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Abstract. A theorem of Zeckendorf states that every positive integer has a unique decompo-
sition as a sum of nonadjacent Fibonacci numbers. Such decompositions exist more generally,
and much is known about them. First, for any positive linear recurrence {Gn}, the number
of summands in the legal decompositions for integers in [Gn, Gn+1) converges to a Gaussian
distribution. Second, Bower, Insoft, Li, Miller, and Tosteson proved that in a legal decompo-
sition, the probability of a gap between summands, that is larger than the recurrence length,
converges to geometric decay. Whereas most of the literature involves one-dimensional se-
quences, some recent work by Chen, Guo, Jiang, Miller, Siktar, and Yu have extended these
decompositions to d-dimensional lattices, where a legal decomposition is a chain of points
such that one moves in all d dimensions to get from one point to the next. They proved that
some but not all properties from one-dimensional sequences still hold. We continue this work
and look at the distribution of gaps between terms of legal decompositions, and prove, similar
to the one-dimensional cases, that the gap vectors converge to a bivariate geometric random
variable when d = 2.

1. Introduction

1.1. Previous Work. Zeckendorf's Theorem [37] provides an alternative de�nition of the
Fibonacci numbers {Fn} (normally de�ned by F1 = 1, F2 = 2, and Fn+1 = Fn + Fn−1 for all
n ≥ 2): this is the only sequence such that every positive integer can be written uniquely as
the sum of nonadjacent terms. Such a sum is called the Zeckendorf (or legal) decomposition.
Similar results hold for other sequences; see for example [3, 5, 10, 11, 16, 17, 19, 20, 22, 21,
23, 26, 29, 28, 31, 32, 35, 34] for a representative sample of results on unique decompositions,
as well as on the distribution of the number of summands in these decompositions. Most of
the work to date has been on one-dimensional sequences; many of the sequences that at �rst
appear to be two-dimensional, such as those in [8, 9], are truly one-dimensional when viewed
properly. In [6], the authors considered generalizations to d-dimensional lattices, where a legal
decomposition involved a �nite ordered subset of lattice points and where each point has all
of its coordinates strictly smaller than the previous (thus, all motion is down and to the left).
The motivation for their work was to see which properties persist. They were able to show that
the distribution of the number of summands is similar and also a Gaussian, but uniqueness of
decompositions is lost.

In this work, we continue these investigations and look at the distribution of gaps between
summands in decompositions. For many sequences, the resulting distributions converge to
geometric decay, with the constant arising from the largest root of the characteristic polynomial
of the recurrence relation; see [1, 4]. The question is more interesting here, because we extend
these decompositions to d-dimensional lattices. The gaps are now d-dimensional vectors, and
there is the possibility of new behavior.

This work was supported by NSF Grant DMS1659037, Williams College and the Eureka Program. We thank
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We �rst recall the construction of decompositions in d-dimensional lattice from [6]; the
following description is slightly modi�ed from that work with permission of the authors. A
legal decomposition in d dimensions is a �nite collection of lattice points for which

(1) each point is used at most once, and
(2) if the point (i1, i2, . . . , id) is included, then all subsequent points (i′1, i

′
2, . . . , i

′
d) have

i′j < ij for all j ∈ {1, 2, . . . , d} (i.e., all coordinates must decrease between any two

points in the decomposition).

We call these sequences of points on the d-dimensional lattice simple jump paths. One can
weaken the second condition and merely require i′j ≤ ij . This restriction was imposed in [6]
to simplify the combinatorial analysis because it led to simple closed form expressions. With
additional work, we can consider the more general case where it is no longer required that all
coordinates decrease; see [15], where the authors prove similar behavior as in [6].

We now construct our sequence using the above de�nition of legal decomposition. We
concentrate on d ∈ {1, 2} in the main results in this paper; similar results should hold in
general, but for small d there are combinatorial identities that simplify the sums that arise
and lead to nice closed form expressions. Whenever possible, we state de�nitions and ancillary
lemmas for the most general case possible.

When d = 1, we write {ya}∞a=0 for our sequence, which is de�ned by

(1) y1 = 1, and
(2) if we have constructed the �rst k terms of our sequence, the (k+1)st term is the smallest

integer that cannot be written as a sum of terms in the sequence, with each term used
at most once.

This case is, not surprisingly, similar to previous one-dimensional results. A straightforward
calculation shows that yn = 2n−1, and the legal decomposition of a number is just its binary
expansion.

We now turn to the main object of study in this paper, d = 2, and denote the general term
of our sequence by yi,j . Instead of de�ning the sequence by traveling along diagonals, we could
do right angular paths; for the purposes of this paper it does not matter because we are only
concerned with the gaps between chosen summands, and not the values of the summands (and
it is the values that are in�uenced by the mode of construction). We start from the lower left
corner, indexed (1, 1).

(1) Set y1,1 = 1.
(2) Iterate through the natural numbers. For each such number, check if any path of

numbers in our sequence with a strict leftward and downward movement between each
two points sums to the number. If no such path exists, add the number to the sequence
so that it is added to the shortest un�lled diagonal moving from the bottom right to
the top left.

(3) If a new diagonal must begin to accommodate a new number, set the value yk,1 to be
that number, where k is minimized so that yk,1 has not yet been assigned.

In (1.1), we give the �rst few diagonals of the two-dimensional lattice. Note that we no longer
have uniqueness of decompositions (for example, 25 has two legal decompositions: 20 + 5 and
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24 + 1).

280 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
157 263 · · · · · · · · · · · · · · · · · · · · · · · ·
84 155 259 · · · · · · · · · · · · · · · · · · · · ·
50 82 139 230 · · · · · · · · · · · · · · · · · ·
28 48 74 123 198 · · · · · · · · · · · · · · ·
14 24 40 66 107 184 · · · · · · · · · · · ·
7 12 20 33 59 100 171 · · · · · · · · ·
3 5 9 17 30 56 93 160 · · · · · ·
1 2 4 8 16 29 54 90 159 · · ·

(1.1)

The main result of [6] is that the distribution of the number of summands among all simple
jump paths starting at (n, n) and ending at (0, 0) converges to a Gaussian as n → ∞ (as all
paths must have both a down and a left component, we can add an additional row and an
additional column where one of the indices is zero, and require all paths to end at (0, 0));
a similar result holds for compound paths, where each step is either down, left, or down
and left [15]. We investigate the distribution of gaps between adjacent summands in legal
decompositions. Before stating our results, we �rst introduce some notation.

1.2. New Results. In the preceding section, we have adapted the construction of simple jump
paths from [6]. We study a new problem, namely, the distribution of gaps between points of
the simple jump paths. There are several ways to de�ne gaps in these d-dimensional lattice
decompositions, leading to slightly di�erent behavior. We give three possibilities here.

De�nition 1.1. For a step from (xm,1, . . . , xm,d) to (xm+1,1, . . . , xm+1,d), its gap vector is
the di�erence (xm,1 − xm+1,1, . . . , xm,d − xm+1,d). A simple jump path of length k starting at

(a1, a2, . . . , ad) corresponds to the set {(xi,1 − xi+1,1, . . . , xi,d − xi+1,d)}k−1i=0 of k gap vectors,
where

• (x0,1, . . . , x0,d) = (a1, . . . , ad),
• (xk,1, . . . , xk,d) = (0, . . . , 0), and
• for each i ∈ {0, 1, . . . , k − 1} and j ∈ {1, . . . , d}, xi,j > xi+1,j.

De�nition 1.2. Given a gap vector (xi,1−xi+1,1, . . . , xi,d−xi+1,d), its gap sum is the sum of
the components of the vector: (xi,1−xi+1,1)+ · · ·+(xi,d−xi+1,d). Similarly, the gap distance

is the length of the gap vector.

There are three natural quantities we can investigate. We can look at the gap vectors, the
gap sums, or the gap distances. The distribution of the gap vectors is the most fundamental
quantity, and much of the combinatorics is a natural generalization of previous work for the
one-dimensional case [1, 4]. Knowing the distribution of the gap vectors, we can calculate the
distribution of the gap sums by summing over all gap vectors with the same gap sum. The last
notion, the gap distance, is harder because this requires summing over a subset of gap vectors
to obtain a given gap distance. Note that we can interpret the di�erence between these two
perspectives as arising from the norm we use to measure the length of the gap vector; the gap
sum comes from using the L1 norm whereas the gap distance is from the L2 norm.

Our main result is that as n goes to in�nity, the distribution of the gap vectors in the two-
dimensional lattice converges to a geometric decay, and thus, we see similar behavior as in the
one-dimensional case.

Theorem 1.3. Let n be a positive integer. Consider the distribution of gap vectors among all
simple jump paths of dimension two with starting point (n+1, n+1). For �xed positive integers
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v1 and v2, the probability that a gap vector equals (v1, v2) converges point-wise to 1/2v1+v2 as
n→∞.

We prove Theorem 1.3 in Section 3 through combinatorial identities and Stirling's formula,
but for larger d, the combinatorial lemmas do not generalize. As an immediate consequence,
we obtain the distribution of the gap sums.

Theorem 1.4. Let n be a positive integer. Consider the distribution of gap sums among all
simple jump paths of dimension two with starting point (n + 1, n + 1). The probability that a
gap sum equals an integer v ≥ 2 converges to (v − 1)/2v as n → ∞ (the probability of a gap
sum of 0 or 1 is zero).

After reviewing properties of simple jump paths in Section 2, we prove our main results
in Section 3, and then conclude the paper with questions on alternative de�nitions of gaps,
generalizations to compound paths, and distribution of the longest gap (where we present
some partial results). Whenever possible, we state and prove results for arbitrary dimensions
to facilitate future research.

2. Properties of Simple Jump Paths

We �rst recall some notation for our simple jump paths from [6]. Because our paper is an
extension of [6], the following four paragraphs are reproduced with permission from them.

We have walks in d dimensions starting at some initial point (a1, a2, . . . , ad) with each
aj > 0, and ending at the origin (0, 0, . . . , 0). Note that our simple jump paths must always
have movement in all dimensions at each step. We are just adding one extra point, at the
origin, and saying every path must end there. Note that as we always change all of the indices
during a step, we never include a point where only some of the coordinates are zero, and thus,
there is no issue in adding one extra point and requiring all paths to end at the origin.

Aside from the origin, our walks are sequences of points on the lattice grid with positive
indices. We refer to movements between two such consecutive points as steps. Thus, a
simple jump path is a walk, where each step has a strict movement in all d dimensions. More
formally, a simple jump path of length k starting at (a1, a2, . . . , ad) is a sequence of points
{(xi,1, . . . , xi,d)}ki=0, where the following hold:

• (x0,1, . . . , x0,d) = (a1, . . . , ad),
• (xk,1, . . . , xk,d) = (0, . . . , 0), and
• for each i ∈ {0, 1, . . . , k − 1} and j ∈ {1, . . . , d}, xi,j > xi+1,j .

For a �xed d and any choice of starting point (a1, a2, . . . , ad) ∈ Rd, we let sd(a1, . . . , ad)
denote the number of simple jump paths starting at (a1, a2, . . . , ad) and ending at (0, . . . , 0).
To facilitate counting, we partition these paths with regard to the number of steps. Let
td(k; a1, . . . , ad) denote the number of these simple jump paths with length k. In particular,
when a1 = · · · = ad = n for a �xed n ∈ N+, we let sd(n) denote the number of simple jump
paths from (n, n, . . . , n) to the origin, and td(k, n) denote the subset of these paths with exactly
k steps. As we must reach the origin, every path has at least one step, the maximum number
of steps is n, and

sd(n) =

n∑
k=1

td(k, n). (2.1)

We now determine td(k, n). In one dimension, we have td(k, n) =
(
n−1
k−1
)
because we must

choose exactly k−1 of the �rst n−1 terms (we must choose the nth term as well as the origin,
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and thus, choosing k−1 additional places ensures there are exactly k steps). Because in higher
dimensions there is movement in each dimension for each step, for 1 ≤ k ≤ min(a1, . . . , ad),

td(k; a1, . . . , ad) =

(
a1 − 1

k − 1

)(
a2 − 1

k − 1

)
· · ·
(
ad − 1

k − 1

)
, (2.2)

and

sd(a1, . . . , ad) =

min(a1,...,ad)∑
k=1

td(k; a1, . . . , ad). (2.3)

From the binomial theorem, we have s1(a1) = 2a1−1. For higher dimensions, we need another
well-known combinatorial result: Vandermonde's identity [36]. We restate the theorem here
for ease of reference.

Lemma 2.1 (Vandermonde's Identity). For α, β, γ ∈ N,
γ∑
k=0

(
α

γ − k

)(
β

k

)
=

(
α+ β

γ

)
. (2.4)

We can now determine the number of simple paths in two dimensions. The result below is
an extension of results from [6], where only the special case a1 = a2 has been proved.

Theorem 2.2. In the two-dimensional lattice,

s2(a1, a2) =

(
a1 + a2 − 2

a1 − 1

)
. (2.5)

Proof. From (2.2) and (2.3), we have

s2(a1, a2) =

min(a1,a2)∑
k=1

(
a1 − 1

k − 1

)(
a2 − 1

k − 1

)
. (2.6)

Without loss of generality, assume min(a1, a2) = a1. Then,

s2(a1, a2) =

a1∑
k=1

(
a1 − 1

k − 1

)(
a2 − 1

k − 1

)

=

a1−1∑
k=0

(
a1 − 1

a1 − 1− k

)(
a2 − 1

k

)
. (2.7)

Applying Lemma 2.1 with α = γ = a1 − 1, β = a2 − 1,

s2(a1, a2) =

(
a1 + a2 − 2

a1 − 1

)
=

(
a1 + a2 − 2

a2 − 1

)
. (2.8)

�

Remark 2.3. Note that when a1 = a2 = n, we have

s2(n) =

(
2n− 2

n− 1

)
. (2.9)
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3. Gaps in Two-dimensional Lattices

In the one-dimensional case, the notion of gaps between adjacent points in a simple jump
path is unambiguous; the notions of gap vector, gap sum, and gap distance are exactly the
same. However, for d ≥ 2, we have several choices. Below, we concentrate on the gap vector.

We let gd(n) denote the number of gap vectors of all simple jump paths from (n, n, . . . , n)
to the origin, counted with multiplicity. Note that gd(n) will count a gap vector twice if it
appears twice in a simple jump path or if it appears once in two simple jump paths. We add
the origin to the path to facilitate the counting; as all steps must have both downward and
leftward movements, the origin is the only point where one of the indices is zero. Although
this does introduce one extra gap, because n → ∞ the contribution from it is negligible and
can be safely ignored. This addition means that each simple jump path of length k contains k
gap vectors, and every legal path has at least one and at most n gap vectors. Thus,

gd(n) =

n∑
k=1

k td(k, n). (3.1)

To prove Theorems 1.3 and 1.4, we begin by determining g (n; (v1, v2)), de�ned as the number
of gap vectors (v1, v2) in all simple jump paths starting from (n, n) and ending at (0, 0). Then
we �nd g2(n), the total number of gap vectors. Due to the presence of n− 1 in the formula for
s2(n), we work with n+ 1 below to simplify some of the algebra.

Lemma 3.1. Consider all the simple jump paths from (n + 1, n + 1) to (0, 0) in the two-
dimensional lattice. Let G ((x, y), (x+ v1, y + v2)) denote the number of gap vectors (v1, v2)
starting at (x+ v1, y+ v2) and ending at (x, y) within all simple jump paths from (n+1, n+1)
to (0, 0). Then,

G ((x, y), (x+ v1, y + v2)) =

(
x+ y − 2

x− 1

)(
2n− v1 − v2 − x− y

n− v1 − x

)
. (3.2)

Proof. Because each di�erent arrangement of simple jump paths from (n + 1, n + 1) to (x +
v1, y + v2) and from (x, y) to (0, 0) contributes one to the number of gap vectors (v1, v2),
G ((x, y), (x+ v1, y + v2)) is given by the number of simple jump paths from (x, y) to (0, 0)
times the number of simple paths from (n+ 1, n+ 1) to (x+ v1, y + v2); see Figure 1.

Shifting the coordinates (x+ v1, y + v2) and (n+ 1, n+ 1) down to (0, 0) and (n− x− v1 +
1, n− y − v2 + 1) respectively, we obtain

G ((x, y), (x+ v1, y + v2)) = s2 (x, y) · s2 (n− x− v1 + 1, n− y − v2 + 1) . (3.3)

Applying Theorem 2.2,

G ((x, y), (x+ v1, y + v2)) =

(
x+ y − 2

x− 1

)(
2n− v1 − v2 − x− y

n− v1 − x

)
. (3.4)

�

Now, we determine the range of x, y in Lemma 3.1. If a gap vector (v1, v2) starts at (x +
v1, y + v2) and ends at (x, y), then it is clear that x, y ≥ 0. Because we are only considering
simple jump paths from (n+1, n+1) to (0, 0), the components of (x+v1, y+v2) cannot exceed
n+ 1. Thus, x ≤ n− v1 + 1 and y ≤ n− v2 + 1. Combining, we have 0 ≤ x ≤ n− v1 + 1 and
0 ≤ y ≤ n− v2 + 1.
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Figure 1. Set-up to compute the number of simple jump paths from (0, 0)
to (n+ 1, n+ 1) with a gap of (v1, v2) starting at (x, y). Counting the number
of such paths is the same as counting the number of paths in the bottom left
rectangle and multiplying by the number of paths in the top right.

Lemma 3.2. Recall that g (n+ 1; (v1, v2)) denotes the number of gap vectors (v1, v2) in all
simple jump paths starting from (n+ 1, n+ 1) and ending at (0, 0). Then,

g (n+ 1; (v1, v2)) = (2n− v1 − v2 − 1)

(
2n− v1 − v2 − 2

n− v1 − 1

)
+ 2

(
2n− v1 − v2

n− v1

)
. (3.5)

Proof. We study the three di�erent locations of (x, y), using Theorem 2.2:

(1) 1 ≤ x ≤ n− v1 and 1 ≤ y ≤ n− v2,
(2) x = 0 and y = 0,
(3) x = n− v1 + 1 and y = n− v2 + 1.

Note that it is impossible to have exactly one of x and y equal zero because then we cannot
legally move to (0, 0), where all paths end.

We �rst consider Case (1). By Lemma 3.1, the number of gap vectors (v1, v2) is given by

n−v1∑
x=1

n−v2∑
y=1

G ((x, y), (x+ v1, y + v2)) =

n−v1∑
x=1

n−v2∑
y=1

(
x+ y − 2

x− 1

)(
2n− v1 − v2 − x− y

n− v1 − x

)
. (3.6)

Shifting the index of x and y in the sum, the right side of (3.6) becomes

n−v1−1∑
x=0

n−v2−1∑
y=0

(
x+ y

x

)(
2n− v1 − v2 − x− y − 2

n− v1 − x− 1

)
. (3.7)

Letting p = n− v1 − 1 and q = n− v2 − 1, it is equivalent to calculate

p∑
x=0

q∑
y=0

(
x+ y

x

)(
p+ q − (x+ y)

p− x

)
. (3.8)
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In the sum, since 0 ≤ x ≤ p and 0 ≤ y ≤ q,
0 ≤ x+ y ≤ p+ q, (3.9)

so there are p + q + 1 di�erent values of x + y. We must prove, for each �xed value of x + y,
that

p∑
x=0

(
x+ y

x

)(
p+ q − (x+ y)

p− x

)
=

(
p+ q

p

)
, (3.10)

which follows immediately from Lemma 2.1. Note that not all terms in the left side of (3.10)
are necessarily nonzero because x cannot exceed x+ y.

Thus, the number of gap vectors (v1, v2) in Case (1) is

(p+ q + 1)

(
p+ q

p

)
= (2n− v1 − v2 − 1)

(
2n− v1 − v2 − 2

n− v1 − 1

)
. (3.11)

We now consider Case (2). When x = 0 and y = 0, the number of gap vectors (v1, v2)
equals the number of simple jump paths from (n+1, n+1) to (v1, v2). Shifting the coordinates
(n+ 1, n+ 1) and (v1, v2) down to (n+ 1− v1, n+ 1− v2) and (0, 0), respectively, the number
of gap vectors in this case (v1, v2) is just s2(n+ 1− v1, n+ 1− v2). Applying Theorem 2.2,

s2(n+ 1− v1, n+ 1− v2) =

(
2n− v1 − v2

n− v1

)
. (3.12)

Similarly, in Case (3), the number of gap vectors (v1, v2) is

s2(n+ 1− v1, n+ 1− v2) =

(
2n− v1 − v2

n− v1

)
. (3.13)

Summing up all three cases,

g (n+ 1; (v1, v2)) = (2n− v1 − v2 − 1)

(
2n− v1 − v2 − 2

n− v1 − 1

)
+ 2

(
2n− v1 − v2

n− v1

)
. (3.14)

�

Lemma 3.3. Recall that g2(n+1) denotes the number of gap vectors of all simple jump paths
from (n+ 1, n+ 1) to the origin. We have

g2 (n+ 1) =
(n
2
+ 1
)(2n

n

)
. (3.15)

We prove the lemma using two di�erent methods, in anticipation that perhaps one might
be more useful to future researchers trying to generalize to higher dimensions. The �rst proof
uses the mean of the number of steps in simple jump paths calculated in [6]; the second one
involves partitioning simple jump paths with regard to the number of gap vectors contained.

First Proof. Let µ2 (n+ 1) be the mean for the number of steps of all simple jump paths from
(n+ 1, n+ 1) to (0, 0), and s2(n+ 1) be the total number of simple paths from (n+ 1, n+ 1)
to (0, 0). By Lemma 3.1 in [6],

µ2 (n+ 1) =
n

2
+ 1 (3.16)

and

s2(n+ 1) =

(
2n

n

)
; (3.17)

it is here that we are using d = 2 because it is only when d ≤ 2 that we have simple formulas
for sd(n + 1), although with a more involved analysis similar results should be obtainable for
all d.
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Because in a simple jump path each step corresponds to a gap vector, their total count must
be equal, which gives

g2 (n+ 1) =
(n
2
+ 1
)(2n

n

)
. (3.18)

�

Second Proof. Not counting the starting point (n + 1, n + 1) and the ending point (0, 0), a
simple jump path from (n+ 1, n+ 1) to (0, 0) with i intermediate points contains (i+ 1) gap
vectors, which gives

g2 (n+ 1) =
n∑
i=0

(i+ 1)

(
n

i

)2

=

n∑
i=0

i

(
n

i

)2

+

n∑
i=0

(
n

i

)2

. (3.19)

(Again, we do not have these for general d). We use the following two standard binomial
identities, see for example [6]:

n∑
i=0

(
n

i

)2

=

(
2n

n

)
n∑
i=0

i

(
n

i

)2

=
n

2

(
2n

n

)
. (3.20)

Hence,

g2 (n+ 1) =
n

2

(
2n

n

)
+

(
2n

n

)
=

(n
2
+ 1
)(2n

n

)
. (3.21)

�

Now, we have all the tools to prove Theorem 1.3, because Lemmas 3.2 and 3.3 enable us to
compute the probability that a given gap vector is a speci�c value.

Proof of Theorem 1.3. Let P (n; v1, v2) denote the probability that a given gap vector is (v1, v2);
this is the number of gaps among all the legal paths that start at (0, 0) and end at (n+1, n+1),
divided by the number of gaps in all the legal paths1:

P (n; v1, v2) =
g (n+ 1; (v1, v2))

g2 (n+ 1)
. (3.22)

1What we are doing here is putting all the gaps in a giant bin, and seeing what fraction are (v1, v2). With
a more careful analysis, one should be able to prove results in the limit for the distribution of gaps for almost
all individual legal paths; this was done in the one-dimensional setting in [4, 12].
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Using Lemmas 3.2 and 3.3, we can simplify

P (n; v1, v2) =
(2n− v1 − v2 − 1)

(
2n−v1−v2−2
n−v1−1

)
+ 2
(
2n−v1−v2
n−v1

)
(n2 + 1)

(
2n
n

)
=

(2n−v1−v2−1)!
(n−v1−1)!(n−v2−1)! + 2 (2n−v1−v2)

(n−v1)(n−v2)
(2n−v1−v2−1)!

(n−v1−1)!(n−v2−1)!

(n2 + 1) (2n)!n!n!

=

(
1 + 2 (2n−v1−v2)

(n−v1)(n−v2)

)
(2n−v1−v2−1)!

(n−v1−1)!(n−v2−1)!

(n2 + 1) (2n)!n!n!

. (3.23)

As v1 and v2 are �xed,

lim
n→∞

(2n− v1 − v2)
(n− v1)(n− v2)

= 0, (3.24)

and thus,

lim
n→∞

P (n; v1, v2) = lim
n→∞

(2n−v1−v2−1)!
(n−v1−1)!(n−v2−1)!

(n2 + 1) (2n)!n!n!

. (3.25)

For u large, Stirling's approximation states that m! ≈
√
2πm(me )

m. We approximate the
factorials, and can safely drop the lower order error terms as we take the limit as n→∞. We
obtain

lim
n→∞

P (n; v1, v2) = lim
n→∞

(
2n−v1−v2−1

e

)2n−v1−v2−1 (n
e

)2n(
n−v1−1

e

)n−v1−1 (n−v2−1
e

)n−v2−1 (n
2 + 1

) (
2n
e

)2n
× (

√
2π)3
√
2n− v1 − v2 − 1(

√
n)2

(
√
2π)3
√
n− v1 − 1

√
n− v2 − 1

√
2n
. (3.26)

Because

lim
n→∞

√
2n− v1 − v2 − 1(

√
n)2

√
n− v1 − 1

√
n− v2 − 1

√
2n

= 1, (3.27)

the right side of (3.26) becomes

lim
n→∞

P (n; v1, v2) = lim
n→∞

(
2n−v1−v2−1

e

)2n−v1−v2−1 (n
e

)2n(
n−v1−1

e

)n−v1−1 (n−v2−1
e

)n−v2−1 (n
2 + 1

) (
2n
e

)2n
= lim

n→∞

e−1(2n− v1 − v2 − 1)2n−v1−v2−1(
n
2 + 1

)
22n(n− v1 − 1)n−v1−1(n− v2 − 1)n−v2−1

= lim
n→∞

2n− v1 − v2 − 1
n
2 + 1

e−1

2v1+v2+2

(
2n− v1 − v2 − 1

2n− 2v1 − 2

)n−v1−1
×
(
2n− v1 − v2 − 1

2n− 2v2 − 2

)n−v2−1
= lim

n→∞

2n− v1 − v2 − 1
n
2 + 1

e−1

2v1+v2+2

(
1 +

v1−v2+1
2

n− v1 − 1

)n−v1−1

×

(
1 +

v2−v1+1
2

n− v2 − 1

)n−v2−1
. (3.28)
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As

lim
x→∞

(
1 +

a

x

)x
= ea, (3.29)

we �nd

lim
n→∞

P (n; v1, v2) = lim
n→∞

2n− v1 − v2 − 1
n
2 + 1

e−1

2v1+v2+2
e

v1−v2+1
2 e

v2−v1+1
2

= lim
n→∞

2n− v1 − v2 − 1
n
2 + 1

1

2v1+v2+2
. (3.30)

Because

lim
n→∞

2n− v1 − v2 − 1
n
2 + 1

= 4, (3.31)

we obtain

lim
n→∞

P (n; v1, v2) = 4× 1

2v1+v2+2
=

1

2v1+v2
, (3.32)

which is clearly a bivariate geometric random variable. �

We have proved that the distribution of gap vectors converge to a geometric decay as the
lattice size goes to in�nity. We may now turn to an alternate de�nition of gaps, namely, the
gap sum. Recall De�nition 1.2, which states that a gap sum is the sum of components of the
corresponding gap vector. The proof for Theorem 1.4 follows immediately from Theorem 1.3.

Proof of Theorem 1.4. For a �xed n, let P (v) denote the probability that a given gap sum
equals v ≥ 2; note P (0) = P (1) = 0 as we must have both horizontal and vertical movement
in a step. Therefore, the smallest possible gap sum is 2. By Theorem 1.3, for each value v of
gap sum, all pairs (v1, v2) with v1 + v2 = v contribute equally. As 1 ≤ v1, v2 ≤ v− 1, there are
v− 1 such pairs (once v1 is chosen then v2 is determined), each pair occurring with probability
1/2v. Thus,

lim
n→∞

P (v) = (v − 1)

(
1

2

)v
, (3.33)

completing the proof. �

We remark on the di�culty in generalizing the above argument to arbitrary d. The problem
is Lemma 2.1; we are not aware of an analogue when d ≥ 3.

4. Future Work and Concluding Remarks

We end with some problems and comments for future research.

(1) Is there a way to generalize our analysis to the d-dimensional lattice?
(2) Do nice limits for the distribution of gap distances exist as they do for gap vectors and

gap sums?
(3) Can we obtain similar results in a d-dimensional compound path [15] with the three

de�nitions of gaps we set forth in this paper?
(4) Can we obtain similar results on the distribution of the longest gap in d-dimensional

simple paths and compound paths?

Because [6] was able to obtain Gaussian behavior for the distribution of summands for all d,
there is reason to be optimistic that a more involved analysis is possible and we could obtain
similar extensions for gaps. In that work however, the simple closed form expressions that
exist in two dimensions do not generalize, and combinatorial proofs and analysis are replaced
by more involved techniques. We have thus chosen here to concentrate on d ≤ 2, as this is
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already enough to see new behavior (i.e., previous problems never looked at the distribution
of vector valued quantities for gaps).

For the distribution of gap distances, we need to know not just what numbers are the sums
of two squares, but exactly which two squares sum up to the given number, as the probability
of a gap vector (v1, v2) is 1/2

v1+v2 . Thus, for small g, we can easily compute all pairs (v1, v2)
with v21 + v22 = g (it is easier to study the square of the gap distance because that is always an
integer). For large g, we would need advanced results from number theory on decompositions,
but these values will have negligibly small probabilities of occurring.

As [15] extended the results from [6] to compound paths through additional book-keeping
(especially more involved inclusion-exclusion arguments), with more work it is likely that the
gap results can be generalized to the compound setting as well.

Finally, we end with some results on the distribution of the longest gap. The one-dimensional
case is already known (see for example [18, 33]); it is essentially equivalent to the distribution
of the longest run of heads when tossing a fair coin. If we toss n fair coins, the expected value
of the longest run of heads is

log2 n+
γ

log 2
− 3

2
+ r1(n) + ε1(n), (4.1)

where γ is Euler's constant, |r1(n)| ≤ 0.000016, and ε1(n) tends to zero as n tends to in�nity.
Moreover, the distribution is strongly concentrated about the mean; the variance is

π2

6 log2 2
+

1

12
+ r2(n) + ε2(n), (4.2)

where r2(n) < 0.00006 and ε2(n) goes to zero as n tends to in�nity. Note the mean is approx-
imately log2 n and the variance is bounded independent of n.

It is easier to get results in the compound setting because the freedom to just move in one
direction allows us to view the two components of the vectors as independent. In other words,
if we wish to look at the length of the longest horizontal or vertical gap, it is essentially the
same as in the case of tossing fair coins; the only possible di�erence is we must end with a
`head', but at worst, that increases the length by one, which is negligible relative to log2 n.
We can thus immediately get decent bounds on the approximate size of the longest gap in the
compound case; the horizontal and vertical results give a lower bound, and adding the two (or
adding the two and taking a square root) provides an upper bound. More work is needed to
get results for simple paths, because there now is a dependence between the two motions (we
must have the same number of `heads' for each), but with some work it is likely that one could
obtain results that show log2 n is the right order of magnitude for the longest gap (or at least
that there is negligible probability of a longest gap of size nδ for any �xed δ > 0, and that the
longest gap is of size log logn).
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