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ABSTRACT. A second order polynomial sequence L, () is of Lucas-type if its Binet formula
has a structure similar to Lucas numbers. This sequence partially satisfies the strong divisi-
bility property [1]. Thus, ged(Ln(x), Lm(z)) is 1, 2, or Lgca(n,m)(x). In this paper, we give a
short, simple, and different proof of this property.

1. INTRODUCTION AND BASIC DEFINITIONS

A second order polynomial sequence is of Lucas-type (Fibonacci-type) if its Binet formula has
a structure similar to Lucas (Fibonacci) numbers. Some known examples of Lucas-type polyno-
mials are Lucas polynomials, Pell-Lucas polynomials, Fermat-Lucas polynomials, Chebyshev
polynomials, and Vieta-Lucas polynomials.

A second order recursive sequence a,, satisfies the strong divisibility property if ged(ay, apm) =
Aged(n,m)- Florez, et al. [1] proved that Lucas-type polynomials £, (x) partially satisfy the
strong divisibility property. Thus, ged(Ly(z), Lm(z)) is 1, 2, or Lgeq(nm)(z). In this paper,
we give a shorter and simpler proof of this property (it is valid for both polynomials and
Lucas numbers). It is based on the generalization of the numerical identity L, F, = Fb, and
the strong divisibility property of Fibonacci-type polynomials. Note that McDaniel [4] proved
this property for Lucas numbers. If in (1.2) we set pg = 2 and p;(x) = x, we have the Lucas
polynomials. Lucas polynomials are a generalization of Lucas numbers. We can obtain these
numbers by evaluating the Lucas polynomials at = 1. Therefore, our proof is also a short
proof of McDaniel result [4].

We now summarize some concepts given by the authors in earlier articles for generalized
Fibonacci polynomials [1, 2]. If d(x) and g(x) are fixed non-zero polynomials in Q[z] and
n > 2, then we define

Fo(x) =0, Fi(x) =1, and F,(z) = d(x)Fp—1(x) + g(x) Fp_2(x). (1.1)

A second order polynomial recurrence relation is of Fibonacci-type if it satisfies the relation

given in (1.1), and of Lucas-type if

Lo(z) = po, L1(z) =pi(z), and Ly(z) = d(z)Lp-1(7) + g(7)Lr—2(7), (1.2)
where |pg| = 1 or 2 and p;(z), d(z) = api(z), and g(x) are fixed non-zero polynomials in Q[z]
with « an integer of the form 2/py.

If n > 0 and d?(z) +4g(x) > 0, then the Binet formulas for the recurrence relations in (1.1)
and (1.2) are F,(x) = (a"(x) — b"(x)) / (a(x) — b(x)) and L, (z) = (a™(z) + b"(x)) /a. (For
details on the construction of the two Binet formulas, see [1].)

A sequence of Lucas-type (Fibonacci-type) is equivalent or conjugate to a sequence of
Fibonacci-type (Lucas-type), if their recursive sequences are determined by the same poly-
nomials d(x) and g(z). Note that two equivalent polynomials have the same a(z) and b(x) in
their Binet representations. In this paper, we suppose that F;(z) and L£;(x) are equivalent if
they are used in the same statement.
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Most of the following conditions were required in the papers that we are citing. Therefore,
we require here that ged(d(z), g(z)) = 1 for both types of sequences and ged(pg, p1(z)) = 1,
ged(po, d(x)) =1, and ged(pg, g(x)) = 1 for Lucas type polynomials.

2. LucAas-TYPE POLYNOMIALS PARTIAL DIVISIBILITY PROPERTY

In this section, we prove that the Lucas-type polynomials partially satisfy the strong divis-
ibility property. However, we need some results from [1, 3].

For brevity, throughout the rest of the paper, we present polynomials without the “z”. For
example, instead of F,(x) and L, (x) we use F,, and L,.

Lemma 2.1 ([1]). Let p, q, r, and s be polynomials in Q[z]. If ged(p,r) =1 and ged(q, s) =1,
then ged(pg, s) = ged(p, s) ged(g, 7).

Lemma 2.2. If m > 0, then

(1) Oéﬁm]:m = ]:gm.

(2) ged(g, L) = ged(g, £1) = 1.
(8) If q is odd and q | m, then L., ,, divides Ly,.

(4) There is a polynomial Ty, such that Lomg = LTy + Log®™ .
(5) If n|m, then
L, if m/n is odd;

ALy, L) =
ged( ) {ng(ﬁn,Eo), otherwise.

Proof. The proof of Part (1) is in [3] and the proofs of Parts (2), (3), and (4) are in [1]. We prove
Part (5). If m/n is odd, then the proof follows from Part (3). Suppose that m = 2¥nl, where
k >0 and [ is odd. From Part (3) we have £,; = £,,@ for some polynomial @) € Q[z]. This

and Part (4) imply that there is a polynomial 7" such that £, = Lo, = LT + Logm? ™ =
L TQ + Eognl2k71. This implies that ged(Ly,, L) = ged(Ly, ﬁog"l2k71) = ged(Ly, Lo). O

Theorem 2.3. If n,m >0, 6 = ged(n,m), and vo(n) is the 2-adic valuation of n, then

Ls, if va(n) = va(m);

A(Ly, Lo) =
ged( ) {ng(ﬁé,ﬁo), otherwise.

Proof. Let D be ged(FnFan, FamFn)- Since § = ged(n, m), it is easy to see that
D = Fos Fs ged (Fm/ Fs) (Fan/ Fas) s (Fu/Fs) (Fam/Fas)) -
This and Lemma 2.1 imply that

D = FosFs ged (Fin/Fs) » (Fam /[ Fas)) ged ((Fan/ Fas) » (Fn/Fs)) -

(Recall that if 7; and £; are in the same statement, they are equivalent.) From Lemma 2.2
Part (1), we have that D is equal to

Fm Jtm£m> <-Fn fn£n>_fnfmf25f5

FosFsged | —, — = cd (Ls, L) ged (Ls, L) -
e (28 T Y e (52, 220 ) = TPl o £,) o ()

Therefore,
ng(]:m]:2n7 ]:2m]:n) = (Oé]:n]:m/ﬁé) ng (E(;, Em) ng (£67 En) . (21)

We now consider two cases.
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Case 1. 1»(n) = vo(m). Thus, va(m) = va(n) = v,(d). This, (2.1), and Lemma 2.2 Part
3) imply that ged(FpFon, FomFn) = (aFnFm/Ls) /Jg = aFnFmLs. From this and Lemma
2.2 Part (1), we have

D = ged(FnFon, FomFn) = ged(Fpaly Fry AL FnFn) = aFnFm ged(Ly, Lin).

Therefore, ged (L, L) = Ls.

Case 2. 1»n(n) # vo(m). Without loss of generality, suppose that vs(n) < ve(m). So,
v2(0) = vo(n). This implies that m/d is even, therefore, by Lemma 2.2 Part (5), we have
ged (L, L) = ged (Ls,Lo). Lemma 2.2 Part (3) and 12(0) = vo(n) imply that there is a
Q € Q[z] such that L, = L5Q. Therefore, ged (Ls, L) = Ls. This, (2.1), and ged (L5, L1,) =
ged (Ls, Lo) imply that ged (L, L) = ged (Ls, Lo) - O
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