequences appear in parametric Pascal rhombus and left-bounded parametric
rhombus.

1. Introduction

The Pascal rhombus, introduced in 1997 by Klostermeyer, et al. [8] as a generalization of
the Pascal triangle, is an infinite array R = (ri,j)i∈N,j∈Z, where ri,j is defined by

{

ri,j = ri−1,j−1 + ri−1,j + ri−1,j+1 + ri−2,j , i ≥ 2, j ∈ Z,

r0,0 = r1,−1 = r1,0 = r1,1 = 1, r0,j = 0 (j 6= 0), r1,j = 0 (j 6= −1, 0, 1).
(1.1)

The left-bounded rhombus S = (si,j)i,j∈N is an infinite lower triangular matrix, where si,j is
defined by the analogue rules

{

si,j = si−1,j−1 + si−1,j + si−1,j+1 + si−2,j, i ≥ 2, 0 ≤ j ≤ i,

s0,0 = s1,0 = s1,1 = 1, si,−1 = 0 (i ≥ 0), ri,j = 0 (i < j).
(1.2)

The first lines of the Pascal rhombus are given on the left of Figure 1, and the first lines of
the left-bounded rhombus are given on the right.

1

1 1 1

1 2 4 2 1

1 3 8 9 8 3 1

1 4 13 22 29 22 13 4 1

1 5 19 42 72 82 72 42 19 5 1

1 6 26 70 146 218 255 218 146 70 26 6 1
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 1. Pascal rhombus and left-bounded rhombus

1

1 1

3 2 1

6 7 3 1

16 18 12 4 1

40 53 37 18 5 1

109 148 120 64 25 6 1
...

...
...

...
...

...
...

Recently, Ramı́rez found a closed expression for the entries of the Pascal rhombus in [14],
and Yang, et al. [20] established the connection between the Pascal rhombus and the Riordan
array. For more results on the Pascal rhombus, the reader may consult [1, 7, 11,18].
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The central coefficients of the Pascal rhombus are the entries, (rn,0)n≥0, that form the
central symmetric axis of the Pascal rhombus. This sequence appears in the OEIS [12] as
sequence A059345. We call the sum of column 0 and column 1 of the Pascal rhombus the
complete central coefficients, and denote it by r(n), i.e., r(n) = rn,0 + rn,1, n ≥ 0.

In March 2019, the second author observed, empirically, a connection between S(n) =
∑n

k=0 sn,k, the nth row sum of the left-bounded rhombus, and the complete central coefficients
[3, 4], r(n) = rn,0 + rn,1, that is S(n) = r(n), as illustrated in Figure 1.

In this note, we first prove this connection by using generating functions. Then, we introduce
the concept of parametric Pascal rhombus and left-bounded parametric rhombus, and give the
Riordan array characterizations for them, and show that the complete central coefficients of
the parametric Pascal rhombus are the same as the row sums of the left-bounded parametric
rhombus. Finally, we present several examples to illustrate numerous combinatorial sequences
appearing in parametric Pascal rhombus and left-bounded parametric rhombus.

Here, we briefly recall the concept of Riordan matrix. A Riordan array, originally introduced
by Shapiro, et al. [16], is defined in terms of generating functions of its columns. An infinite
lower triangular matrix D = (dn,k)n,k≥0 is a Riordan array, if there exist generating functions
g(t) and f(t) such that

dn,k = [tn]g(t)f(t)k, n, k ∈ N, (1.3)

where g(t) and f(t) satisfy the conditions g(0) = 1, f(0) = 0, and f ′(0) 6= 0. The Riordan
array corresponding to the pair g(t), f(t) is denoted by (g(t), f(t)), whose kth column has the
generating function g(t)f(t)k.

The set of all Riordan arrays forms a group under ordinary row-by-column product with
the multiplication identity (1, t). The product of two Riordan arrays is given by

(d(t), h(t))(g(t), f(t)) = (d(t)g(h(t)), f(h(t))), (1.4)

and the inverse of (d(t), h(t)) is the Riordan array

(d(t), h(t))−1 = (1/d(h̄(t)), h̄(t)), (1.5)

where h̄(t) is compositional inverse of h(t), i.e., h(h̄(t)) = h̄(h(t)) = t. Some of the main
results on the Riordan group and its applications can be found in [10,15,21].

If (bn)b∈N is any sequence having b(t) =
∑∞

n=0 bnt
n as its generating function, then for every

Riordan array (d(t), h(t)) = (gn,k)n,k∈N,
n
∑

k=0

gn,kbk = [tn]d(t)b(h(t)). (1.6)

This is called the fundamental theorem of Riordan arrays [9, 16] and is rewritten as

(d(t), h(t))b(t) = d(t)b(h(t)). (1.7)

In particular, the generating function of the row sums of the Riordan array (d(t), h(t)) is

S(t) =
d(t)

1− h(t)
. (1.8)

A characterization of Riordan arrays was established by Merlini, et al. [10] as follows.

Lemma 1.1. A lower triangular array (gn,k)n,k∈N is a Riordan array if and only if there exists

another array (αi,j)i,j∈N, with α0,0 6= 0, and s sequences {ρ[i]j }j∈N, i = 1, 2, . . . , s, such that

gn+1,k+1 =
∑

i≥0

∑

j≥0

αi,jgn−i,k+j +

s
∑

i=1

∑

j≥0

ρ
[i]
j gn+i,k+i+j+1. (1.9)
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The array (αi,j)i,j∈N in the previous lemma is called the A-matrix of the Riordan array

(d(t), h(t)) = (gn,k)n,k∈N. If Φ[i](t) denotes the generating function of the ith row of the A-

matrix and Ψ[i](t) is the generating function for the sequence {ρ[i]j }j∈N, then h(t) is determined

by [10]:

h(t) =
∑

i≥0

ti+1Φ[i](h(t)) +

s
∑

i=1

t1−ih(t)i+1Ψ[i](h(t)). (1.10)

If column 0 of the Riordan array (d(t), h(t)) = (gn,k)n,k∈N has the following linear relation,

gn+1,0 =
∑

i≥0

∑

j≥0

βi,jgn−i,j +

s
∑

i=1

∑

j≥0

η
[i]
j gn+i,i+j, n ≥ 0, (1.11)

then the function d(t) is given by the following formula:

d(t) =
g0,0

1−∑i≥0 t
i+1R[i](h(t)) − t

∑s
i=1 t

1−ih(t)iS[i](h(t))
, (1.12)

where R[i](t) =
∑

j≥0 βi,jt
j, i = 0, 1, . . ., and S[i](t) =

∑

j≥0 η
[i]
j tj, i = 0, 1, . . . , s.

From [20], the right half of the Pascal rhombus and the left-bounded rhombus can be
represented as Riordan arrays.

Lemma 1.2. ([20]). Let R = (rn,k)n,k∈N denote the right half of the Pascal rhombus. Then,

R =

(

1
√

(1− t− t2)2 − 4t2
,
1− t− t2 −

√

(1− t− t2)2 − 4t2

2t

)

.

Lemma 1.3. ([20]). The left-bounded rhombus S = (sn,k)n,k∈N is the Riordan array

S =

(

1− t− t2 −
√

(1− t− t2)2 − 4t2

2t2
,
1− t− t2 −

√

(1− t− t2)2 − 4t2

2t

)

.

Theorem 1.4. For n ≥ 0, we have

n
∑

k=0

sn,k = rn,0 + rn,1,

i.e., the nth row sum of the left-bounded rhombus is equal to the nth complete central coefficient

of the Pascal rhombus.

Proof. From (1.7), the generating function of the row sums of S = (sn,k)n,k∈N is S(t) = g(t)
1−tg(t) ,

where g(t) =
1−t−t2−

√
(1−t−t2)2−4t2

2t2
. Simplifying gives S(t) = 2

1−3t−t2+
√

(1−t−t2)2−4t2
.

On the other hand, the sum of the generating functions of the first two columns of R =
(rn,k)n,k∈N is

1
√

(1− t− t2)2 − 4t2

(

1 +
1− t− t2 −

√

(1− t− t2)2 − 4t2

2t

)

=
2

1− 3t− t2 +
√

(1− t− t2)2 − 4t2
.

Therefore, it follows that rn,0 + rn,1 =
∑n

k=0 sn,k for all n ≥ 0. �
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2. The Parametric Pascal Rhombus

In this section, we develop a type of parametric Pascal rhombuses. Let a, b, and c be
nonnegative integers. We define parametric Pascal rhombus as an infinite array R(a, b, c) =
(ri,j), where i ∈ N and j ∈ Z, and ri,j satisfies

{

ri,j = bri−1,j−1 + ari−1,j + bri−1,j+1 + cri−2,j , i ≥ 2, j ∈ Z,

r0,0 = 1, r1,0 = a, r1,−1 = r1,1 = b, r0,j = 0 (j 6= 0), r1,j = 0 (j 6= −1, 0, 1).
(2.1)

The left-bounded parametric rhombus S(a, b, c) = (si,j), where i, j ∈ N, and si,j satisfies
{

si,j = bsi−1,j−1 + asi−1,j + bsi−1,j+1 + csi−2,j, i ≥ 2, 0 ≤ j ≤ i,

s0,0 = 1, s1,0 = a, s1,1 = b, si,−1 = 0 (i ≥ 0), ri,j = 0 (i < j).
(2.2)

The first few rows of the parametric Pascal rhombus are given in Figure 2, and the first few
rows of the left-bounded parametric rhombus are given in Figure 3.

1

b a b

b2 2ab a2+2b2+c 2ab b2

b3 3ab2 b(3a2+3b2+2c) a3+6ab2+2ac b(3a2+3b2+2c) 3ab2 b3

b4 4ab3 b2(6a2+4b2+3c) 2ab(2a2+6b2+3c) a4+12a2b2+6b4+3a2c+6b2c+c2 2ab(2a2+6b2+3c) b2(6a2+4b2+3c) 4ab3 b4

...
...

...
...

...
...

...
...

...

Figure 2. Parametric Pascal rhombus

1

a b

a2+b2+c 2ab b2

a(a2+3b2+2c) b(3a2+2b2+2c) 3ab2 b3

a4+6a2b2+3a2c+2b4+3b2c+c2 2ab(2a2+4b2+3c) 3b2(2a2+b2+c) 4ab3 b4
...

...
...

...
...

Figure 3. Left-bounded parametric rhombus

We will show that the right half of the parametric Pascal rhombus and the left-bounded
parametric rhombus can be represented as Riordan arrays.

Theorem 2.1. Let R(a, b, c) = (rn,k)n,k∈N denote the right half of the parametric Pascal

rhombus. Then,

R(a, b, c) =

(

1
√

(1− at− ct2)2 − 4b2t2
,
1− at− ct2 −

√

(1− at− ct2)2 − 4b2t2

2bt

)

.

Proof. It follows from (2.1) and Lemma 1.1 that R(a, b, c) = (rn,k)n,k∈N is a Riordan array
(d(t), h(t)) with the A-matrix

A =

(

b a b

0 c 0

)

.
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Now, we can directly use (1.10) to obtain the function h(t). Because Φ[0](t) = b + at + bt2,

Φ[1](t) = ct, Φ[i](t) = 0 for i ≥ 2, and Ψ[i](t) = 0 for i ≥ 1, h(t) is the solution to the equation

h(t) = t(b+ ah(t) + bh(t)2) + ct2h(t),

from which it follows that h(t) =
1−at−ct2−

√
(1−at−ct2)2−4b2t2

2bt .
Column 0 of the Riordan array (rn,k)n,k∈N = (d(t), h(t)) satisfies

ri+1,0 = ari,0 + 2bri,1 + cri−1,0.

Hence from (1.12), the function d(t) is given by

d(t) =
1

1− t(a+ 2bh(t)) − ct2
=

1
√

(1− at− ct2)2 − 4b2t2
.

�

Theorem 2.2. The left-bounded parametric rhombus S(a, b, c) = (sn,k)n,k∈N is the Riordan

array

S(a, b, c)

=

(

1− at− ct2 −
√

(1− at− ct2)2 − 4b2t2

2b2t2
,
1− at− ct2 −

√

(1− at− ct2)2 − 4b2t2

2bt

)

.

Proof. The proof is similar to that of Theorem 2.1, and is omitted. �

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) consisting of up steps
U = (1, 1), horizontal steps H1 = (1, 0), and down steps D = (1,−1) that never goes below
the x-axis. The number of Motzkin paths of length n is the nth Motzkin number Mn, and
the Motzkin numbers form the sequence A001006 in [12]. Many other examples of bijections
between Motzkin paths and others combinatorial objects can be found in [2, 6, 17]. A grand
Motzkin path of length n is a Motzkin path without the condition of never passing below the
x-axis. The number of grand Motzkin paths of length n is the nth central trinomial coefficient;
they form sequence A002426 in [12].

A generalized grand Motzkin path of length n is a lattice path from (0, 0) to (n, 0) with up
steps U = (1, 1), horizontal steps H1 = (1, 0), down steps D = (1,−1), and double horizontal
steps H2 = (2, 0). We weight the steps by assigning b to each up step U , a to each horizontal
step H1, b to each down step D, and c to each double horizontal step H2. The weight of a
path P , denoted by |P |, is the product of the weights of its steps, and the weight of a set of
paths S, denoted by |S|, is the sum of the weights of the paths in S.

The set of all partial generalized grand Motzkin paths ending at (i, j) is denoted by Ri,j.
Then, |Rn,0| is the number of all generalized grand Motzkin path of length n.

In Figure 4, we give an illustration of the dependence of ri+1,j+1 from the other elements in
the array (ri,j)i,j∈N, so that ri,j satisfies the recurrence relation and the boundary conditions

of (1.2). Therefore, we obtain the following theorem.

Theorem 2.3. The number of the generalized grand Motzkin paths ending at (i, j) is equal

to the entry ri,j in the parametric Pascal rhombus, i.e., ri,j = |Ri,j |, where i, j ∈ N.

A generalized Motzkin path is a generalized grand Motzkin path that never goes below the
x-axis. A partial generalized Motzkin path, also called a generalized Motzkin path ending at
(i, j), is defined as an initial segment of a generalized Motzkin path with terminal point (i, j).
Let Si,j be the set of all partial generalized Motzkin paths ending at (i, j), where S0,0 = {ε}
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and ε is the empty path. Then, |Sn,0| is the number of all generalized Motzkin path of length
n. By considering the recurrence relations between the numbers |Si,j|, we obtain the following
result.

Theorem 2.4. The number of the generalized Motzkin paths ending at (i, j) is equal to the

entry si,j in the left-bounded parametric rhombus, i.e., si,j = |Si,j |, where i, j ∈ N.

�
�
�

�
�
�
�
�
�
�
�
�

�
�

r

r

rr

❅
❅❘✲ ri+1,0

ri,1

ri,0ri−1,0

ri,i

2b

ac �
�
�
�
�
�
�
�
�
�
�
�

�
�

r

r

r

r

rr ✲✲
❅
❅❘✲

�
�✒

ri+1,j+1

ri,j

ri,j+1

ri−1,j+1

ri,j+2

ri,i

b

b

ac

Figure 4: The recursion of the partial generalized Motzkin paths

Theorem 2.5. For any integers i ≥ j ≥ 0, we have

si,j = ri,j − ri,j+2, (2.3)

i.e., the (i, j)-entry of the left-bounded parametric rhombus R(a, b, c) is equal to the difference

between the (i, j)-entry and (i, j + 2)-entry of the parametric Pascal rhombus S(a, b, c).

Proof. To prove this theorem, we must establish a bijection between Ri,j − Si,j and Ri,j+2,
i.e., the paths from (0, 0) to (i, j), which cross the x-axis are in bijection with paths from
(0, 0) to (i, j + 2). Obviously, there is a bijection between Ri,j+2 and Ri,−j−2; it is sufficient
to establish a bijection between Ri,j − Si,j and Ri,−j−2.

The claimed bijection is established as follows. Consider a path P ∈ Ri,j − Si,j, which is
from (0, 0) to (i, j) crossing the line y = 0. See Figure 5 for an example. Then, P must meet
the line y = −1.

Among all the meeting points of P and y = −1, choose the right-most one. Denote this
point by Q. Now reflect the portion of P from Q to (i, j) about the line y = −1, leaving the
portion from (0, 0) to Q invariant. Thus, we obtain a new path P ′ from (0, 0) to (i,−j − 2).

To construct the reverse mapping, we only have to observe that any path from (0, 0) to
(i,−j − 2) must meet y = −1 because (0, 0) and (i,−j − 2) lie on different sides of y = −1.
Again we choose the right-most meeting point, denote it by Q, and reflect the portion from Q
to (i,−j − 2) about the line y = −1, thus obtaining a path from (0, 0) to (i, j) that meets the
line y = −1, or, equivalently, crosses the line y = 0. �

Theorem 2.6. The nth row sum of the left-bounded parametric rhombus S(a, b, c) is equal to

the sum of first two entries of nth row of right half of the parametric Pascal rhombus R(a, b, c),
i.e.,

n
∑

k=0

sn,k = rn,0 + rn,1.

Proof. It follows from (2.3) that
∑n

k=0 sn,k =
∑n

k=0(rn,k − rn,k+2) = rn,0 + rn,1. �
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✲

✻
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Figure 5: From a path in R29,4 − S29,4 to a path in R29,−6

Theorem 2.7. The generating function of the complete central coefficients of the parametric

Pascal rhombus R(a, b, c) is 2

1−(a+2b)t−ct2+
√

(1−at−ct2)2−4b2t2
.

Proof. It follows from Theorem 2.6 that the complete central coefficients of the parametric
Pascal rhombus are equal to the row sums of the left-bounded parametric rhombus. Hence,
using (1.8) and Theorem 2.2, we have the generating function

1− at− ct2 −
√

(1− at− ct2)2 − 4b2t2

2b2t2
· 1

1− 1−at−ct2−
√

(1−at−ct2)2−4b2t2

2b2t

=
2

1− (a+ 2b)t− ct2 +
√

(1− at− ct2)2 − 4b2t2
.

�

3. Some Special Examples

In this section, we will present several examples of the parametric Pascal rhombus and the
left-bounded parametric rhombus. In each example, we will list the first lines of R(a, b, c) and
S(a, b, c).

Example 3.1. If a = c = 0 and b = 1, then

R(0, 1, 0) =





























1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
2 0 1 0 0 0 0 · · ·
0 3 0 1 0 0 0 · · ·
6 0 4 0 1 0 0 · · ·
0 10 0 5 0 1 0 · · ·
20 0 15 0 6 0 1 · · ·
...

...
...

...
...

...
...

. . .





























, S(0, 1, 0) =





























1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
1 0 1 0 0 0 0 · · ·
0 2 0 1 0 0 0 · · ·
2 0 3 0 1 0 0 · · ·
0 5 0 4 0 1 0 · · ·
5 0 9 0 5 0 1 · · ·
...

...
...

...
...

...
...

. . .





























.

The central coefficients, complete central coefficients of R(0, 1, 0), and the first column of
S(0, 1, 0) are sequence A126869, A001405, and A126120 in the OEIS [12], respectively.
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Example 3.2. If a = 0 and b = c = 1, then

R(0, 1, 1) =

























1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
3 0 1 0 0 0 · · ·
0 5 0 1 0 0 · · ·
13 0 7 0 1 0 · · ·
0 25 0 9 0 1 · · ·
...

...
...

...
...

...
...

























, S(0, 1, 1) =

























1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
2 0 1 0 0 0 · · ·
0 4 0 1 0 0 · · ·
6 0 6 0 1 0 · · ·
0 16 0 8 0 1 · · ·
...

...
...

...
...

...
...

























.

The central coefficients, complete central coefficients of R(0, 1, 0), and the first column of
S(0, 1, 0) are Central Delannoy numbers A001850, Larger Schröder numbers A006318, and
A026003 in the OEIS [12], respectively.

Example 3.3. If a = 0, b = 1, and c = 2, then

R(0, 1, 2) =

























1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
4 0 1 0 0 0 · · ·
0 7 0 1 0 0 · · ·
22 0 10 0 1 0 · · ·
0 46 0 13 0 1 · · ·
...

...
...

...
...

...
...

























, S(0, 1, 2) =

























1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
3 0 1 0 0 0 · · ·
0 6 0 1 0 0 · · ·
12 0 9 0 1 0 · · ·
0 33 0 12 0 1 · · ·
...

...
...

...
...

...
...

























.

The central coefficients of R(0, 1, 2), and the first column of S(0, 1, 2) are sequence A069835,
and A047891 in the OEIS [12], respectively.

Example 3.4. If a = 0, b = 1, and c = r, then

R(0, 1, r) =

(

1
√

(1− rt2)2 + 4t2
,
1− rt2 −

√

(1− rt2)2 + 4t2

2t

)

=































1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·

r + 2 0 1 0 0 0 0 · · ·
0 2r + 3 0 1 0 0 0 · · ·

r2 + 6r + 6 0 3r + 4 0 1 0 0 · · ·
0 3r2 + 12r + 10 0 4r + 5 0 1 0 · · ·

r3 + 12r2 + 30r + 20 0 6r2 + 20r + 15 0 5r + 6 0 1 · · ·
...

...
...

...
...

...
...

. . .































,
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S(0, 1, r) =

(

1− rt2 −
√

(1− rt2)2 + 4t2

2t2
,
1− rt2 −

√

(1− rt2)2 + 4t2

2t

)

=































1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·

r + 1 0 1 0 0 0 0 · · ·
0 2r + 2 0 1 0 0 0 · · ·

r2 + 3r + 2 0 3r + 3 0 1 0 0 · · ·
0 3r2 + 8r + 5 0 4r + 4 0 1 0 · · ·

r3 + 6r2 + 10r + 5 0 6r2 + 15r + 9 0 5r + 5 0 1 · · ·
...

...
...

...
...

...
...

. . .































,

where R(0, 1, r) is the aeration of the right half of the Pascal-like triangle
(

1
1−t

, t(1+rt)
1−t

)

[4, 19], and S(0, 1, r) is the matrix whose row sums are the complete central coefficients of
(

1
1−t

, t(1+rt)
1−t

)

[4].

Example 3.5. If a = k, b = 1, and c = 0, then

R(k, 1, 0) =

(

1
√

(1− kt)2 − 4t2
,
1− kt−

√

(1− kt)2 − 4t2

2t

)

=

=

























1 0 0 0 0 0 · · ·
k 1 0 0 0 0 · · ·

k2 + 2 2k 1 0 0 0 · · ·
k3 + 6k 3k2 + 3 3k 1 0 0 · · ·

k4 + 12k2 + 6 4k3 + 12k 6k2 + 4 4k 1 0 · · ·
k5 + 20k3 + 30k 5k4 + 30k2 + 10 10k3 + 20k 10k2 + 5 5k 1 · · ·

...
...

...
...

...
...

. . .

























,

S(k, 1, 0) =

(

1− kt−
√

(1− kt)2 − 4t2

2t2
,
1− kt−

√

(1− kt)2 − 4t2

2t

)

=

=

























1 0 0 0 0 0 · · ·
k 1 0 0 0 0 · · ·

k2 + 1 2k 1 0 0 0 · · ·
k3 + 3k 3k2 + 2 3k 1 0 0 · · ·

k4 + 6k2 + 2 4k3 + 8k 6k2 + 3 4k 1 0 · · ·
k5 + 10k3 + 10k 5k4 + 20k2 + 5 10k3 + 15k 10k2 + 4 5k 1 · · ·

...
...

...
...

...
...

. . .

























,

where R(k, 1, 0) is an element of the hitting-time subgroup of Riordan group [13], and S(k, 1, 0)
is the k-Motzkin matrix [5].
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