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Abstract. Let {Ln}n≥0 be the sequence of Lucas numbers given by L0 = 2, L1 = 1, and
Ln+2 = Ln+1 + Ln for all n ≥ 0. In this paper, for an integer d ≥ 2 that is square-free,
we show that there is at most one value of the positive integer x participating in the Pell
equation x2−dy2 = ±1, which is a product of two Lucas numbers, with a few exceptions that
we completely characterize.

1. Introduction

Let {Ln}n≥0 be the sequence of Lucas numbers given by L0 = 2, L1 = 1, and

Ln+2 = Ln+1 + Ln

for all n ≥ 0. This is sequence A000032 on the On-Line Encyclopedia of Integer Sequences
(OEIS). The first few terms of this sequence are

{Ln}n≥0 = 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, . . . .

Putting (α, β) =

(

1 +
√
5

2
,
1−

√
5

2

)

for the roots of the characteristic equation r2 − r − 1 = 0

of the Lucas sequence, the Binet formula for its general terms is given by

Ln = αn + βn, for all n ≥ 0. (1.1)

Furthermore, we can prove by induction that the inequality

αn−1 ≤ Ln ≤ αn+2, (1.2)

holds for all n ≥ 0.
Let d ≥ 2 be a positive integer that is not a perfect square. It is well-known that the Pell

equation

x2 − dy2 = ±1 (1.3)

has infinitely many positive integer solutions (x, y). Letting (x1, y1) be the smallest positive
solution, all solutions are of the form (xk, yk) for some positive integer k, where

xk + yk
√
d = (x1 + y1

√
d)k for all k ≥ 1. (1.4)

Furthermore, the sequence {xk}k≥1 is binary recurrent. The following formula

xk =
(x1 + y1

√
d)k + (x1 − y1

√
d)k

2
,

holds for all positive integers k.
Kafle, et al. [11] considered the Diophantine equation

xn = FℓFm, (1.5)
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where {Fm}m>0 is the sequence of Fibonacci numbers given by F0 = 0, F1 = 1, and Fm+2 =
Fm+1 + Fm for all m > 0. They proved that equation (1.5) has at most one solution n in
positive integers except for d = 2, 3, 5, for which case equation (1.5) has the solutions x1 = 1
and x2 = 3, x1 = 2 and x2 = 26, x1 = 2 and x2 = 9, respectively.

There are many other researchers who have studied related problems involving the in-
tersection sequence {xn}n≥1 with linear recurrence sequences of interest. For example, see
[4, 7, 8, 9, 12, 13, 14, 16, 17, 19].

2. Main Result

In this paper, we study a similar problem to that of Kafle, et al. [11], but with the Lucas
numbers instead of the Fibonacci numbers. That is, we show that there is at most one value
of the positive integer x participating in (1.3), which is a product of two Lucas numbers,
with a few exceptions that we completely characterize. This can be interpreted as solving the
Diophantine equation

xk = LnLm, (2.1)

in nonnegative integers (k, n,m) with k ≥ 1 and 0 ≤ m ≤ n.

Theorem 2.1. For each square-free integer d ≥ 2, there is at most one integer k such that
the equation (2.1) holds, except for d ∈ {2, 3, 5, 15, 17, 35} for which x1 = 1, x2 = 3, x3 = 7,
x9 = 1393 (for d = 2), x1 = 2, x2 = 7 (for d = 3), x1 = 2, x2 = 9 (for d = 5), x1 = 4,
x5 = 15124 (for d = 15), x1 = 4, x2 = 33 (for d = 17), and x1 = 6, x3 = 846 (for d = 35).

3. Preliminary Results

3.1. Notations and terminology from algebraic number theory. We begin by recalling
some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polynomial over the
integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then, the
logarithmic height of η is given by

h(η) =
1

d

(

log a0 +

d
∑

i=1

log
(

max{|η(i)|, 1}
)

)

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) =
logmax{|p|, q}. The following are some of the properties of the logarithmic height function
h(·), which will be used in the next sections of this paper without reference:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ), (3.1)

h(ηs) = |s|h(η) (s ∈ Z).
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3.2. Linear Forms in Logarithms. To prove our main result Theorem 2.1, we need to use
several times a Baker–type lower bound for a nonzero linear form in logarithms of algebraic
numbers. There are many such in the literature like that of Baker and Wüstholz from [2]. We
start by recalling the result of Bugeaud, Mignotte, and Siksek ([5], Theorem 9.4, pp. 989),
which is a modified version of the result of Matveev [18], which is one of our main tools in this
paper.

Theorem 3.1. Let γ1, . . . , γt be positive real numbers in a number field K ⊆ R of degree D,
b1, . . . , bt be nonzero integers, and assume that

Λ = γb11 · · · γbtt − 1, (3.2)

is nonzero. Then,

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

When t = 2 and γ1 and γ2 are positive and multiplicatively independent, we can use a
result of Laurent, Mignotte, and Nesterenko [15]. Namely, in this case, let B1 and B2 be real
numbers larger than 1 such that

logBi ≥ max

{

h(γi),
| log γi|

D
,
1

D

}

, for i = 1, 2,

and put

b′ =
|b1|

D logB2
+

|b2|
D logB1

.

Put

Γ = b1 log γ1 + b2 log γ2. (3.3)

We note that Γ 6= 0 because γ1 and γ2 are multiplicatively independent. The following result
is Corollary 2 in [15].

Theorem 3.2. With the above notations, assuming that γ1, γ2 are positive and multiplicatively
independent, then

log |Γ| > −24.34D4

(

max

{

log b′ + 0.14,
21

D
,
1

2

})2

logB1 logB2. (3.4)

Note that with Γ given by (3.3), we have eΓ−1 = Λ, where Λ is given by (3.2) in case t = 2,
which explains the connection between Theorem 3.1 and Theorem 3.2.

3.3. Reduction Procedure. During the calculations, we get upper bounds on our variables
that are too large; thus, we need to reduce them. To do so, we use some results from the
theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the well-
known classic result in the theory of Diophantine approximation.

20 VOLUME 58, NUMBER 1
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Lemma 3.3. Let τ be an irrational number, p0
q0
, p1

q1
, p2

q2
, . . . be all the convergents of the

continued fraction of τ , and M be a positive integer. Let N be a nonnegative integer such that
qN > M . Then, putting a(M) = max{ai : i = 0, 1, 2, . . . , N}, the inequality

∣

∣

∣
τ − r

s

∣

∣

∣
>

1

(a(M) + 2)s2
,

holds for all pairs (r, s) of positive integers with 0 < s < M .

For a nonhomogeneous linear form in two integer variables, we use a slight variation of a
result by Dujella and Pethő (see [10], Lemma 5a). For a real number X, we write ||X|| =
min{|X − n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3.4. Let M be a positive integer, p
q be a convergent of the continued fraction of the

irrational number τ such that q > 6M , and A,B, µ be some real numbers with A > 0 and
B > 1. Furthermore, let ε = ||µq|| − M ||τq||. If ε > 0, then there is no solution to the
inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

At various occasions, we need to find a lower bound for linear forms in logarithms with
bounded integer coefficients in three and four variables. In this case, we use the LLL algorithm
that we describe below. Let τ1, τ2, . . ., τt ∈ R and the linear form

x1τ1 + x2τ2 + · · ·+ xtτt with |xi| ≤ Xi. (3.5)

We put X = max{Xi} and C > (tX)t and consider the integer lattice Ω generated by

bj = ej + ⌊Cτj⌉ for 1 ≤ j ≤ t− 1 and bt = ⌊Cτt⌉et,

where C is a sufficiently large positive constant.

Lemma 3.5. Let X1,X2, . . . ,Xt be positive integers such that X = max{Xi} and C > (tX)t

is a fixed sufficiently large constant. With the above notation on the lattice Ω, we consider a
reduced base {bi} to Ω and its associated Gram-Schmidt orthogonalization base {b∗i }. We set

c1 = max
1≤i≤t

||b1||
||b∗i ||

, θ =
||b1||
c1

, Q =

t−1
∑

i=1

X2
i , and R =

(

1 +

t
∑

i=1

Xi

)

/2.

If the integers xi are such that |xi| ≤ Xi, for 1 ≤ i ≤ t and θ2 ≥ Q+R2, then we have

∣

∣

∣

∣

∣

t
∑

i=1

xiτi

∣

∣

∣

∣

∣

≥
√

θ2 −Q−R

C
.

For the proof and further details, we refer the reader to the book of Cohen. (Proposition
2.3.20 in [6], pp. 58–63).
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3.4. Pell Equations and Dickson Polynomials. Here we give some relations about Pell
equations and Dickson polynomials that will be useful in the next section of this paper.

Let d ≥ 2 be a square-free integer. We put δ = x1 +
√

x21 − ǫ for the smallest positive
integer x1 such that

x21 − dy21 = ǫ, ǫ ∈ {±1}
for some positive integer y1. Then,

xk + yk
√
d = δk and xk − yk

√
d = ηk, where η = ǫδ−1.

From the above, we get

2xk = δk + (ǫδ−1)k for all k ≥ 1. (3.6)

There is a formula expressing 2xk in terms of 2x1 by means of the Dickson polynomial
Dk(2x1, ǫ), where

Dk(x, y) =

⌊k/2⌋
∑

i=0

k

k − i

(

k − i

i

)

(−y)ixk−2i.

These polynomials appear naturally in many number theory problems and results, for example
see a result of Bilu and Tichy [3] concerning polynomials f(X), g(X) ∈ Z[X] such that the
Diophantine equation f(x) = g(y) has infinitely many integer solutions (x, y).

Example 3.6. (i) k = 2. We have

2x2 =

1
∑

i=0

2

2− i

(

2− i

i

)

(−ǫ)i(2x1)
2−2i = 4x21 − 2ǫ, so x2 = 2x21 − ǫ.

(ii) k = 3. We have

2x3 =

1
∑

i=0

3

3− i

(

3− i

i

)

(−ǫ)i(2x1)
3−2i = (2x1)

3 − 3ǫ(2x1), so x3 = 4x31 − 3ǫx1.

4. Bounding the Variables

We assume that (x1, y1) is the smallest positive solution of the Pell equation (1.3). As in
Subsection 3.4, we set

x21 − dy21 = ǫ, ǫ ∈ {±1},
and put

δ = x1 +
√
dy1 and η = x1 −

√
dy1 = ǫδ−1.

From (1.4), we get

xk =
1

2

(

δk + ηk
)

. (4.1)

Since δ ≥ 1 +
√
2 > α3/2, it follows that the estimate

δk

α2
≤ xk <

δk

α
holds for all k ≥ 1. (4.2)

We let (k, n,m) = (ki, ni,mi) for i = 1, 2 be the solutions of (2.1). By (1.2) and (4.2), we get

αn+m−2 ≤ LnLm = xk <
δk

α
and

δk

α2
≤ xk = LnLm ≤ αn+m+4, (4.3)

so

kc1 log δ − 6 < n+m < kc1 log δ + 1 where c1 =
1

log α
. (4.4)
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To fix ideas, we assume that

n ≥ m and k1 < k2.

We also put

m3 = min{m1,m2}, m4 = max{m1,m2}, n3 = min{n1, n2}, n4 = max{n1, n2}.
Using the inequality (4.4) together with δ ≥ 1 +

√
2 = α3/2 (so, c1 log δ > 3/2), gives us that

3

2
k2 < k2c1 log δ < 2n2 + 6 ≤ 2n4 + 6,

so

k1 < k2 <
4

3
n4 + 4. (4.5)

Thus, it is enough to find an upper bound on n4. Substituting (1.1) and (4.1) in (2.1) we get

1

2
(δk + ηk) = (αn + βm)(αm + βm). (4.6)

This can be regrouped as

δk2−1α−n−m − 1 = −2−1ηkα−n−m + (βα−1)n + (βα−1)m + (βα−1)n+m.

Since β = −α−1, η = εδ−1 and using δk ≥ αn+m−1 (by (4.3)), we get
∣

∣

∣
δk2−1α−n−m − 1

∣

∣

∣
≤ 1

2δkαn+m
+

1

α2n
+

1

α2m
+

1

α2(n+m)

≤ α

2α2(n+m)
+

3

α2m
<

6

α2m
.

In the above, we have also used n ≥ m and (1/2)α + 3 < 6. Hence,
∣

∣

∣
δk2−1α−n−m − 1

∣

∣

∣
<

6

α2m
. (4.7)

We let Λ1 = δk2−1α−n−m − 1. We put

Γ1 = k log δ − log 2− (n+m) log α. (4.8)

Note that eΓ1 − 1 = Λ1. If m > 100, then 6
α2m < 1

2 . Since |eΓ1 − 1| < 1/2, it follows that

|Γ1| < 2|eΓ1 − 1| < 12

α2m
. (4.9)

By recalling that (k, n,m) = (ki, ni,mi) for i = 1, 2, we get that

|ki log δ − log 2− (ni +mi) log α| <
12

α2mi
(4.10)

holds for both i = 1, 2 provided m3 > 100.
We apply Theorem 3.1 on the left side of (4.7). First, we need to check that Λ1 6= 0. If it

were, then δkα−n−m = 2. However, this is impossible because δkα−n−m is a unit, whereas 2
is not. Thus, Λ1 6= 0, and we can apply Theorem 3.1. We take the data

t = 3, γ1 = δ, γ2 = 2, γ3 = α, b1 = k, b2 = −1, b3 = −n−m.

We take K = Q(
√
d, α), which has degree D ≤ 4 (it could be that d = 5 in which case

D = 2; otherwise, D = 4). Since δ ≥ 1 +
√
2 > α, the second inequality in (4.4) tells us that

k < n + m, so we take B = 2n. We have h(γ1) = h(δ) = 1
2 log δ, h(γ2) = h(2) = log 2, and
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h(γ3) = h(α) = 1
2 log α. Thus, we can take A1 = 2 log δ, A2 = 4 log 2, and A3 = 2 log α. Now,

Theorem 3.1 tells us that

log |Λ1| > −1.4× 306 × 34.5 × 42(1 + log 4)(1 + log(2n))(2 log δ)(4 log 2)(2 log α)

> −2.92× 1013 log δ(1 + log(2n)).

By comparing the above inequality with (4.7), we get

2m log α− log 6 < 2.92× 1013 log δ(1 + log(2n)). (4.11)

Thus,

m < 6.06 × 1013 log δ(1 + log(2n)). (4.12)

Because δk < αn+m+6, we get that

k log δ < (n+m+ 6) log α ≤ (2n + 6) log α, (4.13)

which with the estimate (4.12) gives

km < 5.84 × 1013n(1 + log(2n)). (4.14)

We have just proved the following lemma, which will be important later.

Lemma 4.1. If xk = LnLm and n ≥ m, then

m < 6.06 × 1013 log δ(1 + log(2n)), km < 5.84 × 1013n(1 + log(2n)), k log δ < 4n log α.

Note that we did not assume that m3 > 100 for Lemma 4.1 because we have worked with
the inequality (4.7) and not (4.9). We again assume that m3 > 100. Then, the two inequalities
(4.10) hold. We eliminate the term involving log δ by multiplying the inequality for i = 1 with
k2 and the one for i = 2 with k1, subtract them, and apply the triangle inequality as follows

|(k2 − k1) log 2− (k2(n1 +m1)− k1(n2 +m2)) log α|
= |k2(k1 log δ − log 2− (n1 +m1) log α)− k1(k2 log δ − log 2− (n2 +m2) log α)|
≤ k2 |k1 log δ − log 2− (n1 +m1) log α|+ k1 |k2 log δ − log 2− (n2 +m2) log α|

≤ 12k2
α2m1

+
12k1
α2k2

<
24k2
α2m3

.

Thus,

|Γ2| = |(k2 − k1) log 2− (k2(n1 +m1)− k1(n2 +m2)) log α| <
24k2
α2m3

. (4.15)

We are now set to apply Theorem 3.2 with the data

t = 2, γ1 = 2, γ2 = α, b1 = k2 − k1, b2 = k2(n1 +m1)− k1(n2 +m2).

That γ1 = 2 and γ2 = α are multiplicatively independent follows because α is a unit whereas
2 is not. We observe that k2 − k1 < k2, whereas by the absolute value of the inequality in
(4.15), we have

|k2(n1 +m1)− k1(n2 +m2)| ≤ (k2 − k1)
log 2

log α
+

24k2
α2m3 log α

< 2k2,

because m3 > 10. We have that K = Q(α), which has D = 2. So, we can take

logB1 = max

{

h(γ1),
| log γ1|

2
,
1

2

}

= log 2,
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and

logB2 = max

{

h(γ2),
| log γ2|

2
,
1

2

}

=
1

2
.

Thus,

b′ =
|k2 − k1|
2 logB2

+
|k2(n1 +m1)− k1(n2 +m2)|

2 logB1
≤ k2 +

k2
log 2

< 3k2.

Now, Theorem 3.2 tells us that with

Γ2 = (k2 − k1) log 2− (k2(n1 +m1)− k1(n2 +m2)) log α,

we have

log |Γ2| > −24.34 × 24 (max{log(3k2) + 0.14, 10.5})2 · (2 log 2) · (1/2).
Thus,

log |Γ2| > −270 (max{log(3k2) + 0.14, 10.5})2 .
By comparing the above inequality with (4.15), we get

2m3 logα− log(24k2) < 270 (max{log(3k2) + 0.14, 10.5})2 .
If k2 ≤ 10523, then log(3k2) + 0.14 < 10.5. Thus, the last inequality above gives

2m3 logα < 270× 10.52 + log(24× 10523),

giving m3 < 30942 in this case. Otherwise, k2 > 10523, and we get

2m3 logα < 272(1 + log k2)
2 + log(24k2) < 280(1 + log k2)

2,

which gives

m3 < 160(1 + log k2)
2.

We have just proved the following lemma.

Lemma 4.2. If m3 > 100, then either

(i) k2 ≤ 10523 and m3 < 30942, or
(ii) k2 > 10523, in which case m3 < 160(1 + log k2)

2.

Now suppose that some m is fixed in (2.1), or at least we have some good upper bounds on
it. We rewrite (2.1) using (1.1) and (4.1) as

1

2
(δk + ηk) = Lm(αn + βn),

so

δk (2Lm)−1 α−n − 1 = − 1

2Lm
ηkα−n + (βα−1)n.

Since m ≥ 1, β = −α−1, η = εδ−1, and δk > αn+m−1, we get
∣

∣

∣
δk (2Lm)−1 α−n − 1

∣

∣

∣
≤ 1

2Lmδkαn
+

1

α2n
≤ α

α2(n+m)
+

1

α2n

≤ α+ 1

α2n
<

6

α2n
,

where we used n ≥ m ≥ 0 and α+ 1 < 6. Hence,

|Λ3| =
∣

∣

∣
δk (2Lm)−1 α−n − 1

∣

∣

∣
<

6

α2n
. (4.16)
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We assume that n3 > 100. In particular, 6
α2n < 1

2 for n ∈ {n1, n2}, so we get by the previous
argument that

|Γ3| = |k log δ − log(2Lm)− n logα| < 12

α2n
. (4.17)

We are now set to apply Theorem 3.1 on the left side of (4.16) with the data

t = 3, γ1 = δ, γ2 = 2Lm, γ3 = α, b1 = k, b2 = −1, b3 = −n.

First, we need to check that Λ3 = δk(2Lm)−1α−n − 1 6= 0. If not, then δk = 2Lmαm. The left

side belongs to the field Q(
√
d) but is not rational, whereas the right side belongs to the field

Q(
√
5). This is not possible unless d = 5. In this last case, δ is a unit in Q(

√
5) whereas 2Lm

is not a unit in Q(
√
5) because the norm of this first element is 4L2

m 6= ±1. So, Λ3 6= 0. Thus,

we can apply Theorem 3.1. We have the field K = Q(
√
d,
√
5), which has degree D ≤ 4. We

also have

h(γ2) = h(2Lm) = h(2) + h(Lm)

≤ log 2 + (m+ 1) log α < 2 +m logα

≤ 2.92 × 1013 log δ(1 + log(2n)) by (4.12).

So, we take

h(γ1) =
1

2
log δ, h(γ2) = 2.92× 1013 log δ(1 + log(2n)), and h(γ3) =

1

2
logα.

Then,

A1 = 2 log δ, A2 = 1.18× 1014 log δ(1 + log(2n)), and A3 = 2 log α.

Then, by Theorem 3.1, we get

log |Λ3| > −1.4× 306 × 34.5 × 42(1 + log 4)(1 + log n)(2 log δ)

×(1.18 × 1014 log δ(1 + log(2n)))(2 log α)

> −8.6× 1026(1 + log(2n))2(log δ)2 log α.

Comparing the above inequality with (4.16), we get

2n log α− log 6 < 8.6 × 1026(1 + log(2n))2(log δ)2 logα,

which implies that

n < 4.3× 1026(1 + log(2n))2(log δ)2. (4.18)

We state what we have proved.

Lemma 4.3. If xk = LnLm with n ≥ m ≥ 1, then we have

n < 4.3× 1026(1 + log(2n))2(log δ)2.

Note that we did not use the assumption that m3 > 100 or that n3 > 100 for Lemma 4.3
because we worked with the inequality (4.16), not with the inequality (4.17). We now assume
that n3 > 100 and, in particular, (4.17) holds for (k, n,m) = (ki, ni,mi) for both i = 1, 2. By
the previous procedure, we also eliminate the term involving log δ as follows:

|k2 log(2Lm1
)− k1 log(2Lm2

)− (k2n1 − k1n2) log α| <
12k2
α2n1

+
12k1
α2n2

<
24k2
α2n3

. (4.19)

We assume that α2n3 > 48k2. If we put

Γ4 = k2 log(2Lm1
)− k1 log(2Lm2

)− (k2n1 − k1n2) log α,
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we have that |Γ4| < 1/2. Then, we get that

|Λ4| = |eΓ4 − 1| < 2|Γ4| <
48k2
α2n3

. (4.20)

We apply Theorem 3.1 to

Λ4 = (2Lm1
)k2(2Lm2

)−k1α−(k2n1−k1n2) − 1.

First, we need to check that Λ4 6= 0. If it were, then it would follow that

Lk2
m1

Lk1
m2

= 2k1−k2αk2n1−k1n2 . (4.21)

We consider the following Lemma.

Lemma 4.4. Equation (4.21) has only many small positive integer solutions (ki, ni,mi) for
i = {1, 2} with k1 < k2 and m1 ≤ m2 ≤ 6. Furthermore, none of these solutions lead to a
valid solution to the original Diophantine equation (2.1).

Proof. Suppose that (4.21) holds and assume that gcd(k1, k2) = 1. Since αk2n1−k1n2 ∈ Q, it
follows that k2n1 = k1n2. Thus, if one of the n1 or n2 is zero, so is the other. Since ni ≥ mi

for i ∈ {1, 2}, it follows that n1 = n2 = 0 and m1 = m2 = 0, so xk1 = xk2 . Therefore k1 = k2,
a contradiction. Thus, n1 and n2 are both positive integers. Next, Lk2

m1
/Lk1

m2
= 2k1−k2 < 1.

Thus, Lk2
m1

< Lk1
m2

< Lk2
m2

, so Lm1
< Lm2

. This implies that (m1,m2) = (1, 0) or m1 < m2.

The case (m1,m2) = (1, 0) gives 1/2k1 = 2k1−k2 . Thus, k2 = 2k1 and since gcd(k1, k2) = 1, we
get k1 = 1 and k2 = 2, so n2 = 2n1. But then x2 = xk2 = Ln2

Lm2
= L2n1

L0 = 2L2n1
is even,

a contradiction because x2 = 2x1 ± 1 (by Example 3.6 (i)) is odd. Thus, m1 < m2. If m2 > 6,
the Carmichael Primitive Divisor Theorem for Lucas numbers shows that Lm2

is divisible by
a prime p > 7, which does not divide Lm1

. This is impossible because it contradicts the
assumption that (4.21) holds. Thus, m2 ≤ 6. Furthermore, because Lk2

m1
/Lk1

m2
= 1/2k2−k1 , it

follows that Lk1
m1

| Lk2
m1

| Lk1
m2

, so Lm1
| Lm2

. So, there are three cases that we must analyze:

Case 1. m1 = 0 and m2 ∈ {3, 6}. If (m1,m2) = (0, 3), then 2k2/4k1 = 1/22k1−k2 =
1/2k2−k1 . This gives 2k2 = 3k1 and because k1 and k2 are coprime, it follows that k1 = 2
and k2 = 3. Then x2 = xk1 = Ln1

Lm1
= Ln1

L0 = 2Ln1
is even, a contradiction because

x2 = 2x1 ± 1 is odd. If (m1,m2) = (0, 6), then 2k2/18k1 = 1/2k2−k1 , which is impossible
because examining the exponent of 3 we would get k1 = 0, a contradiction.

Case 2. m1 = 2 and Lm2
is a power of 2. The case m2 = 0 has been treated so the

only other case left is m2 = 3. In this case, 1/4k1 = 1/2k2−k1 , giving k2 = 3k1. Thus,
since gcd(k1, k2) = 1, k1 = 1, and k2 = 3. Since k2n1 = k1n2, we get n2 = 3n1. Thus,
x1 = Ln1

L1 = Ln1
and x3 = L3n1

L3 = 4L3n1
. Now, x3 = x1(4x

2
1 ± 3) (by Example 3.6 (ii))

and the second factor is odd, so the power of 2 dividing 4L3n1
divides x1 = Ln1

. But, 4L3n1

is a multiple of 8 because L3n1
is even. Thus, 8 | Ln1

, which is false.

Case 3. m1 = 2 and m2 = 6. We get 3k2/(2.32)k1 = 1/2k2−k1 . Examining at the exponent
of 3, we get k2 = 2k1 and examining the exponent of 2 we also get k2 = 2k1, so k1 = 1 and
k2 = 2. Also, n2 = 2n1. Thus, x1 = Ln1

Lm1
= 3Ln1

and x2 = Ln2
Lm2

= 18L2n1
is even,

contradicting x2 = 2x21 ± 1 is odd. �

So, by Lemma 4.4, we have Λ4 6= 0. Thus, we can now apply Theorem 3.1 with the data

t = 3, γ1 = 2Lm1
, γ2 = 2Lm2

, γ3 = α, b1 = k2,

b2 = −k1, b3 = −(k2n1 − k1n2).
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We have K = Q(
√
5), which has degree D = 2. Also, using (4.5), we can take B = 4n2

4.
We can also take A1 = 2(2 + m1 log α) ≤ 4m1 log α, A2 = 2(2 + m2 logα) ≤ 4m2 logα and
A3 = log α. Theorem 3.1 states that

log |Λ4| > −1.4× 306 × 34.5 × 22(1 + log 2)(1 + log(4n2
4))(4m1 log α)(4m2 logα) log α,

> −3.44× 1012m1m2(1 + log(2n4)).

By comparing this with the inequality (4.20), we get

2n3 log α− log(48k2) < 3.44 × 1012m1m2(1 + log(2n4)).

Since k2 < 4n4 and n4 > 10, we get that log(48k2) < 2(1 + log(2n4)). Thus,

n3 < 3.58 × 1012m1m2(1 + log(2n4)). (4.22)

All this was done under the assumption that α2n3 > 48k2. But if that inequality fails, then

n3 < c1 log(48k2) < 12(1 + log(2n4)),

which is much better than (4.22). Thus, (4.22) holds in all cases. We have just proved the
following lemma.

Lemma 4.5. Assuming n3 > 100, we have

n3 < 3.58 × 1012m1m2(1 + log(2n4)).

We now start finding effective bounds for our variables.
Case 1. m4 ≤ 100.
Then m1 < 100 and m2 < 100. By Lemma 4.5, we get that

n3 < 3.58 × 1016(1 + log(2n4)).

By Lemma 4.1, we get

log δ < 4n3 logα < 6.89 × 1016(1 + log(2n4)).

By inequality (4.4), we have that

n4 ≤ n4 +m4 − 1

< k2c1 log δ

< 1.72× 1027c1(1 + log(2n4))
2(log δ)3 (by (4.5) and Lemma 4.3)

<
1

log α
(1.72 × 1027(1 + log(2n4))

2)(6.89 × 1016(1 + log(2n4)))
3

< 1.17× 1078 log(1 + log(2n4))
5.

With the help of Mathematica, we get that n4 < 4.6 × 1089. Thus, using (4.5), we get

max{k2, n4} < 4.6 × 1089.

We have just proved the following lemma.

Lemma 4.6. If m4 = max{m1,m2} ≤ 100, then

max{k2, n4} < 4.6 × 1089.

Case 2. m4 > 100.
Note that m3 ≤ 100 or m3 > 100 in which case, by Lemma 4.2 and inequality (4.5), we

have m3 ≤ 160(1 + log(4n4))
2, provided that m4 > 10000, which we now assume.
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We let i ∈ {1, 2} be such that mi = m3 and j be such that {i, j} = {1, 2}. We assume that
n3 > 100. We work with (4.17) for i and (4.10) for j and note that conditions ni > 100 and
mj = m4 > 100 are satisfied. That is,

|ki log δ + log(2Lmi
)− ni log α| <

12

α2ni
,

|kj log δ − log 2− (nj +mj) log α| <
12

α2mj
.

By a similar procedure as before, we eliminate the term involving log δ. We multiply the first
inequality by kj , the second inequality by ki, subtract the resulting inequalities, and apply the
triangle inequality to get

|kj log(2Lmi
)− ki log 2− (kjni − ki(nj +mj)) log α| <

12kj
α2mi

+
12ki
α2lj

<
24k2

α2min{ni,mj}
. (4.23)

Assume that α2min{ni,mj} > 48k2. We put

Γ5 = kj log(2Lmi
)− ki log 2− (kjni − ki(nj +mj)) log α.

We can write Λ5 = (2Lmi
)kj2−kiα(kjni−ki(nj+mj)) − 1. Under the above assumption and using

(4.23), we get that

|Λ5| = |eΓ5 − 1| < 2|Γ5| <
48k2

α2min{ni,mj}
. (4.24)

We are now set to apply Theorem 3.1 on Λ5. First, we need to check that Λ5 6= 0. If it
were, then we would get that

L
kj
mi

= 2ki−kjα(kjni−ki(nj+mj)). (4.25)

We consider the following lemma.

Lemma 4.7. The equation (4.25) has only many small positive integer solutions
(ki, kj , ni, nj,mi,mj) for i, j = {1, 2} with k1 < k2 and m1 ≤ m2 ≤ 6. Furthermore, none of
these solutions lead to a valid solution to the original Diophantine equation (2.1).

Proof. Suppose that (4.25) holds, and assume that gcd(k1, k2) = 1. Since α(kjni−ki(nj+mj)) ∈
Q, kjni = ki(nj + mj). Next, L

kj
mi

= 2ki−kj . Thus, ki ≥ kj , so i = 2, j = 1, k2 > k1, and
m2 6= 1. Because Lm2

> 1 is a power of 2, it follows that m2 ∈ {0, 3}. Suppose m2 = 0. Then,
Lk1
m2

= 2k1 = 2k2−k1 , so k2 = 2k1. Hence, k1 = 1 and k2 = 2. Furthermore, n2 = 2(n1 +m1).

Thus, x2 = xk2 = Ln2
Lm2

= 2L2(n1+m1) is even, which is false because x2 = 2x21 ± 1 is odd.

Next, suppose m2 = 3. Then, 4k1 = 2k2−k1 . Thus, k2 = 3k1, so k1 = 1 and k2 = 3. Next,
n2 = 3(n1 +m1). Hence, x1 = xk1 = Ln1

Lm1
and x3 = xk2 = Ln2

Lm2
= 4L3(n1+m1). By the

previous argument in the proof of Lemma 4.4, 8 divides x3 = x1(4x
2
1 ± 1), so 8 | x1. Since

x1 = Ln1
Lm1

and 8 ∤ Ln for any n, it follows that Ln1
and Lm1

are both even. Thus, 3 | n1

and 3 | m1. Furthermore, one of Ln1
or Lm1

is a multiple of 4, so one of n1 or m1 is odd.
Suppose both are odd. Then 4 | Ln1

, 4 | Lm1
, so 16 | x1 | x3 | 4L3(n1+m1). This implies

that 4 | L3(n1+m1), which is false because 3(n1 +m1) is an even multiple of 3, and 2‖L6m for
any m. Now, suppose that one of n1 or m1 is an even multiple of 3, and the other is odd.
Then ord2(x1) = 3, where ord2(x) is the exponent at which 2 appears in the factorization of
x. Hence,

3 = ord2(x3) = ord2(4L3(n1+m1)) = 2 + ord2(L3(n1+m1)),
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giving ord2(L3(n1+m1)) = 1. This is again false because 3(n1+m1) is an odd multiple 3, so it is
a number of the form 3+6m, and for such numbers we have 4‖L3+6m. Hence, in all instances
we have obtained a contradiction. �

Thus, by Lemma 4.7, we have that Λ5 6= 0. So, we can apply Theorem 3.1 with the data

t = 3, γ1 = 2Lmi
, γ2 = 2, γ3 = α, b1 = kj ,

b2 = −ki, b3 = −(kjni − ki(nj +mj)).

From the previous calculations, we know that K = Q(
√
2), which has degree D = 2 and

A1 = 4mi log α, A2 = 2 log 2, and A3 = logα. We also take B = 4n2
4. By Theorem 3.1, we get

that

log |Λ5| > −1.4× 306 × 34.5 × 22(1 + log 2)(1 + log(4n2
4))(4mi logα)(2 log 2) log α,

> −5.18 × 1012mi(1 + log(2n4)).

Comparing the above inequality with (4.24), we get

2min{ni,mj} log α− log(48k2) < 5.12 × 1012mi(1 + log(2n4)).

Since m4 > 100, we get, using (4.5) ( k2 < 4n4), that

min{ni, nj} < 5.38 × 1012(160(1 + log(4n4))
2)(1 + log(2n4)) +

c1
2
log(192n4),

which implies that

min{ni,mj} < 1.72× 1015(1 + log(2n4))
3. (4.26)

All this was under the assumptions that n4 > 10000, and that α2min{ni,mj} > 48k2. But,
still under the condition that n4 > 10000, if α2min{ni,mj} < 48k2, then we get an inequality
for min{ni, nj} that is much better than (4.26). So, (4.26) holds provided that n4 > 10000.
Suppose min{ni,mj} = mj . Then, we get

m3 < 160(1 + log(4n4))
2, m4 < 1.72 × 1015(1 + log(2n4))

3.

By Lemma 4.5, since m3 > 100, we get

n3 < (3.58 × 1012)(160(1 + log(4n4))
2)(1 + log(2n4))

×1.72× 1015(1 + log(2n4))
3

< 1.98 × 1030(1 + log(2n4))
6.

With Lemma 4.1, we get

log δ < 3.80 × 1030(1 + log(2n4))
6,

which with Lemma 4.3 gives

n4 < 4.30 × 1026(1 + log(2n4))
2(3.80 × 1030(1 + log(2n4))

6)2,

which implies that

n4 < 6.21 × 1087(1 + log(2n4))
14. (4.27)

With the help of Mathematica, we obtain n4 < 1.30 × 10122. This was proved under the
assumption that n4 > 10000, but the situation n4 ≤ 10000 already provides a better bound
than n4 < 1.30 × 10122. Hence,

max{k2, n1, n2} < 1.30 × 10122. (4.28)
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This was when mj = min{ni,mj}. Now, assume ni = min{ni,mj}. Then, we get

ni < 1.72 × 1015(1 + log(2n4))
3.

By Lemma 4.1, we get

log δ < 3.31 × 1015(1 + log(2n4))
3.

Now by Lemma 4.3, with Lemma 4.1 to bound l4, give

n4 < 4.30 × 1026(1 + log(2n4)))
2(3.31 × 1015(1 + log(2n4))

3)2

< 4.72 × 1057(1 + log(2n4))
10.

This gives n4 < 2.44×1080 , which is a better bound than 1.30×10122 . We state what we have
proved.

Lemma 4.8. If m4 = max{m1,m2} > 100 and n3 = min{n1, n2} > 100, then

max{k2, n1, n2} < 1.30 × 10122.

The remaining case is when m4 > 100 and n3 ≤ 100. But then, by Lemma 4.1, we get
log δ < 192. Now Lemma 4.1, with Lemma 4.3, give

n4 < 1.56× 1031(1 + log(2n4))
2,

which implies that n4 < 1036 and further max{k1, n1, n2} < 1040. We state what we have
proved.

Lemma 4.9. If m4 > 100 and n3 ≤ 100, then

max{k1, n1, n2} < 1040.

5. The Final Computations

5.1. The First Reduction. In this subsection, we reduce the bounds for k1, m1, n1 and k2,
m2, n2 to cases that can be computationally treated. For this, we return to the inequalities
for Γ2, Γ4, and Γ5.

We return to (4.15), and we set s = k2 − k1 and r = k2(n1 +m1)− k1(n2 +m2) and divide
both sides by s logα to get

∣

∣

∣

∣

log 2

log α
− r

s

∣

∣

∣

∣

<
24k2

α2m3s logα
. (5.1)

We assume that l3 is so large that the right side of the inequality in (5.1) is smaller than
1/(2s2). This certainly holds if

α2m3 > 48k22/ log α. (5.2)

Since k2 < 1.3 × 10122, it follows that the last inequality (5.2) holds provided that m3 ≥ 589,

which we now assume. In this case, r/s is a convergent of the continued fraction of τ = log 2
logα

and s < 1.30 × 10122. We are now set to apply Lemma 3.3.
We write τ = [a0; a1, a2, a3, . . .] = [1, 2, 3, 1, 2, 3, 2, 4, 2, 1, 2, 11, 2, 1, 11, 1, 1, 134, 2, 2, . . .] for

the continued fraction of τ and pk/qk for the kth convergent. We get that r/s = pj/qj for
some j ≤ 237. Furthermore, putting a(M) = max{aj : j = 0, 1, . . . , 237}, we get a(M) = 880.
By Lemma 3.3, we get

1

882s2
=

1

(a(M) + 2)s2
≤
∣

∣

∣
τ − r

s

∣

∣

∣
<

24k2
α2m3s logα

,
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giving

α2m3 <
882 × 24k22

logα
<

882 × 24× (1.30 × 10122)2

log α
,

leading to m3 ≤ 1190. We state what we have just proved.

Lemma 5.1. We have m3 = min{m1,m2} ≤ 1190.

If m1 = m3, then we have i = 1 and j = 2; otherwise m2 = m3 implying that we have i = 2
and j = 1. In both cases, the next step is the application of Lemma 3.5 (LLL algorithm) for
(4.23), where ni < 1.30 × 10112 and |kjni − ki(nj +mj)| < 10116. For each mj ∈ [1, 1190] and

Γ5 = kj log(2Lmi
)− ki log 2− (kjni − ki(nj +mj)) log α, (5.3)

we apply the LLL-algorithm on Γ3 with the data

t = 3, τ1 = log(2Lmi
), τ2 = log 2, τ3 = logα,

x1 = kj, x2 = −ki, x3 = kjni − ki(nj +mj).

Furthermore, we set X = 10116 as an upper bound to |xi| for i = 1, 2, 3, and C = (5X)5. A
computer search in Mathematica allows us to conclude, with the inequality (4.23), that

2× 10−480 < min
1≤min{ni,mj}≤1190

|Γ5| <
24k2

α2min{ni,mj}
. (5.4)

Thus, min{ni,mj} ≤ 1419. We first assume that i = 1 and j = 2. Thus, n1 ≤ 1419 or
mj = min{ni,mj} ≤ 1419.

Next, we suppose that mj = min{ni,mj} ≤ 1419. Because m1 = m3 ≤ 1190, we have

m3 = min{m1,m2} ≤ 1190 and m4 = max{m1,m2} ≤ 1419.

Now, returning to the inequality (4.19), which involves

Γ4 = k2 log(2Lm1
)− k1 log(2Lm2

)− (k2n1 − k1n2) log α, (5.5)

we again use the LLL algorithm to estimate the lower bound for |Γ4| and thus, find a bound
for n1 that is better than the one given in Lemma 4.8. We distinguish the cases m3 < m4 and
m3 = m4.

5.1.1. The Case m3 < m4. We take m1 = m3 ∈ [1, 1190] and m2 = m4 ∈ [m3 + 1, 1419] and
apply Lemma 3.5 with the data:

t = 3, τ1 = 2Lm1
, τ2 = 2Lm2

, τ3 = log α,

x1 = k2, x2 = −k1, x2 = k1n2 − k2n1.

We also put X = 10116 and C = (20X)9. After a computer search in Mathematica, with the
inequality (4.19), we confirm that

2× 10−1120 ≤ min
1≤m3≤1190

m3+1≤m4≤1419

|Γ4| < 24k2α
−2n3 .

This leads to inequality

α2n3 < 12× 101120k2.

Substituting for the bound k2 given in Lemma 4.8, we get that n1 = n3 ≤ 2950.
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5.1.2. The Case m3 = m4. In this case, m1 = m2 ≤ 1419, and we have

Γ4 = (k2 − k1) log(2Lm1
)− (k2n1 − k1n2) log α 6= 0.

This is similar to the case we addressed in the previous steps and yields the bound on n1,
which is less than 2950. In both cases, we have n1 ≤ 2950. From

log δ ≤ k1 log δ ≤ 4n1 log α < 5678,

and by considering the inequality given in Lemma 4.3, we conclude that

n2 < 1.4 × 1034(1 + log(2n2))
2,

which, with the help of Mathematica, yields n2 < 1.12× 1038. We summarize the first cycle of
our reductions:

max{k1,m1} ≤ n1 < 2950 and max{k2,m2} ≤ n2 < 1.12 × 1038. (5.6)

From (5.6), we note that the upper bound on n2 represents a good reduction of the bound
given in Lemma 4.8. Hence, we expect that if we restart our reduction cycle with the new
bound on n2, then we get better bounds on n1 and n2. Thus, we return to inequality (5.1)
and take M = 1.12× 1038. A computer search in Mathematica reveals that

q82 > M > n2 > k2 − k1 and a(M) = max{ai : 0 ≤ i ≤ 82} = a12 = 134.

It follows that m3 ≤ 100. We now return to (5.3) and we put X = 1.12×1040 and C = (20X)5

and then apply the LLL algorithm in Lemma 3.5 to m3 ∈ [1, 100]. After a computer search in
Mathematica, we get

1.04 × 10−139 < min
1≤m3≤100

|Γ4| < 24k2α
−2min{ni,mj}.

Then, min{ni,mj} ≤ 410. By continuing under the assumption that mj = min{ni,mj} ≤ 426,
we return to (5.5) and put X = 1.12 × 1040, C = (20X)5, and M = 1.12 × 1038 for the case
m3 < m4 and the case m3 = m4. After a computer search, we confirm that

4.39 × 10−168 < min
1≤m3≤100

m3+1≤m4≤426

|Γ4| < 24k2α
−2n3 . (5.7)

This gives n1 ≤ 494, which holds in both cases. Hence, by a similar procedure given in the
first cycle, we get that n2 < 3× 1036.

We state what we have proved.

Lemma 5.2. Let (ki, ni,mi} be a solution to the Diophantine equation xki = Lni
Lmi

, with
0 ≤ mi ≤ ni for i = 1, 2 and 1 ≤ k1 ≤ k2. Then,

max{k1,m1} ≤ n1 ≤ 494 and max{k2,m2} ≤ n2 < 3× 1036.

5.2. The Final Reduction. Returning to (4.9) and (4.17) and using (x1, y1) as the smallest
positive solution to the Pell equation (1.3), we obtain

xk =
1

2
(δk + ηk) =

1

2

(

(

x1 + y1
√
d
)k

+
(

x1 − y1
√
d
)k
)

=
1

2

(

(

x1 +
√

x21 ∓ 1

)k

+

(

x1 −
√

x21 ∓ 1

)k
)

= P±
k (x1).

Thus, we return to the Diophantine equation xk1 = Ln1
Lm1

and consider the equations

P+
k1
(x1) = Ln1

Lm1
and P−

k1
(x1) = Ln1

Lm1
, (5.8)

with k1 ∈ [1, 500], m1 ∈ [0, 500], and n1 ∈ [m1 + 1, 500].
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Besides the trivial case k1 = 1, with the help of a computer search in Mathematica on the
above equations in (5.8), we list the only nontrivial solutions in Table 1. We also note that

7 + 5
√
2 = (1 +

√
2)3,

so these solutions come from the same Pell equation with d = 2.

Q+
k1
(x1)

k1 x1 y1 d δ

2 2 1 3 2 +
√
3

2 5 2 6 5 + 2
√
6

2 10 3 11 10 + 3
√
11

2 4 1 15 4 +
√
15

2 6 1 35 6 +
√
35

Q−
k1
(x1)

k1 x1 y1 d δ

2 1 1 2 1 +
√
2

2 2 1 5 2 +
√
5

2 7 5 2 7 + 5
√
2

2 4 1 17 4 +
√
17

2 26 1 677 26 +
√
677

2 179 1 32042 179 +
√
32042

Table 1. Solutions to P±
k1
(x1) = Ln1

Lm1

From Table 1, we set each δ = δt for t = 1, 2, . . . 10. We then work on the linear forms in
logarithms Γ1 and Γ2, to reduce the bound on n2 given in Lemma 5.2. From the inequality
(4.10), for (k, n,m) = (k2, n2,m2), we write

∣

∣

∣

∣

k2
log δt
logα

− (n2 +m2) +
log 2

log(α−1)

∣

∣

∣

∣

<

(

12

log α

)

α−2m2 , (5.9)

for t = 1, 2, . . . 10.
We put

τt =
log δt
log α

, µt =
log 2

log(α−1)
, and (At, Bt) =

(

12

logα
,α

)

.

We note that τt is transcendental by the Gelfond-Schneider’s Theorem and thus, τt is irrational.
We can rewrite the above inequality, (5.9), as

0 < |k2τt − (n2 +m2) + µt| < AtB
−2m2

t , for t = 1, 2, . . . , 10. (5.10)

We take M = 3×1036, the upper bound on n2 according to Lemma 5.2, and apply Lemma 3.4
to the inequality (5.10). As before, for each τt with t = 1, 2, . . . , 10, we compute its continued

fraction [a
(t)
0 , a

(t)
1 , a

(t)
2 , . . .] and its convergents p

(t)
0 /q

(t)
0 , p

(t)
1 /q

(t)
1 , p

(t)
2 /q

(t)
2 , . . .. For each case, by

means of a computer search in Mathematica, we find an integer st such that

q(t)st > 18× 1036 = 6M and εt = ||µtq
(t)|| −M ||τtq(t)| > 0.

We finally compute all the values of bt = ⌊log(Atq
(t)
st /ǫt)/ logBt⌋/2. The values of bt correspond

to the upper bounds on m2, for each t = 1, 2, . . . , 10, according to Lemma 3.4.
Note that we have a problem at δ7 = 2 +

√
5. This is because

2 +
√
5 = 2

(

1 +
√
5

2

)2

= 2α2.

In this case, we have Γ1 = (k2 − 1) log 2− (n2 +m2 − 2k2) log α. Thus,
∣

∣

∣

∣

log 2

log α
− n2 +m2 − 2k2

k2 − 1

∣

∣

∣

∣

<
12

(k2 − 1)α2m2 logα
.
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By a similar procedure given in Subsection 5.1 with M = 3× 1036, we get that q77 > M and
a(M) = max{ai : 0 ≤ i ≤ 77} = 134. From this, we can conclude that m2 ≤ 96.

The results of the computation for each t are recorded in Table 2.

t δt st qst εt > bt
1 2 +

√
3 68 2.07577 × 1037 0.319062 94

2 5 + 2
√
6 91 8.19593 × 1037 0.087591 97

3 10 + 3
√
11 67 2.25831 × 1038 0.316767 96

4 4 +
√
15 70 2.78896 × 1037 0.329388 94

5 6 +
√
35 74 1.75745 × 1038 0.409752 96

6 1 +
√
2 76 2.02409 × 1037 0.263855 94

7 2 +
√
5 − − − 96

8 4 +
√
17 78 4.76137 × 1037 0.131771 96

9 26 +
√
677 65 3.17521 × 1037 0.356148 94

10 179 +
√
32042 77 3.45317 × 1037 0.384127 94

Table 2. First reduction computation results

By replacing (k, n,m) = (k2, n2,m2) in the inequality (4.17), we can write
∣

∣

∣

∣

k2
log δt
log α

− n2 +
log(2Lm2

)

log(α−1)

∣

∣

∣

∣

<

(

12

log α

)

α−2n2 , (5.11)

for t = 1, 2, . . . , 10.
We now put

τt =
log δt
logα

, µt,m2
=

log(2Lm2
)

log(α−1)
, and (At, Bt) =

(

12

log α
,α

)

.

With the above notations, we can rewrite (5.11) as

0 < |k2τt − n2 + µt,m2
| < AtB

−2n2

t , for t = 1, 2, . . . 10. (5.12)

We again apply Lemma 3.4 to the inequality (5.12), with

t = 1, 2, . . . , 10, m2 = 1, 2, . . . , bt, with M = 3× 1036.

We take

εt,m2
= ||µtq

(t,m2)|| −M ||τtq(t,m2)|| > 0,

and

bt = bt,m2
= ⌊log(Atq

(t,m2)
st /ǫt,m2

)/ logBt⌋/2.
The case δ7 = 2 +

√
5 is again treated individually by a similar procedure as in the previous

step. With the help of Mathematica, we record the results of the computation in Table 3.

t 1 2 3 4 5 6 7 8 9 10
εt,m2

> 0.0145 0.0002 0.0006 0.0034 0.0106 0.0005 − 0.0009 0.0019 0.0010
bt,m2

97 103 102 99 99 100 102 100 99 100

Table 3. Final reduction computation results
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Therefore, max{bt,m2
: t = 1, 2, . . . , 10 and m2 = 1, 2, . . . bt} ≤ 103.

Thus, by Lemma 3.4, we have that n2 ≤ 103 for all t = 1, 2, . . . , 10. From δk ≤ αn+m+6, we
conclude that k1 < k2 ≤ 198. Collecting everything together, our problem is reduced to search
for the solutions for (2.1) in the following ranges

1 ≤ k1 < k2 ≤ 200, 0 ≤ m1 ≤ n1 ≤ 200, and 0 ≤ m2 ≤ n2 ≤ 200.

After a computer search on the equation (2.1) with the above ranges, we obtained the following
solutions, which are the only solutions for the exceptional d cases we stated in Theorem 2.1:

For the +1 case:

(d = 3) x1 = 2 = L1L0, x2 = 7 = L4L1;

(d = 15) x1 = 4 = L3L1 = L0L0, x5 = 15124 = L11L9;

(d = 35) x1 = 6 = L2L0, x3 = 846 = L8L6.

For the −1 case:

(d = 2) x1 = 1 = L3L3, x2 = 3 = L2L1, x3 = 7 = L4L1, x9 = 1393 = L11L4;

(d = 5) x1 = 2 = L1L0, x2 = 9 = L2L2;

(d = 17) x1 = 4 = L3L1 = L0L0, x2 = 33 = L5L2.

This completes the proof of Theorem 2.1. �
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