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Abstract. A second order polynomial sequence Ln(x) is of Lucas-type if its Binet formula
has a structure similar to Lucas numbers. This sequence partially satisfies the strong divisi-
bility property [1]. Thus, gcd(Ln(x),Lm(x)) is 1, 2, or Lgcd(n,m)(x). In this paper, we give a
short, simple, and different proof of this property.

1. Introduction and Basic Definitions

A second order polynomial sequence is of Lucas-type (Fibonacci-type) if its Binet formula has
a structure similar to Lucas (Fibonacci) numbers. Some known examples of Lucas-type polyno-
mials are Lucas polynomials, Pell-Lucas polynomials, Fermat-Lucas polynomials, Chebyshev
polynomials, and Vieta-Lucas polynomials.

A second order recursive sequence an satisfies the strong divisibility property if gcd(an, am) =
agcd(n,m). Flórez, et al. [1] proved that Lucas-type polynomials Ln(x) partially satisfy the
strong divisibility property. Thus, gcd(Ln(x),Lm(x)) is 1, 2, or Lgcd(n,m)(x). In this paper,
we give a shorter and simpler proof of this property (it is valid for both polynomials and
Lucas numbers). It is based on the generalization of the numerical identity LnFn = F2n and
the strong divisibility property of Fibonacci-type polynomials. Note that McDaniel [4] proved
this property for Lucas numbers. If in (1.2) we set p0 = 2 and p1(x) = x, we have the Lucas
polynomials. Lucas polynomials are a generalization of Lucas numbers. We can obtain these
numbers by evaluating the Lucas polynomials at x = 1. Therefore, our proof is also a short
proof of McDaniel result [4].

We now summarize some concepts given by the authors in earlier articles for generalized
Fibonacci polynomials [1, 2]. If d(x) and g(x) are fixed non-zero polynomials in Q[x] and
n ≥ 2, then we define

F0(x) = 0, F1(x) = 1, and Fn(x) = d(x)Fn−1(x) + g(x)Fn−2(x). (1.1)

A second order polynomial recurrence relation is of Fibonacci-type if it satisfies the relation
given in (1.1), and of Lucas-type if

L0(x) = p0, L1(x) = p1(x), and Ln(x) = d(x)Ln−1(x) + g(x)Ln−2(x), (1.2)

where |p0| = 1 or 2 and p1(x), d(x) = αp1(x), and g(x) are fixed non-zero polynomials in Q[x]
with α an integer of the form 2/p0.

If n ≥ 0 and d2(x)+4g(x) > 0, then the Binet formulas for the recurrence relations in (1.1)
and (1.2) are Fn(x) = (an(x)− bn(x)) / (a(x)− b(x)) and Ln(x) = (an(x) + bn(x)) /α. (For
details on the construction of the two Binet formulas, see [1].)

A sequence of Lucas-type (Fibonacci-type) is equivalent or conjugate to a sequence of
Fibonacci-type (Lucas-type), if their recursive sequences are determined by the same poly-
nomials d(x) and g(x). Note that two equivalent polynomials have the same a(x) and b(x) in
their Binet representations. In this paper, we suppose that Ft(x) and Lt(x) are equivalent if
they are used in the same statement.
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Most of the following conditions were required in the papers that we are citing. Therefore,
we require here that gcd(d(x), g(x)) = 1 for both types of sequences and gcd(p0, p1(x)) = 1,
gcd(p0, d(x)) = 1, and gcd(p0, g(x)) = 1 for Lucas type polynomials.

2. Lucas-Type Polynomials Partial Divisibility Property

In this section, we prove that the Lucas-type polynomials partially satisfy the strong divis-
ibility property. However, we need some results from [1, 3].

For brevity, throughout the rest of the paper, we present polynomials without the “x”. For
example, instead of Fn(x) and Ln(x) we use Fn and Ln.

Lemma 2.1 ([1]). Let p, q, r, and s be polynomials in Q[x]. If gcd(p, r) = 1 and gcd(q, s) = 1,
then gcd(pq, rs) = gcd(p, s) gcd(q, r).

Lemma 2.2. If m > 0, then

(1) αLmFm = F2m.
(2) gcd(g,Lm) = gcd(g,L1) = 1.
(3) If q is odd and q | m, then Lm/q divides Lm.

(4) There is a polynomial Tm such that L2mq = LqTm + L0g
q2m−1

.
(5) If n|m, then

gcd(Ln,Lm) =

{

Ln, if m/n is odd;

gcd(Ln,L0), otherwise.

Proof. The proof of Part (1) is in [3] and the proofs of Parts (2), (3), and (4) are in [1]. We prove
Part (5). If m/n is odd, then the proof follows from Part (3). Suppose that m = 2knl, where
k > 0 and l is odd. From Part (3) we have Lnl = LnQ for some polynomial Q ∈ Q[x]. This

and Part (4) imply that there is a polynomial T such that Lm = L2knl = LnlT + L0g
nl2k−1

=

LnTQ+ L0g
nl2k−1

. This implies that gcd(Ln,Lm) = gcd(Ln,L0g
nl2k−1

) = gcd(Ln,L0). �

Theorem 2.3. If n,m > 0, δ = gcd(n,m), and ν2(n) is the 2-adic valuation of n, then

gcd(Ln,Lm) =

{

Lδ, if ν2(n) = ν2(m);

gcd(Lδ,L0), otherwise.

Proof. Let D be gcd(FmF2n,F2mFn). Since δ = gcd(n,m), it is easy to see that

D = F2δFδ gcd ((Fm/Fδ) (F2n/F2δ) , (Fn/Fδ) (F2m/F2δ)) .

This and Lemma 2.1 imply that

D = F2δFδ gcd ((Fm/Fδ) , (F2m/F2δ)) gcd ((F2n/F2δ) , (Fn/Fδ)) .

(Recall that if Ft and Lt are in the same statement, they are equivalent.) From Lemma 2.2
Part (1), we have that D is equal to

F2δFδ gcd

(

Fm

Fδ
,
FmLm

FδLδ

)

gcd

(

Fn

Fδ
,
FnLn

FδLδ

)

=
FnFmF2δFδ

(FδLδ)2
gcd (Lδ,Lm) gcd (Lδ,Ln) .

Therefore,

gcd(FmF2n,F2mFn) = (αFnFm/Lδ) gcd (Lδ,Lm) gcd (Lδ,Ln) . (2.1)

We now consider two cases.
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Case 1. ν2(n) = ν2(m). Thus, ν2(m) = ν2(n) = ν2(δ). This, (2.1), and Lemma 2.2 Part
(3) imply that gcd(FmF2n,F2mFn) = (αFnFm/Lδ)L

2
δ = αFnFmLδ. From this and Lemma

2.2 Part (1), we have

D = gcd(FmF2n,F2mFn) = gcd(FmαLnFn, αLmFmFn) = αFnFm gcd(Ln,Lm).

Therefore, gcd (Ln,Lm) = Lδ.
Case 2. ν2(n) 6= ν2(m). Without loss of generality, suppose that ν2(n) < ν2(m). So,

ν2(δ) = ν2(n). This implies that m/δ is even, therefore, by Lemma 2.2 Part (5), we have
gcd (Lδ,Lm) = gcd (Lδ,L0). Lemma 2.2 Part (3) and ν2(δ) = ν2(n) imply that there is a
Q ∈ Q[x] such that Ln = LδQ. Therefore, gcd (Lδ,Ln) = Lδ. This, (2.1), and gcd (Lδ,Lm) =
gcd (Lδ,L0) imply that gcd (Ln,Lm) = gcd (Lδ,L0) . �
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