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Abstract. This paper is devoted to solving the equations xs − 8Cnxy + 16yt = ±2r for
(s, t) ∈ {(2, 2), (2, 4), (4, 2)} in positive integers x and y. The solutions are obtained in terms
of the balancing, Pell, and Lucas-Pell numbers.

1. Introduction

A pair of natural numbers (n, r), where n is a balancing number and r is the corresponding
balancer, is a solution of the Diophantine equation 1+2+ · · ·+(n−1) = (n+1)+ · · ·+(n+ r)
[1]. If n is a balancing number, then 8n2 + 1 is a perfect square, and the positive square
root of 8n2 + 1 is called a Lucas-balancing number. The nth balancing and the nth Lucas-
balancing numbers are denoted by Bn and Cn respectively, and satisfy the binary recurrences
Bn+1 = 6Bn − Bn−1 with B0 = 0, B1 = 1, and Cn+1 = 6Cn − Cn−1 with C0 = 1 and C1 = 3
[15, 18].

The Diophantine equations of the form ax2 + bxy + cy2 = d, for different values of a, b, c,
and d have been studied by many authors [3, 4, 5]. Keskin, et al. [9] obtained the solutions of
x2 − 5Fnxy − 5(−1)ny2 = ±5r in positive integers x and y. Demirturk, et al. [7] proved that
the equation x2 − Lnxy + (−1)ny2 = 5 has positive integer solutions only when n = 1, 2, 3, 4,
whereas x2 − Lnxy + (−1)ny2 = −5 has solutions in positive integers only for n = 1, 2, 3.
Keskin, et al. [10] studied the Diophantine equation x2 −Lnxy+ (−1)ny2 = ±5r. Karaatli, et
al. [8] and Patel, et al. [17] studied some Diophantine equations involving balancing numbers.
In the present work, we solve the equations xs−8Cnxy+16yt = ±2r in positive integers x and
y when (s, t) ∈ {(2, 2), (2, 4), (4, 2)}. These solutions are expressed in terms of Pell, Lucas-Pell,
balancing and Lucas-balancing numbers.

The Pell sequence {Pn} and Lucas-Pell sequence {Qn} are defined by means of the binary
recurrences Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1, and Qn = 2Qn−1 + Qn−2, Q0 = 2, Q1 = 2.

The Binet forms of these sequences are given by Pn = αn
−βn

α−β
and Qn = αn + βn, respectively,

where α = 1 +
√
2 and β = 1−

√
2. These two sequences share interesting relationships with

balancing and Lucas-balancing sequences [16].

The generalized Fibonacci sequence {Un} is defined by the binary recurrence

Un = AUn−1 −BUn−2, n ≥ 2, (1.1)

with initial terms U0 = 0 and U1 = 1. Similarly, the generalized Lucas sequence {Vn} defined
by

Vn = AVn−1 −BVn−2, n ≥ 2, (1.2)

with V0 = 2 and V1 = A. If A = 6 and B = −1, then the generalized Fibonacci and Lucas
sequences coincide with the balancing sequence and the Lucas-balancing sequence, respectively.
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2. Preliminaries

In this section, we recall some results about balancing, Lucas-balancing, Pell, and Lucas-
Pell sequences. The contents of this section will help us develop the main results. We will
refer back to these results whenever necessary, with or without further reference.

As usual, we denote the nth balancing, nth Lucas-balancing, nth Pell, and nth Lucas-Pell
numbers by Bn, Cn, Pn, and Qn, respectively, and vn = 2Cn; n = 0, 1, 2, . . .. Throughout this
paper, unless otherwise mentioned, m, n, a, b, x, etc. denote integers.

Lemma 2.1. If m and n are positive integers, then

(a) v2n − 32B2
n = 4,

(b) B2n = Bnvn,
(c) Q2

n − 8P 2
n = 4(−1)n,

(d) Bmvn +Bnvm = 2Bm+n,
(e) gcd(Bn, vn) = 1 or 2,
(f) P2n = PnQn = 2Bn,
(g) gcd(Pn, Qn) = 1 or 2,
(h) Pm|Pn if and only if m|n,
(i) Qm|Qn if and only if n

m
is odd,

(j) Qm|Pn if and only if n
m

is even,
(k) 5 ∤ Qn for any n,
(l) 2 ∤ Bn ⇔ 2 ∤ n ⇔ 2 ∤ Pn.

Some results of Lemma 2.1 are also true if either m or n equals 0.

The proofs of assertions (a), (b), (d), and (e) can be found in [18]. For proofs of the other
assertions, see [11].

Lemma 2.2. If n is an odd positive integer, then Bn ≡ n (mod 32).

Proof. By virtue of Theorem 2.2 of [6], the identity

n
∑

r=1

B2
r =

1

32

[

B2n+1 − (2n + 1)
]

(2.1)

holds for each positive integer n. The proof of the lemma follows directly from (2.1). �

Lemma 2.3. If n is an even positive integer, then Bn ≡ 3n (mod 32).

Proof. By virtue of Lemma 2.1(d), B2n+2+B2n−2 = 34B2n and hence, the sequence xn = B2n,
satisfies the recurrence relation

xn+1 = 34xn − xn−1, x0 = 0, x1 = 6. (2.2)

Using the recurrence relation (2.2), it is easy to see that the sequence yn = xn − 6n satisfies
the nonhomogeneous recurrence

yn+1 = 34yn − yn−1 + 192n, y0 = y1 = 0. (2.3)

With the help of mathematical induction, the conclusion of the lemma follows from (2.3). �
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Lemma 2.4. ([8], Corollary 3.4). If n is a nonnegative integer, then

Cn ≡
{

1 (mod 16), if 2|n;
3 (mod 16), if 2 ∤ n.

(2.4)

Lemma 2.5. ([8], Theorem 3.9). For n ≥ 0, there is no positive integer x such that vn = x2.

Lemma 2.6. ([8], Theorem 3.12). For m ≥ 0 and n ≥ 1, there is no positive integer x such
that Bn = 2vmx2.

Lemma 2.7. ([19], Theorem 3.3). If m ≥ 0 and n ≥ 1, then Cn divides Bm if and only if m
n

is an even integer.

Lemma 2.8. ([15], Theorem 2.8, Theorem 2.13). If m ≥ 1 and n ≥ 1, then Bn divides Bm if
and only if n|m. Consequently, gcd(Bm, Bn) = Bgcd(m,n).

Lemma 2.9. ([19], Theorem 3.2). If m ≥ 1 and n ≥ 1, then Cn divides Cm if and only if m
n

is an odd integer.

Lemma 2.10. ([17], Theorem 3.2). If m ≥ 1 and n ≥ 1, then Bn = Bmx2 has no solution
except x = 1.

Lemma 2.11. ([8], Theorem 3.10). If n ≥ 0 and x > 0 are integers such that vn = 2x2, then
(n, x) = (0, 1).

Lemma 2.12. ([14], Theorem 3). If for 0 ≤ m < n, QmQn = x2, then n = 3m, 3 ∤ m, and m
is odd.

Lemma 2.13. If n ≥ 1, then the equation Pn = x2 has the positive integer solutions (n, x) =
(1, 1) or (7, 13).

Proof. For the proof of Lemma 2.13, see [12]. �

Lemma 2.14. ([2], Lemma 2.5). If n, y, and m are positive integers with m ≥ 2, then the
equation Qn = 2ym has the only integer solution (n, y) = (1, 1).

Lemma 2.15. ([13], p.1). Let m = 2am
′

and n = 2bn
′

, where m
′

and n
′

are odd and a, b ≥ 0
with d = gcd(m,n). Then,

gcd(Um, Un) = Ud.

gcd(Vm, Vn) =

{

Vd, if a = b;

1 or 2, if a 6= b.

gcd(Um, Vn) =

{

Vd, if a > b;

1 or 2, if a ≤ b.

Lemma 2.16. ([13], p.1). If d = gcd(m,n), then

gcd(Pm, Qn) =

{

Qd, if m/d is even;

1 or 2, otherwise.

Theorem 2.17. ([8], Theorem 4.1). If k is a nonnegative integer, then all positive integer
solutions of the equation u2 − 2v2 = 2k are given by

(u, v) =

{

(2
k−2

2 vm, 2
k+2

2 Bm), if k is even;

(2
k+1

2 P2m+1, 2
k−3

2 Q2m+1), if k is odd.
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Furthermore, all positive integer solutions of the equation u2 − 2v2 = −2k are given by

(u, v) =

{

(2
k−2

2 Q2m+1, 2
k

2P2m+1), if k is even;

(2
k+3

2 Bm, 2
k−3

2 vm), if k is odd.

with m ≥ 0.

Lemma 2.18. If n ≥ 1 and k ≥ 0, then Bn = 2k only if n = 1 and k = 0.

Proof. If n = 1 and k = 0, then Bn = 2k. Assume to the contrary that for some positive
integer n, Bn = 2k for some k > 0. Hence, Bn is even and by Lemma 2.8, n is also even.
Consequently, 6 = B2|Bn which implies that 3|Bn = 2k, which is a contradiction. �

Lemma 2.19. If m and n are positive integers and n|m, then Bn|Cm if and only if n = 1.

Proof. If n = 1, then Bm|Cn. Conversely if n|m, then Bn|Bm. Since gcd(Bm, Cm) = 1 and
Bn|Bm, it follows that gcd(Bn, Cm) = 1 and hence, Bn|Cm only if n = 1. �

Lemma 2.20. If n and t are positive integers, then 2t|Bn if and only if 2t|n.
Proof. If 2t|n, then by Lemma 2.8, B2t |Bn. But, by Lemma 2.1(b), B2t = 2tB1C1C2 · · ·C2t−1

and hence, 2t|B2t |Bn. Conversely, assume that 2t ∤ n. If n is odd, then Bn is also odd and
2t ∤ Bn. If n is even, then n = 2sl, where s and l are natural numbers and s < t and l is odd.
By Lemma 2.1(b), Bn = B2sl = 2sBlClC2l · · ·C2s−1l. Since BlClC2l · · ·C2s−1l is odd and s < t,
it follows that 2t ∤ Bn. �

Lemma 2.21. If m, n, and t are positive integers, then 2tBm|Bn if and only if 2tm|n.
Proof. If 2tm|n, then by Lemma 2.8, B2tm|Bn. But, by virtue of Lemma 2.1(b), B2tm =
2tBmCmC2m · · ·C2t−1m and hence, 2tBm|B2tm|Bn. Conversely, let 2tBm|Bn, m = 2su, s ≥ 0,
and u be odd. Since 2s|Bm, by Lemma 2.20, 2s|m and u|m implies Bu|Bm. Hence, 2s+tBu|Bn.
Again by Lemma 2.20, 2s+t|Bn implies 2s+t|n and by Lemma 2.8, Bu|Bn implies u|n and
therefore, 2s+tu = 2tm|n. �

Lemma 2.22. Let m, n, and t be positive integers. Then, Bm|2tBn if and only if m|n.
Proof. If m|n, then by Lemma 2.8, Bm|2tBn. Conversely, assume that Bm|2tBn. If n < m,
then by the primitive divisor theorem (see [21]), there exists an odd prime divisor of Bm

that does not divide Bn and consequently, Bm ∤ 2tBn. If m = n, then Bm|2tBn. Now, let
n > m and assume, to the contrary, that Bm|2tBn, but m ∤ n. Let d = gcd(m,n). By
Lemma 2.8, Bd = gcd(Bm, Bn). Consequently, Bm|2tBn is equivalent to Bm

Bd
|2t Bn

Bd
. Since

gcd(Bm

Bd
, Bn

Bd
) = 1, it follows that Bm

Bd
|2t. Once again by the primitive divisor theorem, there

exists an odd prime factor of Bm that does not divide Bd. Hence, this prime factor divides 2t,
which is a contradiction. �

3. Main Results

In this section, we solve the Diophantine equations xs − 8Cnxy + 16yt = ±2r in positive
integers x and y with limited choices for s and t. Throughout this section, solution(s) means
solution(s) in positive integers.

To begin, we prove a theorem that addresses the solutions of x2 − 8Cnxy + 16y2 = 2k.
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Theorem 3.1. Let k be a nonnegative integer and n be a positive integer. If k ≥ 4 is even,
then all solutions of the equation

x2 − 8Cnxy + 16y2 = 2k (3.1)

are given by (x, y) = (2
k

2
Bm±n

Bn
, 2

k−4

2
Bm

Bn
) when n|m. If k = 0, then the solutions are given

by (x, y) = (Bm±n

Bn
, Bm

4Bn
) when 4n|m. Furthermore, if k = 2, then the solutions are given by

(x, y) = (2Bm±n

Bn
, Bm

2Bn
) when 2n|m.

If k ≥ 7 is odd, then (3.1) has a solution only for n = 1, and this solution is given by

(x, y) =

{

(3 · 2k−5

2 Q2m+1 + 2
k+1

2 P2m+1, 2
k−9

2 Q2m+1), m ≥ 0;

(3 · 2k−5

2 Q2m+1 − 2
k+1

2 P2m+1, 2
k−9

2 Q2m+1), m > 0.

However, if k = 1, 3, 5, then (3.1) has no solution.

Proof. The substitutions u = |2x−8Cny|, v = 16Bny with the identity 8B2
n+1 = C2

n converts
(3.1) to u2 − 2v2 = 2k+2. If k ≥ 0 is even, then using Theorem 2.17, we get

u = |2x− 8Cny| = 2
k

2Q2m,

v = 16Bny = 2
k+4

2 Bm, (3.2)

with m ≥ 0. First, assume that u = 2x − 8Cny. If k ≥ 4, then by virtue of Lemma 2.22,

16Bny = 2
k+4

2 Bm is solvable if and only if n|m and in this case, the possible values of y are

given by y = 2
k−4

2
Bm

Bn
. Substituting y into u = 2x− 8Cny, we get

2x− 8Cn2
k−4

2
Bm

Bn

= 2
k

2Q2m.

Since Q2m = 2Cm, the above equation can be written as

2x = 2
k+2

2

(

BmCn +CmBn

Bn

)

.

Now, using Lemma 2.1(d), we find x = 2
k

2 (Bm+n

Bn
), when n|m. A similar calculation shows

that if m ≥ 1 and u = −2x + 8Cny, then x = 2
k

2 (Bm−n

Bn
) when n|m. Furthermore, if k = 0,

then (3.2) is solvable if 4Bn|Bm, and by virtue of Lemma 2.21, this is possible only if 4n|m.

In this case, the solutions of (3.1) are given by x = Bm±n

Bn
and y = Bm

4Bn
. Similarly, if k = 2,

then (3.2) is solvable only if 2n|m and the solutions are given by x = 2Bm±n

Bn
and y = Bm

2Bn
.

Next, assume that k is odd. By virtue of Theorem 2.17, u = |2x− 8Cny| = 2
k+3

2 P2m+1 and

v = 16Bny = 2
k−1

2 Q2m+1. Since 2||Q2m+1, the equation 16Bny = 2
k−1

2 Q2m+1 has no solution
if k = 1, 3, 5. Now, let k ≥ 7. If u = 2x− 8Cny, then

Bny = 2
k−7

2
Q2m+1

2
. (3.3)

Since by Lemma 2.1(f), Bn = Pnqn, we can write (3.3) as

Pnqny = 2
k−7

2 q2m+1, (3.4)

where qi = Qi/2 for i ≥ 0. Since by Lemma 2.15, gcd(qn, q2m+1) = 1 and (3.4) implies that
qn|q2m+1, we must have qn = 1 and consequently, n = 0 or n = 1. If n = 0, then (3.4) can
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be written as q2m+1 = 0, which is not true. If n = 1, then (3.4) reduces to y = 2
k−7

2 q2m+1.
Hence, for k ≥ 7 is odd, (3.3) is solvable only if n = 1 and the solutions of (3.1) are given by

x =
u+ 8Cny

2
= 3 · 2k−5

2 Q2m+1 + 2
k+1

2 P2m+1, y = 2
k−9

2 Q2m+1, m ≥ 0.

Similarly, if u = −(2x− 8Cny), a similar argument shows that

x = 3 · 2k−5

2 Q2m+1 − 2
k+1

2 P2m+1, y = 2
k−9

2 Q2m+1, m ≥ 0.

This ends the proof.
�

The next theorem is similar to Theorem 3.1, except that on the right side of (3.1), 2k has
been replaced by −2k.

Theorem 3.2. Let n be a positive integer and k a nonnegative integer.
(a) If k is even, then the equation

x2 − 8Cnxy + 16y2 = −2k (3.5)

is solvable only if k ≥ 6 and n = 1 and the solutions are given by

(x, y) =
(

2
k−2

2 (3P2m+1 ±Q2m+1), 2
k−6

2 P2m+1

)

; m = 0, 1, 2, . . .

(b) If k and n are odd, then (3.5) is solvable only if k ≥ 7 and n = 1 and the solutions are
given by

(x, y) =
(

3 · 2k−5

2 Q2m ± 2
k+3

2 Bm, 2
k−9

2 Q2m

)

, m = 0, 1, 2, . . . (3.6)

Furthermore, if k is odd and n is even, then (3.5) is solvable only if k ≥ 9 and n = 2 and the
solutions are

x =
17

3
· 2k−7

2 Q2m ± 2
k+3

2 Bm, y =
1

3
· 2k−11

2 Q2m; m = 1, 3, 5, . . .

Proof. With suitable algebraic manipulations, we can rewrite (3.5) as

(2x− 8Cny)
2 − 2(16Bny)

2 = −2k+2.

(a) If k ≥ 0 is even, then by virtue of Theorem 2.17, we have

u = |2x− 8Cny| = 2
k

2Q2m+1,

v = 16Bny = 2
k+2

2 P2m+1; m ≥ 0. (3.7)

First, let u = 2x − 8Cny. If k = 0, 2, 4, then (3.7) reduces to 2
6−k

2 Bny = P2m+1, which has
no solution because the left side is even, and the right side is odd. If k ≥ 6, then (3.7) is

equivalent to P2ny = 2
k−4

2 P2m+1. Since gcd(P2n, P2m+1) = 1, from Lemma 2.15, it follows

that P2n divides 2
k−4

2 . But, by Lemmas 2.18 and 2.1(f), this is possible only when n = 1.
Hence, in this case, the solutions are given by

x = 2
k−2

2 (Q2m+1 + 3P2m+1), y = 2
k−6

2 P2m+1; m ≥ 0.

If k is even and u = −(2x− 8Cny), then a similar argument shows that (3.5) is solvable only
if k ≥ 6 and n = 1 and the solutions are given by

x = 2
k−2

2 (−Q2m+1 + 3P2m+1), y = 2
k−6

2 P2m+1; m ≥ 0.
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(b) Now, let k be odd. By Theorem 2.17,

u = |2x− 8Cny| = 2
k+5

2 Bm,

v = 16Bny = 2
k−1

2 vm = 2
k+1

2 Cm. (3.8)

If u = 2x− 8Cny, then by virtue of (3.8)

Bny = 2
k−7

2 Cm. (3.9)

If k = 1, 3, 5, then (3.8) reduces to 2
7−k

2 Bny = Cm, which has no solution because the left
side is even, and the right side is odd. Now, if k ≥ 7 and n are odd, then by Lemma 2.15,

gcd(Bn, Cm) = 1 and (3.9) is equivalent to Bn|2
k−7

2 . But, in view of Lemma 2.18, Bn|2
k−7

2 is
possible only if n = 1. Hence, in this case, the solutions of (3.5) are given by

x = 3 · 2k−3

2 Cm + 2
k+3

2 Bm, y = 2
k−7

2 Cm; m ≥ 0.

These solutions are also expressible in the form

x = 3 · 2k−5

2 Q2m + 2
k+3

2 Bm, y = 2
k−9

2 Q2m; m ≥ 0.

A similar calculation shows that if u = −2x + 8Cny, then (3.5) is solvable only if k ≥ 7 and
n = 1, and the solutions are given by

x = 3 · 2k−5

2 Q2m − 2
k+3

2 Bm, y = 2
k−9

2 Q2m; m ≥ 0.

Next, assume that k is odd and n is even, say n = 2an1, n1 is odd. Any use of Lemma 2.1(b)
converts (3.9) to

2aBn1
Cn1

C2n1
· · ·C2a−1n1

y = 2
k−7

2 Cm. (3.10)

Since n1 is odd, gcd(Bn1
, Cm) = 1 by Lemma 2.15 and hence n1 = 1 and n = 2a. Furthermore,

n1 = 1 reduces (3.10) to

2aC1C2 · · ·C2a−1y = 2
k−7

2 Cm, (3.11)

which implies C1C2 · · ·C2a−1 |Cm and consequently, Ci|Cm for i = 1, 2, . . . , 2a−1. Using Lemma
2.9, we conclude that a = 1 and hence n = 2, and (3.11) reduces to

2C1y = 2
k−7

2 Cm. (3.12)

If k ≤ 7, then (3.12) reduces to 3 · 2 9−k

2 y = Cm, which has no solution because the left and
right sides are opposite parity. Thus, if k is odd and n is even, (3.5) is solvable only if k ≥ 9
and n = 2 and the solutions in this case are given by

x =
17

3
· 2k−7

2 Q2m + 2
k+3

2 Bm, y =
1

3
· 2k−11

2 Q2m; m ≥ 1.

A similar calculation shows that if k is odd, n is even, and u = −2x + 8Cny, then (3.5) is
solvable only if k ≥ 9 and n = 2 and the solutions are given by

x =
17

3
· 2k−7

2 Q2m − 2
k+3

2 Bm, y =
1

3
· 2k−11

2 Q2m; m ≥ 1.

�

The following theorem is similar to Theorem 3.1 except that, in the left side of (3.1), the
exponent of y has been doubled.
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Theorem 3.3. If k and n are natural numbers, then the Diophantine equation

x2 − 8Cnxy
2 + 16y4 = 2k (3.13)

has no solution if k ≡ 1, 2 (mod 4). If k ≡ 0 (mod 4), then (3.13) is solvable only if k ≥ 4 and

the solutions are given by x = 2
k

2 vn, y = 2
k−4

4 , n ≥ 0. Furthermore, if k ≡ 3 (mod 4), then

(3.13) is solvable only if k ≥ 7 and has just one solution given by (x, y) =
(

7 · 2k−3

2 , 2
k−7

4

)

.

Proof. If k ≥ 4 is even, then by virtue of Theorem 3.1, the solutions of (3.13) in (x, y2) are
given by

(x, y2) =

(

2
k

2
Bm±n

Bn

, 2
k−4

2
Bm

Bn

)

where n|m. Thus,

2
k−4

2 Bm = Bny
2, n|m. (3.14)

If k = 0, then by virtue of Theorem 3.1,

(x, y2) =

(

Bm±n

Bn

,
Bm

4Bn

)

, 4n|m (3.15)

and if k = 2, then by virtue of Theorem 3.1,

(x, y2) =

(

2Bm±n

Bn

,
Bm

2Bn

)

, 2n|m. (3.16)

Moreover, if k is odd, then in view of Theorem 3.1, (3.13) is solvable in (x, y2) only if k ≥ 7
and the solutions are given by

(x, y2) =
(

3 · 2k−5

2 Q2m+1 ± 2
k+1

2 P2m+1, 2
k−9

2 Q2m+1

)

and hence,

y2 = 2
k−9

2 Q2m+1. (3.17)

Now, we distinguish the following seven cases:
Case 1: k ≥ 4, k ≡ 0 (mod 4), and y is even. In this case, k−4

2 = 2t for some nonnegative
integer t, and (3.14) takes the form

22tBm = Bny
2. (3.18)

Because y is even, it can be written as y = 2sl, s ≥ 1, and l ≥ 1 is odd. Now, we can write
(3.18) as 22tBm = Bn2

2sl2, which, consequently, takes the form Bm = Bn(2
s−tl)2. By Lemma

2.10, this is possible only if 2s−tl = 1, or, equivalently, s − t = 0 and l = 1. Thus, Bn = Bm

and hence, n = m and in this case, y = 2t = 2
k−4

4 . Using Lemma 2.1(b), we can write the
solution as

(x, y) =
(

2
k

2 vn, 2
k−4

4

)

; n ≥ 0.

Case 2: k ≥ 4, k ≡ 0 (mod 4), and y is odd. If k = 4, (3.14) reduces to Bm = Bny
2. By

virtue of Lemma 2.10, this is possible only if y = 1. Hence, Bm = Bn and consequently,
m = n. Now using Lemma 2.1(b), the solutions are given by

(x, y) = (4vn, 1) ; n ≥ 0.

If k > 4, then k−4
4 > 1, and (3.14) can be written as y2 = 2

k−4

2
Bm

Bn
, which is not solvable

because the left and right sides are of opposite parity.
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Case 3: k ≥ 4, k ≡ 2 (mod 4), and y is even. Because k ≡ 2 (mod 4), k = 4t + 2 for
some t ≥ 1 and (3.14) can be written as

22t−1Bm = Bny
2. (3.19)

If n is odd, then 22t−1|y2 and from (3.19), we get Bm = 2Bnw
2, where w = y/2t. We claim

that Bm = 2Bnw
2 has no solution. Because of the presence of 2 in the right side of the last

equation, Bm is even and hence m is even, that is m = 2m1. Using Lemma 2.1(b), we can

write (3.19) as
Bm1

Cm1

Bn
= w2. Because gcd(Bm1

, Cm1
) = 1, it follows that gcd(

Bm1

Bn
, Cm1

) = 1

and hence,
Bm1

Bn
= w2

1 and Cm1
= w2

2 for some positive integers w1 and w2 such that w = w1w2.

In view of Lemma 2.10,
Bm1

Bn
= w2

1 holds only when w1 = 1. Furthermore, by Lemma 2.11,

Cm1
= w2

2 has no solution other than m1 = 0. Because we are interested in positive integer
solutions in x and y, in this case, (3.13) is not solvable. If n is even, then from (3.19), we
get Bm = 2Bnu

2, where u = y
2t . Using a similar argument as above, it can be shown that

Bm = 2Bnu
2 is also not solvable. This implies that (3.13) has no solution.

Case 4: k ≥ 4, k ≡ 2 (mod 4), and y is odd. If n is even, then it follows from (3.19)
that 22t−1|Bn, which implies Bn = 22t−1+k3m3 for some k3 ≥ 0 and for some odd positive
integer m3. Because n|m, by Lemma 2.8, Bn|Bm and hence, Bm = (22t−1+k3m3)(2

k4m4) for
some k4 ≥ 0 and for some odd positive integer m4. Thus, 22t−1+k3+k4 |Bm and (3.19) can be
written as 22t−1+k4( Bm

22t−1+k3+k4
) = ( Bn

22t−1+k3
)y2. Because the terms on the right side are odd,

we must have 2t− 1+ k4 = 0, which is possible only when t = 0 and k4 = 1. But, this implies
that Bm = 2Bny

2, and we have already checked that this equation has no solution in positive
integer y. If n is odd, then the right side of (3.19) is odd, whereas the left side is even. Hence,
in this case, (3.13) has no solution.

Case 5: k = 0, 2. If k = 0, from (3.15) we have y2 = Bm

4Bn
, which reduces to

Bm = Bnu
2
3, (3.20)

where u3 = 2y. In view of Lemma 2.10, (3.20) is solvable only if u3 = 1, which is not possible
since u3 = 2y. If k = 2, then from (3.16), we have y2 = Bm

2Bn
, which is equivalent to

Bm = 2Bny
2. (3.21)

Using a similar argument as in Case 3, it is easy to see that (3.21) has no solution. Hence, for
k = 0 and k = 2, (3.13) has no solution.

Case 6: k ≥ 7 and k ≡ 1 (mod 4). In this case, k = 4t + 1 for some t ≥ 2 and (3.17)
can be written as 22t−4Q2m+1 = y2. This implies that Q2m+1 is a perfect square, which is not
possible since 2||Q2m+1. So, if k ≡ 1 (mod 4), (3.13) has no solution.

Case 7: k ≥ 7 and k ≡ 3 (mod 4). If k = 7, then (3.17) takes the form 2y2 = Q2m+1.
By ([8], Theorem 4.4), the last equation is solvable only for m = 0, which implies that y = 1
and x = 28. If k > 7, then we can write k as k = 4t+ 3 with t > 1, and (3.17) can be written
as 22t−3Q2m+1 = y2, which reduces to

2Q2m+1 = u2, (3.22)
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where u = (4y2t ). Thus, u is even, that is u = 2s2, where s2 ≥ 1. Therefore, (3.22) reduces to

Q2m+1 = 2s22. In view of ([8], Theorem 4.4), this is possible only if m = 0. Thus,

(x, y2) =
(

3 · 2k−3

2 ± 2
k+1

2 , 2
k−7

2

)

and hence, the solutions of (3.13) are given by

(x, y) =
(

3 · 2k−3

2 ± 2
k+1

2 , 2
k−7

4

)

.

�

Next, we consider a Diophantine equation that generalizes (3.5) in the sense that y has been
replaced by y2.

Theorem 3.4. The Diophantine equation

x2 − 8Cnxy
2 + 16y4 = −2k (3.23)

has no solution if k ≡ 0, 1 (mod 4). If k ≡ 2 (mod 4), (3.23) is solvable only if k ≥ 6 and the

solutions are given by (x, y) = (5 ·2k−2

2 , 2
k−6

4 ) and (x, y) = (985 ·2k−2

2 , 13 ·2k−6

4 ). Furthermore,
if k ≡ 3 (mod 4), there exist just one solution only if k ≥ 7 and is given by

(x, y) =
(

3 · 2k−3

2 , 2
k−7

4

)

.

Proof. We distinguish three cases.

Case 1: k is even.
If k is even, then in view of Theorem 3.2(a), (3.23) is solvable for (x, y2) only if k ≥ 6 and the

solutions are given by x = 2
k−2

2 (Q2m+1 + 3P2m+1) or x = 2
k−2

2 P2m−1 and

y2 = 2
k−6

2 P2m+1. (3.24)

If k ≡ 0 (mod 4), then k = 4t for some positive integer t ≥ 2, y is even, and (3.24) can be
written as 2u21 = P2m+1, where u1 =

y
2t−1 . But, the last equation has no solution since P2m+1

is odd. If k ≡ 2 (mod 4), then (3.24) can be written in the form

22t−2P2m+1 = y2 (3.25)

for some positive integer t. Substituting w3 = y
2t−1 , (3.25) takes the form w2

3 = P2m+1. In
view of Lemma 2.13, there are two possibilities, either 2m + 1 = 1 or 2m+ 1 = 7 and hence,

m = 0 or m = 3. If m = 0, then x = 5.2
k−2

2 or x = 2
k−2

2 and y = 2
k−6

4 and if m = 3, then

x = 985 · 2k−2

2 or x = 29 · 2k−2

2 and y = 13 · 2k−6

4 .

Case 2: k and n are odd.
In this case, by Theorem 3.2 (b), (3.23) is solvable for (x, y2) only if k ≥ 7 and the solutions
are

x = 3 · 2k−5

2 Q2m ± 2
k+3

2 Bm

and
y2 = 2

k−9

2 Q2m. (3.26)

If k ≡ 1 (mod 4), then k = 4t+1 for some integer t ≥ 2, and (3.26) reduces to y2 = 22t−4Q2m.
Writing h = y

2t−2 , the last equation can be written as

h2 = Q2m = 2Cm. (3.27)
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Thus, h is even that is, h = 2t1 and (3.27) takes the form 2t21 = Cm, which is not solvable
because Cm is odd. Let k ≡ 3 (mod 4). If k = 7, then (3.26) reduces to

2y2 = Q2m, (3.28)

and if k > 7, then (3.26) reduces to
2w2

4 = Q2m, (3.29)

where w4 = y
2t−1 . By virtue of ([8], Theorem 3.10), (3.28) and (3.29) are solvable only for

m = 0, and the solution is given by

(x, y) =
(

3 · 2k−3

2 , 2
k−7

4

)

.

Case 3: k is odd and n is even.
In this case, by virtue of Theorem 3.2, (3.23) is solvable for (x, y2) only if k ≥ 9 and the
solutions are

x =
17

3
· 2k−7

2 Q2m ± 2
k+3

2 Bm,

and
3y2 = 2

k−11

2 Q2m; m = 1, 3, 5, . . . . (3.30)

If k ≡ 1 (mod 4), then k = 4t + 1 for some integer t ≥ 2 and (3.30) reduces to Q2
2y

2 =
22t−4Q2Q2m, which is equivalent to

Q2Q2m = w2
5, (3.31)

where w5 =
Q2y
2t−2 . But, by virtue of Lemma 2.12, (3.31) is not solvable. If k ≡ 3 (mod 4), then

k = 4t+ 3 for some integer t ≥ 2 and (3.30) can be written as

3y2 = 22t−3Cm; m = 1, 3, 5, . . . . (3.32)

Substituting w6 =
y

2t−2 in (3.32), we get

2Cm = 3w2
6 . (3.33)

But, (3.33) has no solution because Cm is always odd. �

In the following theorem, we study a Diophantine equation that resembles the one appearing
in Theorem 3.1. The only difference is that the exponent of x has been doubled.

Theorem 3.5. The Diophantine equation

x4 − 8Cnx
2y + 16y2 = 2k (3.34)

has no solution if k ≡ 1, 2 (mod 4). If k ≡ 0 (mod 4), then the solutions of (3.34) exist only
if k ≥ 4 and are given by

(x, y) =
(

2
k

4 , 2
k−4

2 vn

)

.

Furthermore, if k ≡ 3 (mod 4), (3.34) is solvable and has just one solution only if k ≥ 7. This
solution is given by

(x, y) = (2
k−3

4 , 7.2
k−7

2 ).

Proof. If k ≥ 4 is even, then in view of Theorem 3.1, the solutions of (3.34) for (x2, y) are
given by

(x2, y) =

(

2
k

2
Bm±n

Bn

, 2
k−4

2
Bm

Bn

)

, n|m.

Thus,

Bnx
2 = 2

k

2Bm±n. (3.35)
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If k = 0, then

(x2, y) =

(

Bm±n

Bn

,
Bm

4Bn

)

, 4n|m (3.36)

and if k = 2, then

(x2, y) =

(

2Bm±n

Bn

,
Bm

2Bn

)

, 2n|m. (3.37)

If k is odd, then by Theorem 3.1, (3.34) is solvable for (x2, y) only if k ≥ 7 and these
solutions are given by

x2 = 2
k−5

2 (3Q2m+1 ± 8P2m+1) (3.38)

and
y = 2

k−9

2 Q2m+1.

Now, we distinguish the following eight cases.

Case 1: k ≥ 4, k ≡ 0 (mod 4), and x is even.
In this case, k = 4t for some t ≥ 1 and (3.35) reduces to 22tBm±n = Bnx

2. Because x is
even, x = 2s2 l1 for some s2 ≥ 1 and l1 ≥ 1 and (3.35) can be written as 22tBm±n = Bn2

2s2 l21.
The last equation further reduces to Bm±n = Bn(2

s2−tl1)
2. By Lemma 2.10, this is possible

if 2s2−tl1 = 1, which implies that s2 − t = 0 and l1 = 1. Thus, in this case, x = 2t = 2
k

4 and

y = 2
k−4

2 vn.

Case 2: k ≥ 4, k ≡ 0 (mod 4), and x is odd.
In this case, k = 4t for some t ≥ 1 and (3.35) reduces to

22tBm±n = Bnx
2. (3.39)

Because x is odd, it follows from (3.39) that 22t|Bn, which implies Bn = 22t+k6m6 for some
odd positive integer m6 and k6 ≥ 0. Since n|m, it follows that n|(m± n) and by Lemma 2.8,
Bn|Bm±n. Hence, Bm±n can be written as (22t+k6m6)(2

k7m7) for some k7 ≥ 0. This implies
that 22t+k6+k7 |Bm±n and (3.39) can be written as

22t+k7 · Bm±n

22t+k6+k7
=

Bn

22t+k6
· x2. (3.40)

Because the terms on the right side of (3.40) are odd, we must have 2t + k7 = 0 and hence
k7 = t = 0, which is impossible since k ≥ 4.

Case 3: k ≥ 4, k ≡ 2 (mod 4), and x is even.
In this case, k = 4t+ 2 for some t ≥ 1 and (3.35) takes the form

22t+1Bm±n = Bnx
2. (3.41)

Because x is even, x = 2k9m9 for some odd positive integer m9. On substituting in (3.35), we
get 2Bm±n = Bn(2

k9−tm9)
2, which is of the form 2Bm±n = Bnu

2. While proving Theorem
3.3, we have seen that the latter equation has no solution in positive integer u.

Case 4: k ≥ 4, k ≡ 2 (mod 4), and x is odd.
In this case, (3.35) takes the form

22t+1Bm±n = Bnx
2. (3.42)

Because x is odd, it follows from (3.42) that 22t+1|Bn, which implies that Bn = 22t+1+k10m10

for some k10 ≥ 0 and for some odd positive integer m10. Since n|m, by Lemma 2.8, Bn|Bm±n
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and hence, Bm±n can be written as (22t+1+k10m10)(2
k11m11) for some k11 ≥ 0 and for some

odd positive integer m11. This implies 22t+1+k10+k11 |Bm±n and (3.35) can be written as

22t+1+k11( Bm±n

22t+1+k10+k11
) = ( Bn

22t+1+k10
)x2. Because the terms on the right side are odd, we

must have 2t+ 1 + k11 = 0, which is not possible. Hence, in this case (3.34) is not solvable.

Case 5: k = 0, 2.

If k = 0, then by (3.36), x2 = Bm±n

Bn
, which is equivalent to

Bm±n = Bnx
2 (3.43)

and by Lemma 2.10, this is possible only if x = 1. This implies that m± n = n, which leads
to either m = 2n or m = 0. If m = 0, then from (3.36), y = 0, which is not a positive integer.
If m = 2n, then (3.36) reduces to 2y = Cn, which is clearly not solvable. Similarly, if k = 2,

then by (3.37), x2 = 2Bm±n

Bn
which is equivalent to

Bm±n = 2Bnz
2, (3.44)

where x = 2z and it has been already proved that equations of the form of (3.44) are not
solvable.

Case 6: k ≥ 7, k ≡ 1 (mod 4), and x is even.
In this case, we can write k = 4t+ 1, where t ≥ 2 and (3.38) reduces to

x2 = 22(t−1)(3Q2m+1 ± 8P2m+1). (3.45)

Because x is even, x = 2g1 for some g1 ≥ 1 and (3.45) reduces to 22(2−t)g21 = 3Q2m+1±8P2m+1,
which is of the form s23 = 3Q2m+1 ± 8P2m+1, where s3 = 22−tg1. Furthermore, using the Binet
forms, it is easy to see that 3Q2m+1 + 8P2m+1 = Q2m+3 and 3Q2m+1 − 8P2m+1 = Q2m−1.
Thus, we get Q2m+3 = s23 and Q2m−1 = s23, which are impossible since Qn ≡ 2, 6 (mod 8) for
all n.

Case 7: k ≥ 7, k ≡ 3 (mod 4), and x is even.
Letting k = 4t+ 3, where t ≥ 1, (3.38) takes the form

x2 = 22t−1(3Q2m+1 ± 8P2m+1). (3.46)

Since 3Q2m+1 + 8P2m+1 = Q2m+3 and 3Q2m+1 − 8P2m+1 = Q2m−1, we get from (3.46) that

Q2m+3 = 2s24 (3.47)

or

Q2m−1 = 2s24, (3.48)

where s4 =
x
2t . (3.47) is impossible by Lemma 2.14 since m ≥ 0. (3.48) holds only when m = 1

by Lemma 2.14. Thus, in this case, the only solution of (3.34) is given by

(x, y) = (2
k−3

4 , 7.2
k−7

2 ).

Case 8: Both k and x are odd.
If k is odd, then from (3.38), it follows that x is even. Therefore, in this case, no solution
exists.

�
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Conclusion

In this work, we solved the Diophantine equations x2 − 8Cnxy+16y2 = ±2r, x2 − 8Cnxy+
16y4 = ±2r, and x4 − 8Cnxy + 16y2 = 2r in positive integers x and y. One notices that
these equations admit further generalizations. It will be an interesting idea to investigate the
conditions under which xk − 8Cnxy + 16yl = ±2r can be solved in positive integers x and y
or, one can explore its solvability for other particular values of k and l.
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