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Abstract. The solution for a type of linear homogeneous recurrence relation with constant
coefficients is presented with the help of Chebyshev polynomials of the second kind. An
application to ladder networks is provided.

1. Introduction

A fundamental concept in Discrete Mathematics is the notion of recurrence relation. These
recursion formulas appear frequently in numerous areas of knowledge such as Biology (popu-
lation growth), Finance (compound interest), Computer Science (analysis of algorithms) and
Electronics (ladder networks and electric line theory), among others. Although techniques
exist to solve general linear recurrence relations with constant coefficients, it is always of great
interest to have explicit formulas to express their solutions. In this short note, we deduce
closed-form expressions for the solution of a second and fourth order linear homogeneous re-
currence relation with constant coefficients using Chebyshev polynomials of the second kind,
taking advantage of a well-known identity involving these polynomials. These formulas reveal
to be not only of compact shape when compared, for instance, with the traditional approach
that requires the roots of the characteristic equation derived from the recurrence relation, but
also they lead to a Hankel matrix having (a sum of) Chebyshev polynomials of the second
kind as entries in the course of the computation that employs the initial conditions.

2. Solution Via Chebyshev Polynomials

Throughout, we shall denote by Up(x), p > 0, the pth degree Chebyshev polynomial of the
second kind, i.e., the polynomials defined by U0(x) = 1, U1(x) = 2x, and for n > 2,

Un(x) = 2xUn−1(x)− Un−2(x).

Our first statement gives the solution of some second order linear homogeneous recurrence
relations with constant coefficients by using these polynomials. Here, [v]k stands for the kth
entry of a given column vector v.

Theorem 2.1. Let a and b be complex numbers such that b 6= 0 and {xn}n>0, a sequence of

complex numbers satisfying

xn+2 = −a

b
xn+1 − xn, n > 0. (2.1)

If a+ 2b 6= 0 and a− 2b 6= 0, then

xn =
[

H
−1

x
]

1
Un

(

− a

2b

)

+
[

H
−1

x
]

2
Un+1

(

− a

2b

)
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with

H =

[

U0

(

− a
2b

)

U1

(

− a
2b

)

U1

(

− a
2b

)

U2

(

− a
2b

)

]

and x =

[

x0
x1

]

.

Proof. Suppose ξ is a root of Q(x) = bx2 + ax+ b. Hence, 1/ξ is also a root of Q(x) because
Q(x) is two self-reciprocal (see [5], page 431). Thus,

bξk+3 + aξk+2 + bξk+1 = 0 (2.2)

and

b

(

1

ξ

)k+3

+ a

(

1

ξ

)k+2

+ b

(

1

ξ

)k+1

= 0 (2.3)

for each k > 0. Setting θ = 1
2

(

ξ + 1
ξ

)

, we have 2bθ+a = 0. Because a+2b 6= 0 and a−2b 6= 0,

we obtain ξ − 1/ξ 6= 0. Thereby, (2.2) and (2.3) ensure

bUk+2

(

− a

2b

)

+ aUk+1

(

− a

2b

)

+ bUk

(

− a

2b

)

= 0

because, for every nonzero complex number x,
(

x− 1

x

)

Uk

[

1

2

(

x+
1

x

)]

= xk+1 − 1

xk+1
, k > 0 (2.4)

(see, for instance, [1]). Therefore, the sequence

xn = αUn

(

− a

2b

)

+ βUn+1

(

− a

2b

)

satisfies (2.1) for every complex number α and β. The conclusion follows by solving the system
of linear equations

{

αU0

(

− a
2b

)

+ βU1

(

− a
2b

)

= x0,

αU1

(

− a
2b

)

+ βU2

(

− a
2b

)

= x1,

in the variables α and β, which has unique solution α =
[

H
−1

x
]

1
and β =

[

H
−1

x
]

2
. The

result is established. �

Parallel to Theorem 2.1, the next result gives us the solution for a type of fourth order
linear homogeneous recurrence relation with constant coefficients. The proof is analogous.

Theorem 2.2. Let a, b, c be complex numbers such that c 6= 0 and {xn}n>0, a sequence of

complex numbers satisfying

xn+4 = −b

c
xn+3 −

a

c
xn+2 −

b

c
xn+1 − xn, n > 0. (2.5)

If b2 + 8c2 − 4ac 6= 0, a+ 2c+ 2b 6= 0, and a+ 2c− 2b 6= 0, then

xn =
[

H
−1

x
]

1
Hn +

[

H
−1

x
]

2
Hn+1 +

[

H
−1

x
]

3
Hn+2 +

[

H
−1

x
]

4
Hn+3, n > 0 (2.6)

where

Hn = Un

(

−b−
√
b2 + 8c2 − 4ac

4c

)

+ Un

(

−b+
√
b2 + 8c2 − 4ac

4c

)

, (2.7)

and

H =









H0 H1 H2 H3

H1 H2 H3 H4

H2 H3 H4 H5

H3 H4 H5 H6









, x =









x0
x1
x2
x3









. (2.8)
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Proof. Let ξ be a root of Q(x) = cx4 + bx3 + ax2 + bx + c. Thus, 1/ξ is also a root of Q(x)
because Q(x) is four self-reciprocal. Hence,

cξk+5 + bξk+4 + aξk+3 + bξk+2 + cξk+1 = 0 (2.9)

and

c

(

1

ξ

)k+5

+ b

(

1

ξ

)k+4

+ a

(

1

ξ

)k+3

+ b

(

1

ξ

)k+2

+ c

(

1

ξ

)k+1

= 0 (2.10)

for each k > 0. Setting θ = 1
2

(

ξ + 1
ξ

)

, we have

4cθ2 + 2bθ + (a− 2c) = 0. (2.11)

From a+2c+2b 6= 0 and a+2c− 2b 6= 0, it follows that ξ − 1/ξ 6= 0. Hence, (2.4), (2.9), and
(2.10) give

cUk+4(θ) + bUk+3(θ) + aUk+2(θ) + bUk+1(θ) + cUk(θ) = 0

where θ is a solution of (2.11). Therefore, the sequence

xn = αHn + βHn+1 + µHn+2 + νHn+3

with Hn defined by (2.7) verifies (2.5) for all complex numbers α, β, µ, ν. By noting that the
determinant of H in (2.8) is (b2 + 8c2 − 4ac)2/c4, the following system of linear equations in
the variables α, β, µ, ν























αH0 + βH1 + µH2 + νH3 = x0

αH1 + βH2 + µH3 + νH4 = x1

αH2 + βH3 + µH4 + νH5 = x2

αH3 + βH4 + µH5 + νH6 = x3

has the unique solution α =
[

H
−1

x
]

1
, β =

[

H
−1

x
]

2
, µ =

[

H
−1

x
]

3
, and ν =

[

H
−1

x
]

4
. The

proof is complete. �

Remark 2.3. It should be observed that for computational purposes, the inversion of Hankel
matrix H in the above theorems can be performed by using an algorithm from Trench in [9].

For sequences {xn}n>0 of complex numbers satisfying

xn+2m = − 1

dm

m−1
∑

k=1−m

d|k|xn+k+m − xn, n > 0,

where m is a positive integer and d0, d1, . . . , dm are complex numbers such that dm 6= 0, the
preceding statements seem to suggest the following general formula

xn =

2m
∑

k=1

[

H
−1

x
]

k
Hn+k−1

with Hn+k−1 involving a sum of Chebyshev polynomials of the second kind, H = [Hk+ℓ−2]
2m
k,ℓ=1

and x, the corresponding 2m-dimensional vector of the initial conditions. It would be inter-
esting to find the appropriate assumptions on the coefficients d0, d1, . . . , dm that allow us to
establish such a formula, and the explicit form of components Hn+k−1 that forms it.
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3. Ladder Networks

Historically, Morgan-Voyce polynomials were introduced by A.M. Morgan-Voyce in 1959
[4] having, as a major motivation, ladder networks of n resistors (see Chapter 41 of [2] for
expository reference). These polynomials are defined recursively as follows:

bn(t) = tBn−1(t) + bn−1(t), (3.1)

Bn(t) = (t+ 1)Bn−1(t) + bn−1(t), (3.2)

where b0(t) = 1 = B0(t) and n > 1 (see [8]). For any n > 1, it is straightforward to see that

bn(t) =
(3.1)

tBn−1(t)+bn−1(t) =
(3.2)

tBn−1(t)+[Bn(t)− (t+ 1)Bn−1(t)] = Bn(t)−Bn−1(t). (3.3)

Because

Bn+1(t)− (t+ 1)Bn(t) =
(3.2)

bn(t) =
(3.3)

Bn(t)−Bn−1(t), n > 1,

we obtain the Morgan-Voyce polynomials of the first kind










B0(t) = 1,

B1(t) = t+ 2,

Bn(t) = (t+ 2)Bn−1(t)−Bn−2(t), n > 2.

(3.4)

On the other hand, (3.1) can be rewritten as

tBn(t) = bn+1(t)− bn(t), n > 0, (3.1’)

and for each n > 0, we have

[bn+2(t)− bn+1(t)]− tbn+1(t) =
(3.1’)

tBn+1(t)− tbn+1(t)

=
(3.3)

t [bn+1(t) +Bn(t)]− tbn+1(t)

=
(3.1’)

bn+1(t)− bn(t),

which leads to the Morgan-Voyce polynomials of the second kind










b0(t) = 1,

b1(t) = t+ 1,

bn(t) = (t+ 2) bn−1(t)− bn−2(t), n > 2.

(3.5)

The Morgan-Voyce polynomials of first and second kind were extensively studied in the past,
namely by Swamy, who established many of their identities and properties (see [8], [7] and
[6]).

An application of the formulas presented in the previous section can be seen in the calculus
of electric magnitudes in ladder networks and electric line theory. Following closely [3], the
electric magnitudes in general ladder networks are obtained by introducing a parameter P that
includes the ratio between their longitudinal and lateral elements. In these computations, Lahr
[3] considered the Morgan-Voyce polynomials of the first kind











B1 = 1,

B2 = P,

Bn+2 = P Bn+1 −Bn, n > 1,
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and the Morgan-Voyce polynomials of the second kind











b1 = 1,

b2 = P − 1,

bn+2 = P bn+1 − bn, n > 1,

distinguishing several different particular cases for the real number P . P = t+ 2 in (3.4) and
(3.5); let us also point out that from mathematical point of view, it does not matter if the
indexation of these polynomials starts with 0 or 1. Our Theorem 2.1 allows us to exempt the
aforementioned case division; indeed, supposing P 6= 2 and P 6= −2, we get

Bn = Un−1

(

P

2

)

, n > 1, (3.6)

and

bn = (1− P )Un−1

(

P

2

)

+ Un

(

P

2

)

, n > 1 (3.7)

because

[

U0

(

P
2

)

U1

(

P
2

)

U1

(

P
2

)

U2

(

P
2

)

]−1

=

[

1 P
P P 2 − 1

]−1

=

[

1− P 2 P
P −1

]

,

[

1− P 2 P
P −1

] [

1
P

]

=

[

1
0

]

,

[

1− P 2 P
P −1

] [

1
P − 1

]

=

[

1− P
1

]

.

Notice that both expressions (3.6) and (3.7) remain valid when P = 2 or P = −2 because
Un(±1) = (±1)n(n + 1), n > 0, confirming the expressions already stated in [3] (page 157).

If P is a complex number, i.e., P = a+ bi with i denoting the imaginary unit, then its real
and imaginary parts must be taken into account on the computation of the complex Morgan-
Voyce polynomials of first and second kind required in the determination of currents and
voltages. This leads to a fourth-order linear homogeneous recurrence relation of the form (2.5)
for the real and imaginary parts of such polynomials. According to Theorem 2.2, a nice and
lightweight solution using Chebyshev polynomials of the second kind can be reached, avoiding
the use of many auxiliary constants as those admitted in [3]. For instance, the real part Mn

of the complex Morgan-Voyce polynomials of the first kind is given by



































M1 = 1,

M2 = a,

M3 = a2 − b2 − 1,

M4 = a
(

a2 − 3b2 − 2
)

,

Mn+4 = 2aMn+3 −
(

2 + a2 + b2
)

Mn+2 + 2aMn+1 −Mn, n > 1,
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with a and b real numbers. Assuming b 6= 0 and setting Hk = Uk

(

a+bi
2

)

+ Uk

(

a−bi
2

)

, k > 0,
we get, after some calculations,









H0 H1 H2 H3

H1 H2 H3 H4

H2 H3 H4 H5

H3 H4 H5 H6









−1 







1
a

a2 − b2 − 1
a
(

a2 − 3b2 − 2
)









=









1
2

0
0
0









,

and from Theorem 2.2,

Mn =
1

2
Un−1

(

a+ bi

2

)

+
1

2
Un−1

(

a− bi

2

)

, n > 1.

The imaginary part Nn of the complex Morgan-Voyce polynomials of the first kind can also
be derived through Chebyshev polynomials; we have



































N1 = 0,

N2 = b,

N3 = 2ab,

N4 = b
(

3a2 − b2 − 2
)

,

Nn+4 = 2aNn+3 −
(

2 + a2 + b2
)

Nn+2 + 2aNn+1 −Nn, n > 1,

and Theorem 2.2 still yields, for every n > 1,

Nn =
1

2b

[

Un+2

(

a+ bi

2

)

+ Un+2

(

a− bi

2

)]

− a

b

[

Un+1

(

a+ bi

2

)

+ Un+1

(

a− bi

2

)]

+

1 + a2 + b2

2b

[

Un

(

a+ bi

2

)

+ Un

(

a− bi

2

)]

− a

2b

[

Un−1

(

a+ bi

2

)

+ Un−1

(

a− bi

2

)]

by noting that









H0 H1 H2 H3

H1 H2 H3 H4

H2 H3 H4 H5

H3 H4 H5 H6









−1 







0
b

2ab
b
(

3a2 − b2 − 2
)









=













− a
2b

1+a2+b2

2b

−a
b

1
2b













.
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