POSITIVE INTEGER SOLUTIONS OF SOME DIOPHANTINE
EQUATIONS INVOLVING LUCAS-BALANCING NUMBERS

ASIM PATRA AND G. K. PANDA

ABSTRACT. This paper is devoted to solving the equations z® — 8Chzy + 16y’ = +2" for
(s,t) € {(2,2),(2,4), (4,2)} in positive integers x and y. The solutions are obtained in terms
of the balancing, Pell, and Lucas-Pell numbers.

1. INTRODUCTION

A pair of natural numbers (n,r), where n is a balancing number and r is the corresponding
balancer, is a solution of the Diophantine equation 1+2+---+(n—1) = (n+1)+---+(n+7r)
[1]. If n is a balancing number, then 8n? + 1 is a perfect square, and the positive square
root of 8n% 4+ 1 is called a Lucas-balancing number. The nth balancing and the nth Lucas-
balancing numbers are denoted by B,, and C,, respectively, and satisfy the binary recurrences
B,+1 =6B, — B,_1 with By =0, By =1, and C,+1 = 6C,, — C,,_1 with Cy =1 and C; = 3
[15, 18].

The Diophantine equations of the form ax? + bxy + cy? = d, for different values of a, b, c,
and d have been studied by many authors [3, 4, 5]. Keskin, et al. [9] obtained the solutions of
22 — 5F,xy — 5(—1)"y? = £5" in positive integers x and y. Demirturk, et al. [7] proved that
the equation 2 — L2y + (—1)"y? = 5 has positive integer solutions only when n = 1,2, 3, 4,
whereas 22 — L2y + (—1)"y?> = —5 has solutions in positive integers only for n = 1,2,3.
Keskin, et al. [10] studied the Diophantine equation x? — L 2y + (—1)"y? = £5". Karaatli, et
al. [8] and Patel, et al. [17] studied some Diophantine equations involving balancing numbers.
In the present work, we solve the equations x* —8C,,zy + 16y’ = £2" in positive integers x and
y when (s,t) € {(2,2),(2,4), (4,2)}. These solutions are expressed in terms of Pell, Lucas-Pell,

balancing and Lucas-balancing numbers.

The Pell sequence {P,} and Lucas-Pell sequence {Q,} are defined by means of the binary
recurrences P, = 2P, 1+ P, o, Pp =0, P, =1, and Q, = 2Q,_1 + Qn_2, Qo =2, Q1 = 2.

The Binet forms of these sequences are given by P, = ag:gn and @, = o™ + 8", respectively,

where @ =1+ /2 and 8 =1 — v/2. These two sequences share interesting relationships with
balancing and Lucas-balancing sequences [16].

The generalized Fibonacci sequence {U,, } is defined by the binary recurrence
Un = AUn_l - BUn_g, n Z 2, (11)
with initial terms Uy = 0 and Uy = 1. Similarly, the generalized Lucas sequence {V},} defined
b,
' Vn = AVn_l - BVn_Q, n Z 2, (12)
with Vp =2 and V; = A. If A = 6 and B = —1, then the generalized Fibonacci and Lucas
sequences coincide with the balancing sequence and the Lucas-balancing sequence, respectively.
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2. PRELIMINARIES

In this section, we recall some results about balancing, Lucas-balancing, Pell, and Lucas-
Pell sequences. The contents of this section will help us develop the main results. We will
refer back to these results whenever necessary, with or without further reference.

As usual, we denote the nth balancing, nth Lucas-balancing, nth Pell, and nth Lucas-Pell
numbers by By, Cp, Py, and @, respectively, and v, = 2C,; n =0,1,2,.... Throughout this
paper, unless otherwise mentioned, m, n, a, b, x, etc. denote integers.

Lemma 2.1. Ifm and n are positive integers, then
(a) v2 —32B2 =4,

Bs,, = Byuy,
Qn - 8P2 - 4( )

By,vp + Bpop, = 2Bm+na
ged(Byp,vp) =1 or 2,
P2n—P Qn—any
ged(Pp, Qn) =1 or 2,
P,.|P, if and only if m]n
i) Qm|Qn if and only if - is odd,
i) Qml|P, if and only if = by s even,

51 Qy for any n,
(1) 21 By & 24n & 24P,

(k

Some results of Lemma 2.1 are also true if either m or n equals 0.

The proofs of assertions (a), (b), (d), and (e) can be found in [18]. For proofs of the other
assertions, see [11].

Lemma 2.2. If n is an odd positive integer, then B, =n (mod 32).
Proof. By virtue of Theorem 2.2 of [6], the identity

Z B2 = [B%H (2n + 1)] (2.1)

holds for each positive integer n. The proof of the lemma follows directly from (2.1). O
Lemma 2.3. If n is an even positive integer, then B, = 3n (mod 32).

Proof. By virtue of Lemma 2.1(d), Bap+2+ Bop—2 = 34Bs, and hence, the sequence x,, = Bay,,
satisfies the recurrence relation

Tp41 = 34x, —xp_1, o =0, 11 =6. (22)

Using the recurrence relation (2.2), it is easy to see that the sequence y,, = x,, — 6n satisfies
the nonhomogeneous recurrence

Ynt1 = 34Yn — Yn—1 + 1920, yo =131 =0. (2.3)

With the help of mathematical induction, the conclusion of the lemma follows from (2.3). O
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Lemma 2.4. ([8], Corollary 3.4). If n is a nonnegative integer, then

= 1 (mod 16), Tf 2|n; (2.4)
3 (mod 16), if 2¢n.

Lemma 2.5. ([8], Theorem 3.9). For n >0, there is no positive integer x such that v, = z*.

Lemma 2.6. ([8], Theorem 3.12). For m > 0 and n > 1, there is no positive integer x such
that B,, = 2v,,x2.

Lemma 2.7. ([19], Theorem 3.3). If m > 0 and n > 1, then C,, divides B, if and only if ™
18 an even integer.

Lemma 2.8. ([15], Theorem 2.8, Theorem 2.13). If m > 1 and n > 1, then By, divides By, if
and only if nlm. Consequently, ged(Bm, Bn) = Bged(m,n)-

Lemma 2.9. ([19], Theorem 3.2). If m > 1 and n > 1, then C, divides Cy, if and only if ™
is an odd integer.

Lemma 2.10. ([17], Theorem 3.2). If m > 1 and n > 1, then B,, = By,z? has no solution
except x = 1.

Lemma 2.11. ([8], Theorem 3.10). Ifn >0 and x > 0 are integers such that v, = 2x2, then
(n, ) = (0,1).

Lemma 2.12. ([14], Theorem 3). If for 0 < m < n, Q,Q, = 22, then n = 3m, 3{m, and m
is odd.

Lemma 2.13. Ifn > 1, then the equation P, = x? has the positive integer solutions (n,z) =
(1,1) or (7,13).

Proof. For the proof of Lemma 2.13, see [12]. O

Lemma 2.14. (2], Lemma 2.5). If n, y, and m are positive integers with m > 2, then the
equation Qn, = 2y™ has the only integer solution (n,y) = (1,1).

Lemma 2.15. ([13], p.1). Let m = 2°m’ and n = 2°n', where m' and n' are odd and a,b > 0
with d = ged(m,n). Then,
ged(Un,, Uy) = Uy.
% if a = b;
ng(Vma Vn) = @ 1 ¢ ’
lor2, ifa#b.
Vi, if a > b;

dUmaVn =
ged( ) {10r27 if a <b.

Lemma 2.16. ([13], p.1). If d = ged(m,n), then

Qu, if m/d is even;
1 or 2, otherwise.

ged(Pr, Qn) = {

Theorem 2.17. ([8], Theorem 4.1). If k is a nonnegative integer, then all positive integer
solutions of the equation u? — 2v% = 2% are given by

( k%vma 2"3" B), if k is even;
(u,v) = kt1 k—3 ] ]
(2 2 P2m+17 272 Q2m+1), if ]’{7 1S Odd
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Furthermore, all positive integer solutions of the equation u?> — 2v> = —2F are given by
(Q%szﬂ, 2§P2m+1)7 if k is even;
(u,v) = k43 k-3 ey
(272 Bp,272 up), if k is odd.
with m > 0.

Lemma 2.18. Ifn >1 and k > 0, then B, = 2* only ifn =1 and k = 0.

Proof. If n = 1 and k = 0, then B,, = 2*. Assume to the contrary that for some positive
integer n, B, = 2F for some k > 0. Hence, B,, is even and by Lemma 2.8, n is also even.
Consequently, 6 = Bs|B,, which implies that 3|B,, = 2¥, which is a contradiction. O

Lemma 2.19. If m and n are positive integers and n|m, then By|Cy, if and only if n = 1.

Proof. If n = 1, then B,,|C,,. Conversely if n|m, then B,|B,,. Since gcd(B,,Cy,) = 1 and
By,| B, it follows that ged(By,,Cp,) = 1 and hence, B,|C,, only if n = 1. O

Lemma 2.20. Ifn and t are positive integers, then 2t|B,, if and only if 2¢|n.

Proof. 1f 2t|n, then by Lemma 2.8, By:|B,,. But, by Lemma 2.1(b), By = 2!B1C1Cy -+ Coe1
and hence, 2!|By:|B,,. Conversely, assume that 2! { n. If n is odd, then B, is also odd and
2t 4 B,,. If n is even, then n = 25, where s and [ are natural numbers and s < ¢ and [ is odd.
By Lemma 2.1(b), By, = Bgs; = 2°BjCiCy; - - - Cys—1;. Since BjC;Cy; - - - Cys—1; is odd and s < t,
it follows that 2!t B,,. O

Lemma 2.21. If m, n, and t are positive integers, then 2! B,,|B,, if and only if 2'm|n.

Proof. If 2m|n, then by Lemma 2.8, Byt,,|B,. But, by virtue of Lemma 2.1(b), B, =
2! B CrCop - - - Coi—1,,, and hence, 2! By, | Boty,| By Conversely, let 2t B,,| B, m = 2°u, s > 0,
and u be odd. Since 2°|B,,, by Lemma 2.20, 2°|m and u|m implies By|By,. Hence, 257 B,|B,,.
Again by Lemma 2.20, 2°7|B,, implies 2°"|n and by Lemma 2.8, B,|B, implies uln and
therefore, 25Tty = 2'm|n. O

Lemma 2.22. Let m, n, and t be positive integers. Then, B,|2¢ B, if and only if m|n.

Proof. If m|n, then by Lemma 2.8, B,,|2!B,,. Conversely, assume that B,,|2!B,,. If n < m,
then by the primitive divisor theorem (see [21]), there exists an odd prime divisor of By,
that does not divide B, and consequently, B, 1 2!B,,. If m = n, then B,,|2!B,,. Now, let
n > m and assume, to the contrary, that B,,|2'B,, but m { n. Let d = gcd(m,n). By
Lemma 2.8, By = gcd(By,, B,). Consequently, B,,|2!B, is equivalent to %—’:|2t%’d‘. Since
gcd(%—?, %Z) = 1, it follows that %]2? Once again by the primitive divisor theorem, there
exists an odd prime factor of B,, that does not divide B;. Hence, this prime factor divides 2¢,
which is a contradiction. O

3. MAIN RESULTS

In this section, we solve the Diophantine equations z* — 8C,,zy + 16y = 2" in positive
integers x and y with limited choices for s and ¢. Throughout this section, solution(s) means
solution(s) in positive integers.

To begin, we prove a theorem that addresses the solutions of 22 — 8C,zy + 16y = 2F.
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Theorem 3.1. Let k be a nonnegative integer and n be a positive integer. If k > 4 is even,
then all solutions of the equation

2% — 8Cpxy + 16y = 2° (3.1)

are given by (z,y) = (2% Bgi”ﬂ% g—:) when nlm. If k = 0, then the solutions are given

by (x,y) = (Bg:", f?";) when 4dnlm. Furthermore, if k = 2, then the solutions are given by

2B
(,y) = (55", QBé’jL) when 2n|m.

If k > 7 is odd, then (3.1) has a solution only for n =1, and this solution is given by

k=5 k1 k=9
(B3:272 Qamy1 —2 2 Poy1, 22 Qomg1), m>0.
However, if k =1,3,5, then (3.1) has no solution.

k=5 kt1 k=9
() = {(3'2 T Qomt1+2°2 Popg1, 272 Qamy1), m >0;

Proof. The substitutions u = |2z —8Cpy|, v = 16 B,y with the identity 8B2 41 = C? converts
(3.1) to u? — 2v% = 2¥+2_ If k > 0 is even, then using Theorem 2.17, we get

u =2z —8CLy| = Qngm,

v =16B,y = 2% By, (3.2)
with m > 0. First, assume that u = 2z — 8Cpy. If k > 4, then by virtue of Lemma 2.22,
16Bry = 2%Bm is solvable if and only if n|m and in this case, the possible values of y are
given by y = 255" g—’:. Substituting y into u = 2z — 8C,y, we get

4B .
% — 80,12%3—7% = 25 Qo

n

Since @Q2,, = 2C,,, the above equation can be written as

k2 [ Bp,Cn + CrBn
20 =22 .
B,

Bm+n
B

n

Now, using Lemma 2.1(d), we find x = 23(
that if m > 1 and v = —2z + 8C,y, then x = 2§(Bg—;") when n|m. Furthermore, if £k = 0,
then (3.2) is solvable if 4B,,|B,,, and by virtue of Lemma 2.21, this is possible only if 4n|m.

In this case, the solutions of (3.1) are given by x = Bg—f" and y = %’;. Similarly, if k = 2,

2Bmtn
Br

), when n|m. A similar calculation shows

then (3.2) is solvable only if 2n|m and the solutions are given by x = and y = %’;.

Next, assume that k is odd. By virtue of Theorem 2.17, u = |2z — 8Cy| = 2%P2m+1 and

v =168,y = 2t T Q2m+1- Since 2||Q2m+1, the equation 16B,y = 2%Q2m+1 has no solution
if k=1,3,5. Now, let kK > 7. If u = 22 — 8C,y, then

By — 25" Yemtt (3.3)

Since by Lemma 2.1(f), B,, = P,qn, we can write (3.3) as

k=T
Pogny =22 qoms1, (3.4)

where ¢; = @Q;/2 for i > 0. Since by Lemma 2.15, gcd(gn, gam+1) = 1 and (3.4) implies that
Gn|q2m+1, we must have ¢, = 1 and consequently, n = 0 or n = 1. If n = 0, then (3.4) can
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be written as ga;,+1 = 0, which is not true. If n = 1, then (3.4) reduces to y = 2¥q2m+1.
Hence, for k > 7 is odd, (3.3) is solvable only if n = 1 and the solutions of (3.1) are given by

u + 8CLy k=5 k1 k=9
:E:#:?"? 7 Qam41+2°2 Popg1, y =272 Qoms1, m20.
Similarly, if u = —(2z — 8C,y), a similar argument shows that

k=5 Et1 k=9
r=3-272 Qomt1 — 22 Poy1, y=2"2 Qams1, m >0.

This ends the proof.
O

The next theorem is similar to Theorem 3.1, except that on the right side of (3.1), 2¥ has
been replaced by —2F.

Theorem 3.2. Let n be a positive integer and k a nonnegative integer.
(a) If k is even, then the equation

22 — 8Chzy + 16y% = —2F (3.5)

s solvable only if k > 6 and n =1 and the solutions are given by
k—2 k—6
(2.9) = (25 (3Poms1 & Qan1),27 Pt )5 m=0,1,2,...

(b) If k and n are odd, then (3.5) is solvable only if k > 7 and n = 1 and the solutions are
given by
(2.9) = (327 Qo £2°5 B, 27" Quun ), m=0,1,2,... (3.6)

Furthermore, if k is odd and n is even, then (3.5) is solvable only if k > 9 and n = 2 and the
solutions are

17 k- =

Proof. With suitable algebraic manipulations, we can rewrite (3.5) as
(22 — 8CLy)? — 2(16B,y)? = —2F+2,

(a) If £ > 0 is even, then by virtue of Theorem 2.17, we have

k
u =2z — 8CLy| = 22 Qom+1,
k+2
v=16B,y =272 Pyy,i1; m>0. (3.7)

First, let u = 22 — 8Cpy. If k = 0,2,4, then (3.7) reduces to 2¥Bny = P41, which has
no solution because the left side is even, and the right side is odd. If k& > 6, then (3.7) is

equivalent to Po,y = 2L§4P2m+1. Since ged(Poy,, Pom+1) = 1, from Lemma 2.15, it follows

that P, divides 25+, But, by Lemmas 2.18 and 2.1(f), this is possible only when n = 1.
Hence, in this case, the solutions are given by

k=2 k=6
=272 (Qam+1 +3Pom+1), Yy=22 Popiq; m > 0.

If k is even and v = —(2x — 8Cyy), then a similar argument shows that (3.5) is solvable only
if k > 6 and n = 1 and the solutions are given by

k=2 k=6
=272 (—=Qam+1 +3Pom+1), Yy=22 Popy1; m>0.
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(b) Now, let k& be odd. By Theorem 2.17,
u =2z —8CLy| = 2%Bm,

v =16Bny = 2"7 vy, = 2°5 Oy (3.8)
If u = 22 — 8C,y, then by virtue of (3.8)
k-7
By = 27 Cy,. (3.9)

If £ = 1,3,5, then (3.8) reduces to 2%Bny = Cy,, which has no solution because the left
side is even, and the right side is odd. Now, if £ > 7 and n are odd, then by Lemma 2.15,

ged(By, Cpy) = 1 and (3.9) is equivalent to Bn|2%. But, in view of Lemma 2.18, Bn|2% is
possible only if n = 1. Hence, in this case, the solutions of (3.5) are given by

2 =3-25C +2 5B, y=27 Cp; m>0.

These solutions are also expressible in the form
v =32 Qon +2F By, y =27 Qomi m >0,

A similar calculation shows that if u = —2x + 8C,y, then (3.5) is solvable only if k£ > 7 and
n = 1, and the solutions are given by

k=5
2

k+3 k=9
r=3-272 Qoan—2% Bp, y=2"7 Q2m; m=>0.
Next, assume that k is odd and n is even, say n = 2%nq, ny is odd. Any use of Lemma 2.1(b)
converts (3.9) to
k-7
2By, Cpy Cony -+ Coai,y =277 Chp. (3.10)
Since ny is odd, ged(By,, Cy,) = 1 by Lemma 2.15 and hence n; = 1 and n = 2°. Furthermore,
n1 = 1 reduces (3.10) to
290, Cy - Cpary = 272y, (3.11)

which implies C1C3 - - - Cga—1|Cp, and consequently, C;|Cy, for i = 1,2,...,2%7 1, Using Lemma
2.9, we conclude that a = 1 and hence n = 2, and (3.11) reduces to

201y = 27 Cp. (3.12)

If £ <7, then (3.12) reduces to 3 - 2%34 = C)y,, which has no solution because the left and
right sides are opposite parity. Thus, if k is odd and n is even, (3.5) is solvable only if k£ > 9
and n = 2 and the solutions in this case are given by

17
3
A similar calculation shows that if k is odd, n is even, and u = —2x + 8C,y, then (3.5) is
solvable only if £ > 9 and n = 2 and the solutions are given by

17 k= : 1 -
= E : 2¥Q2m - 2%B7n7 Yy = g '2k211Q2m; m > 1.

k-7 k+3 1 k—11
272 Q2m+22 Bmyy:§2 2 Q2m; m > 1.

X

X

O

The following theorem is similar to Theorem 3.1 except that, in the left side of (3.1), the
exponent of y has been doubled.
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Theorem 3.3. If k and n are natural numbers, then the Diophantine equation

2% — 8C,xy? + 16y* = 2k (3.13)
has no solution if k = 1,2 (mod 4). If k =0 (mod 4), then (3.13) is solvable only if k > 4 and
the solutions are given by x = 22v,, y = 21%4, n > 0. Furthermore, if k = 3 (mod 4), then
(3.13) is solvable only if k > 7 and has just one solution given by (x,y) = (7 . 2%,2%7)

Proof. If k > 4 is even, then by virtue of Theorem 3.1, the solutions of (3.13) in (z,y?) are
given by

2 kE Bptn k=1 By,
— (2 9’5 Om
('Z'7 y ) < 2 Bn ) 2 Bn >

where n|m. Thus,
k—4

22 B, = B,y?, n|m. (3.14)
If kK =0, then by virtue of Theorem 3.1,
B B
2\ mEn m
and if k£ = 2, then by virtue of Theorem 3.1,
2B B
2 mEn m
= 2 . 1
() = (2222, 2 ) 2 (3.16)

Moreover, if k is odd, then in view of Theorem 3.1, (3.13) is solvable in (z,%?) only if k > 7
and the solutions are given by

k=5 1 k=9
(z,y%) = (3'2 T Qomt1£272 Poppg1,2 2 Q2m+1>

and hence,
k-9
¥ =27 Quns1. (3.17)
Now, we distinguish the following seven cases:
Case 1: £k >4, k=0 (mod 4), and y is even. In this case, % = 2t for some nonnegative
integer t, and (3.14) takes the form
2% B,, = B,y (3.18)

Because y is even, it can be written as y = 2°[, s > 1, and [ > 1 is odd. Now, we can write
(3.18) as 2% B,,, = B,2?*12, which, consequently, takes the form B,, = B,(2°7!1)2. By Lemma
2.10, this is possible only if 257 = 1, or, equivalently, s —t = 0 and [ = 1. Thus, B,, = B,
and hence, n = m and in this case, y = 2! = 257 Using Lemma 2.1(b), we can write the
solution as -

(x7y) = (2%1)”7 2T) i n>0.

Case 2: k>4, k=0 (mod 4), and y is odd. If k = 4, (3.14) reduces to B,, = B,y>. By
virtue of Lemma 2.10, this is possible only if y = 1. Hence, B,, = B, and consequently,
m = n. Now using Lemma 2.1(b), the solutions are given by

(z,y) = (4v,, 1); n > 0.

If £ > 4, then % > 1, and (3.14) can be written as y? = 23" Bu | which is not solvable
because the left and right sides are of opposite parity.
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Case 3: k > 4, k = 2 (mod 4), and y is even. Because k = 2 (mod 4), k = 4t + 2 for
some ¢t > 1 and (3.14) can be written as

22-1B,, = By (3.19)

If n is odd, then 22~!|y? and from (3.19), we get B,, = 2B, w?, where w = y/2!*. We claim
that B,, = 2B,w? has no solution. Because of the presence of 2 in the right side of the last
equation, By, is even and hence m is even, that is m = 2m;. Using Lemma 2.1(b), we can

write (3.19) as Bméifml = w?. Because gcd(Bpy,,,Cm,) = 1, it follows that gcd(BB—";l,C’ml) =1

and hence, %ﬁl = w% and Cp,, = w% for some positive integers wy and wy such that w = wqwo.
In view of Lemma 2.10, %’? = w% holds only when w; = 1. Furthermore, by Lemma 2.11,

Cpy = w% has no solution other than m; = 0. Because we are interested in positive integer
solutions in z and y, in this case, (3.13) is not solvable. If n is even, then from (3.19), we
get B,, = 2B,u?, where u = % Using a similar argument as above, it can be shown that
By, = 2B,u? is also not solvable. This implies that (3.13) has no solution.

Case 4: k > 4, k = 2 (mod 4), and y is odd. If n is even, then it follows from (3.19)
that 22t_1]Bn, which implies B,, = 2%~ 1*tk3p4 for some k3 > 0 and for some odd positive
integer m3. Because n|m, by Lemma 2.8, B,|B,, and hence, B,, = (22~ 1*ksm3)(2k1my) for
some kg > 0 and for some odd positive integer my. Thus, 22/~ 1+ks+k1| B and (3.19) can be
written as 22t_1+k4(22t,ﬁ723+k4) = (22f1”+k3 )y?. Because the terms on the right side are odd,
we must have 2t — 1 + k4 = 0, which is possible only when ¢ = 0 and k4 = 1. But, this implies
that B,, = 2B,y?, and we have already checked that this equation has no solution in positive
integer y. If n is odd, then the right side of (3.19) is odd, whereas the left side is even. Hence,
in this case, (3.13) has no solution.

Case 5: k= 0,2. If k =0, from (3.15) we have y? = %’;, which reduces to
By, = Bpu3, (3.20)

where uz = 2y. In view of Lemma 2.10, (3.20) is solvable only if ug = 1, which is not possible

since ug = 2y. If k = 2, then from (3.16), we have y? = %’;, which is equivalent to

B, = 2B, y°. (3.21)

Using a similar argument as in Case 3, it is easy to see that (3.21) has no solution. Hence, for
k=0 and k = 2, (3.13) has no solution.

Case 6: k > 7 and k = 1 (mod 4). In this case, k = 4t + 1 for some ¢t > 2 and (3.17)
can be written as 2274Q,, 1 = 2. This implies that Qa,,,1 is a perfect square, which is not
possible since 2||Q2m+1. So, if £ =1 (mod 4), (3.13) has no solution.

Case 7: k > 7 and k = 3 (mod 4). If k = 7, then (3.17) takes the form 2y? = Qa1
By ([8], Theorem 4.4), the last equation is solvable only for m = 0, which implies that y = 1
and z = 28. If £ > 7, then we can write k as k = 4t + 3 with ¢ > 1, and (3.17) can be written
as 2273Q9, 41 = y2, which reduces to

2Qom 41 = u?, (3.22)
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where u = (ét) Thus, u is even, that is u = 2sy, where sy > 1. Therefore, (3.22) reduces to
Qom+1 = 253. In view of ([8], Theorem 4.4), this is possible only if m = 0. Thus,

(z,y%) = <3 '3 1 o' 2%)
and hence, the solutions of (3.13) are given by

(z,y) = <3 2"3" £9'% 2¥).

O

Next, we consider a Diophantine equation that generalizes (3.5) in the sense that y has been
replaced by 2.
Theorem 3.4. The Diophantine equation
2% — 8CLxy? + 16y* = —2F (3.23)
has no solution if k = 0,1 (mod 4) Ifk; = 2 (mod 4), (3.23) is solvable only if k> 6 and the

(985 - 255° , 13- 255" ) Furthermore,
7 and is given by

solutions are given by (z,y) = (5- 25" 2 T ) and (z,y)
if k=3 (mod 4), there exist just one solutzon only if k

AVAN|

k-7

(x7y) = (3 . 2%72T
Proof. We distinguish three cases.

N—

Case 1: k is even.
If k is even, then in view of Theorem 3.2(a), (3.23) is solvable for (z,y?) only if k > 6 and the

solutions are given by x = 2 z (Q2m+1 + 3Poyyy1) Or & = 2 2 Pgm 1 and

2 =23 Py (3.24)
If £k =0 (mod 4), then k = 4t for some positive integer t > 2, y is even, and (3.24) can be
written as Zu% = P11, where up = 2;’—,1 But, the last equation has no solution since Pap,11
is odd. If £ =2 (mod 4), then (3.24) can be written in the form

222 Py = o (3.25)
for some positive integer t. Substituting ws = ?L,l, (3.25) takes the form w% = Popnt+1- In
view of Lemma 2.13, there are two possibilities, either 2m +1 =1 or 2m + 1 = 7 and hence,
m =0 or m = 3. Ifsz,thenx:5.2% or z =27 andy:2% and if m = 3, then
2 =985-25 orx=29-2"7 and y = 13- 2°7".

Case 2: k and n are odd.
In this case, by Theorem 3.2 (b), (3.23) is solvable for (z,y?) only if k¥ > 7 and the solutions
are
=327 Qo + 2% By
and ‘o
¥’ =27 Qo (3.26)

If k=1 (mod 4), then k = 4t +1 for some integer ¢ > 2, and (3.26) reduces to y? = 22=*Qgy,.
Writing h = 55, the last equation can be written as

h% = Qom = 2C),. (3.27)
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Thus, h is even that is, h = 2¢; and (3.27) takes the form 2t7 = C,,, which is not solvable
because C), is odd. Let k =3 (mod 4). If k =7, then (3.26) reduces to

2y = Qam, (3.28)
and if k£ > 7, then (3.26) reduces to
208 = Qom, (3.29)

where wy = 7. By virtue of ([8], Theorem 3.10), (3.28) and (3.29) are solvable only for
m = 0, and the solution is given by

Case 3: k is odd and n is even.
In this case, by virtue of Theorem 3.2, (3.23) is solvable for (z,y?) only if k¥ > 9 and the
solutions are

z = 137 255" Qo + 25" By,
and .
32 =2"72 Qom; m=1,3,5,.... (3.30)

If k =1 (mod 4), then k = 4t + 1 for some integer ¢t > 2 and (3.30) reduces to Q3y? =
227405 (Q9,y,, which is equivalent to

Q2Qom = w3, (3.31)
where ws = ;%Ey But, by virtue of Lemma 2.12, (3.31) is not solvable. If £ = 3 (mod 4), then
k = 4t + 3 for some integer ¢ > 2 and (3.30) can be written as

3y =2%73C,,; m=1,35,.... (3.32)

Substituting wg = 5245 in (3.32), we get
2C,, = 3w?. (3.33)
But, (3.33) has no solution because Cy, is always odd. O

In the following theorem, we study a Diophantine equation that resembles the one appearing
in Theorem 3.1. The only difference is that the exponent of x has been doubled.

Theorem 3.5. The Diophantine equation

zt — 8C,x%y + 16y% = 2° (3.34)
has no solution if k = 1,2 (mod 4). If k =0 (mod 4), then the solutions of (3.34) exist only
if k>4 and are given by

k kE—4
($7y) = (21,271;”) .

Furthermore, if k = 3 (mod 4), (3.34) is solvable and has just one solution only if k > 7. This
solution is given by

(e.y) = (27, 727%).
Proof. If k > 4 is even, then in view of Theorem 3.1, the solutions of (3.34) for (z2,y) are

given by
2 & Bitn MBm>
zy) = | 22 , 272 — |, n|m.
(@) = (282 05 D)

Thus,
k.
Bpz? =22 Bpyip. (3.35)
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If K =0, then
B B
2 o mEn m
and if k = 2, then
2B B
2 _ mtn DPm

If k is odd, then by Theorem 3.1, (3.34) is solvable for (x2,y) only if k > 7 and these
solutions are given by

k=5

2 (3Q2m+1 + 8P2m+1) (3.38)

22 =2
and o
Y=272 Qomi1.-

Now, we distinguish the following eight cases.

Case 1: k>4, k=0 (mod 4), and z is even.

In this case, k = 4t for some ¢ > 1 and (3.35) reduces to 22B,. ., = B,x%. Because z is
even, z = 2%2[; for some s > 1 and [; > 1 and (3.35) can be written as 2% B,, 1, = B, 222[3.
The last equation further reduces to B4+, = Bn(2s2_tll)2. By Lemma 2.10, this is possible
if 282_];[4} = 1, which implies that s —¢ = 0 and I; = 1. Thus, in this case, z = 2! = 2% and
Yy=2"2 vy.

Case 2: k>4, k=0 (mod 4), and z is odd.
In this case, k = 4t for some ¢t > 1 and (3.35) reduces to

22 Bppin = Bpa?. (3.39)
Because x is odd, it follows from (3.39) that 2%!|B,,, which implies B,, = 22*+komg for some
odd positive integer mg and kg > 0. Since n|m, it follows that n|(m £ n) and by Lemma 2.8,
By|Btn. Hence, B+, can be written as (227%6mg)(287my) for some k7 > 0. This implies
that 22+ke+h7| B . and (3.39) can be written as

B B
2t+k min n 2
2 ket = gaitke T (3.40)

Because the terms on the right side of (3.40) are odd, we must have 2t + k7 = 0 and hence
k7 =t = 0, which is impossible since k > 4.

Case 3: k>4, k=2 (mod 4), and z is even.
In this case, k = 4t + 2 for some ¢ > 1 and (3.35) takes the form
221 B, 1 = Bua (3.41)

Because z is even, x = 2"9myg for some odd positive integer mg. On substituting in (3.35), we
get 2B4n = Bp(2"7'mg)?, which is of the form 2B,,+, = B,u?. While proving Theorem
3.3, we have seen that the latter equation has no solution in positive integer wu.

Case 4: k>4, k=2 (mod 4), and z is odd.
In this case, (3.35) takes the form

221 B, 1 = Bua (3.42)
Because z is odd, it follows from (3.42) that 22+1|B,,, which implies that B,, = 22k,

for some k19 > 0 and for some odd positive integer mqg. Since n|m, by Lemma 2.8, B,,|By4n
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and hence, B,,+, can be written as (22t+1+k10m10)(2k11m11) for some k11 > 0 and for some
odd positive integer my;. This implies 22+ +kwot+ku|p | and (3.35) can be written as
22”1*’“11(%) = (ﬂﬁﬁ)xz. Because the terms on the right side are odd, we

must have 2t + 1 + k1; = 0, which is not possible. Hence, in this case (3.34) is not solvable.

Case 5: k£ =0,2.

If k = 0, then by (3.36), 22 = Bg:”, which is equivalent to

Bpin = Bpa? (3.43)

and by Lemma 2.10, this is possible only if = 1. This implies that m £+ n = n, which leads
to either m = 2n or m = 0. If m = 0, then from (3.36), y = 0, which is not a positive integer.
If m = 2n, then (3.36) reduces to 2y = C),, which is clearly not solvable. Similarly, if & = 2,

then by (3.37), 22 = 2BBLni” which is equivalent to
Buan = 2Bp2?%, (3.44)

where x = 2z and it has been already proved that equations of the form of (3.44) are not
solvable.

Case 6: k> 7, k=1 (mod 4), and z is even.
In this case, we can write k = 4t + 1, where ¢ > 2 and (3.38) reduces to

2% = 227D (3Qam41 £ 8Pomy1 ). (3.45)

Because x is even, z = 2¢g; for some g; > 1 and (3.45) reduces to 22(2_t)g% = 3Q2m+118Po 11,
which is of the form s% = 3Q2m41 £8Pt 1, where s3 = 227 tg,. Furthermore, using the Binet
forms, it is easy to see that 3Qom+1 + 8FPom+1 = Qamss and 3Qom+1 — 8Pom+1 = Qom—1-
Thus, we get Qi3 = 53 and Qo;,—1 = 53, which are impossible since Q,, = 2,6 (mod 8) for
all n.

Case 7: k> 7, k=3 (mod 4), and z is even.
Letting k = 4t + 3, where ¢ > 1, (3.38) takes the form

22 = 2271 (3Qom41 £ 8Pony1). (3.46)
Since 3Q2m+1 + 8Pom+1 = Qam+3 and 3Qam+1 — 8Pam+1 = Q2am—1, we get from (3.46) that
Qam+3 = 253 (3.47)
or
Q2m—1 = 253, (3.48)

where s4 = 57. (3.47) is impossible by Lemma 2.14 since m > 0. (3.48) holds only when m = 1
by Lemma 2.14. Thus, in this case, the only solution of (3.34) is given by

(z,y) = (21 ,7.2%2).
Case 8: Both k and z are odd.
If k£ is odd, then from (3.38), it follows that x is even. Therefore, in this case, no solution

exists.

O
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CONCLUSION

In this work, we solved the Diophantine equations 2 — 8C,zy + 16y = +2", 22 — 8Cpxy +
16y* = 427, and 2* — 8C,zy + 1692 = 2" in positive integers = and 3. One notices that
these equations admit further generalizations. It will be an interesting idea to investigate the
conditions under which ¥ — 8C,zy + 16y' = 42" can be solved in positive integers = and y
or, one can explore its solvability for other particular values of k and I.
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