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Abstract. We explore a gibonacci sum of polynomial products of order 3 and its Pell,
Jacobsthal, Vieta, and Chebyshev implications; and confirm the gibonacci and Jacobsthal
versions using graph-theoretic tools.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable, a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials, and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas

polynomial. Then fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 7, 9].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers Qn are given by
Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [7, 8].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x),
the nth Jacobsthal-Lucas polynomial [3, 7, 10]. Correspondingly, Jn = Jn(2) and jn = jn(2)
are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and
jn(1) = Ln.

Let a(x) = x and b(x) = −1. When z0(x) = 0 and z1(x) = 1, zn(x) = Vn(x), the nth
Vieta polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = vn(x), the nth Vieta-Lucas

polynomial [4, 7, 10].
Finally, let a(x) = 2x and b(x) = −1. When z0(x) = 1 and z1(x) = x, zn(x) = Tn(x), the

nth Chebyshev polynomial of the first kind ; and when z0(x) = 1 and z1(x) = 2x, zn(x) = Un(x),
the nth Chebyshev polynomial of the second kind [4, 7, 10].

1.1. Links Among the Subfamilies. The gibonacci, Jacobsthal, Vieta, and Chebyshev
subfamilies are closely related as Table 1 shows, where i =

√
−1 [4, 10, 13].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). We let gn = fn or ln, bn = pn or
qn, cn = Jn(x) or jn(x), dn = Vn or vn, and en = Tn or Un. Correspondingly, let Gn = Fn or
Ln, Bn = Pn or Qn, and Cn = Jn or jn.

Table 1. Relationships Among the Subfamilies

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)
Vn(2x) = Un−1(x) vn(2x) = 2Tn(x)
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A gibonacci polynomial product of order m is a product of gibonacci polynomials gn+k of

the form
∏

k

g
sj
n+k, where k is an integer and

∑

sj≥1
sj = m [5, 12]. For example, the Fibonacci

polynomial products f3
n+2, f

2
n+2fn, fn+2f

2
n, fn+2fnfn−2, f

3
n, and f2

nfn−2 are all of order 3,

where as fn+2f
3
nfn−2 is of order 5.

2. A Gibonacci Sum oF Polynomial Products of Order 3

The next theorem explores a sum of gibonacci polynomial products of order 3, and lays
the foundation for the discourse. The proof hinges on the addition formula [7] for gibonacci
polynomials gn:

gm+n = fm+1gn + fmgn−1.

Theorem 2.1. Let gn = fn or ln, and r, s, and t be positive integers. Then,

xgr+s+t = fr+1fs+1gt+1 + xfrfsgt − fr−1fs−1gt−1. (2.1)

Proof. Let gn = ln. We have

xfr+1ls+t = xfr+1(fs+1lt + fslt−1)

= fr+1fs+1(lt+1 − lt−1) + xfr+1fslt−1

= fr+1fs+1lt+1 − fr+1fs+1lt−1 + xfr+1fslt−1;

xfrls+t−1 = xfrl(s−1)+t

= xfr(fslt + fs−1lt−1)

= xfrfslt + xfrfs−1lt−1

= xfrfslt + (fr+1 − fr−1)fs−1lt−1

= xfrfslt − fr−1fs−1lt−1 + fr+1fs−1lt−1.

Then,

xlr+s+t = xlr+(s+t)

= x(fr+1ls+t + frls+t−1)

= (fr+1fs+1ft+1 + xfrfslt − fr−1fs−1lt−1)− fr+1fs+1lt−1 + fr+1lt−1(xfs + fs−1)

= fr+1fs+1lt+1 + xfrfslt − fr−1fs−1lt−1,

as desired.
The case gn = fn follows similarly (or by simply changing ln into fn in the above case). �

In particular, we have

xg2m+n = f2
m+1gn+1 + xf2

mgn − f2
m−1gn−1;

xg3n = f2
n+1gn+1 + xf2

ngn − f2
n−1gn−1; (2.2)

Gr+s+t = Fr+1Fs+1Gt+1 + FrFsGt − Fr−1Fs−1Gt−1; (2.3)

G2m+n = F 2
m+1Gn+1 + xF 2

mGn − F 2
m−1Gn−1;

G3n = F 2
n+1Gn+1 + xF 2

nGn − F 2
n−1Gn−1.

Identity (2.3) with Gn = Fn appears in [6].
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It follows from equation (2.2) that [9]

xf3n = f3
n+1 + xf3

n − f3
n−1;

xl3n = f2
n+1ln+1 + xf2

nln − f2
n−1ln−1 (2.4)

= fn+1f2n+2 + xfnf2n − fn−1f2n−2,

where we have used f2n = fnln.
Using the identity l2n −∆2f2

n = 4(−1)n [7], we can rewrite equation (2.4) in a more familiar
form [9], where ∆2 = x2 + 4:

x∆2l3n =
(

∆2f2
n+1

)

ln+1 +
(

∆2f2
n

)

xln −
(

∆2f2
n−1

)

ln−1

=
[

l2n+1 + 4(−1)n
]

ln+1 +
[

l2n − 4(−1)n
]

xln −
[

l2n−1 + 4(−1)n
]

ln−1

= l3n+1 + xl3n − l3n−1 + 4(−1)n(ln+1 − xln − ln−1)

= l3n+1 + xl3n − l3n−1,

as desired.
Thus [9],

g3n+1 + xg3n − g3n−1 =

{

xf3n, if gn = fn;

x∆2l3n, otherwise.

Next, we confirm identity (2.1) using graph-theoretic tools.

2.1. Graph-theoretic Confirmation. Consider the weighted digraph D1 in Figure 1 with

vertices v1 and v2. It follows by induction from its weighted adjacency matrix Q =

[

x 1
1 0

]

that

Qn =

[

fn+1 fn
fn fn−1

]

,

where n ≥ 1 [11]. The ijth entry of Qn gives the sum of the weights of all walks of length
n from vi to vj in the weighted digraph D1, where 1 ≤ i, j ≤ n. The sum of the weights
of closed walks of length n originating at v1 is fn+1 and that of those originating at v2 is
fn−1. So, the sum of all closed walks of length n in the digraph is fn+1 + fn−1 = ln. Because
fn+1 = xfn+fn−1, it follows that the sum of the weights of closed walks of length n originating
at v1 and beginning with a loop is xfn.

Figure 1. Weighted Fibonacci Digraph D1

With this brief background, we are now ready for the graph-theoretic proof.
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Proof.

Part 1. Suppose gn = fn. The sum S of the weights of closed walks v of length r + s+ t− 1
originating at v1 is fr+s+t; so xS = xfr+s+t. (This is indeed the sum of the weights of closed
walks of length r + s+ t originating at v1 and beginning with a loop.)

We will now compute xS in a different way.

Case 1. Suppose v begins with a loop. Using the addition formula, the sum of the weights of
such walks is

xfr+s+t−1 = xfr+(s+t−1)

= xfr+1fs+t−1 + xfrfs+t−2.

Case 2. Suppose v does not begin with a loop. The sum of the weights of such walks is

1 · 1 · fr+s+t−2 = fr+(s+t−2)

= fr+1fs+t−2 + frfs+t−3.

Combining the two cases, we have

S = (xfr+1fs+t−1 + xfrfs+t−2) + (fr+1fs+t−2 + frfs+t−3)

= fr+1(xfs+t−1 + fs+t−2) + fr(xfs+t−2 + fs+t−3)

= fr+1fs+t + frfs+t−1;

xS = xfr+1fs+t + xfrfs+t−1.

Notice that

xfr+1fs+t = xfr+1(fs+1ft + fsft−1)

= fr+1fs+1(ft+1 − ft−1) + xfr+1fsft−1

= fr+1fs+1ft+1 − fr+1fs+1ft−1 + xfr+1fsft−1;

xfrfs+t−1 = xfr(fsft + fs−1ft−1)

= xfrfsft + xfrfs−1ft−1

= xfrfsft + (fr+1 − fr−1)fs−1ft−1

= xfrfsft − fr−1fs−1ft−1 + fr+1fs−1ft−1.

Thus,

xS = (fr+1fs+1ft+1 + xfrfsft − fr−1fs−1ft−1)− fr+1fs+1ft−1 + fr+1ft−1(xfs + fs−1)

= fr+1fs+1ft+1 + xfrfsft − fr−1fs−1ft−1.

Equating the two values of xS, we get the desired result, as expected.

Part 2. Suppose gn = ln. The sum S of the weights of all closed walks of length r + s+ t in
the digraph is lr+s+t. Then, xS = xlr+s+t.

We will now compute xS in a different way. The sum of the weights of closed walks of
length r + s + t originating at v1 is fr+s+t+1, and those originating at v2 is fr+s+t−1. So,
S = fr+s+t+1 + fr+s+t−1.

By identity (2.1) with gn = ln, we then have

xS = xfr+s+(t+1) + xfr+s+(t−1)

= (fr+1fs+1ft+2 + xfrfsft+1 − fr−1fs−1ft) + (fr+1fs+1ft + xfrfsft−1 − fr−1fs−1ft−2)

= fr+1fs+1(ft+2 + ft) + xfrfs(ft+1 + ft−1)− fr−1fs−1(ft + ft−2)

= fr+1fs+1lt+1 + xfrfslt − fr−1fs−1lt−1.
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Equating the two values of xS yields the desired result. �

3. Pell Implications

Because pn(x) = fn(2x) and qn(x) = l(2x), it follows that identity (2.1) has Pell conse-
quences:

2xbr+s+t = pr+1ps+1bt+1 + 2xprpsbt − pr−1ps−1bt−1;

2Br+s+t = Pr+1Ps+1Bt+1 + 2PrPsBt − Pr−1Ps−1Bt−1;

2B3n = P 2
n+1Bn+1 + 2P 2

nBn − P 2
n−1Bn−1. (3.1)

Because Q2
n − 2P 2

n = (−1)n [7, 8], identity (3.1) can be rewritten as [9]

B3
n+1 + 2B3

n −B3
n−1 =

{

2B3n, if Bn = Pn;

4B3n, otherwise.

Next, we pursue the consequences of identity (2.1) to the Jacobsthal subfamily.

4. Jacobsthal Implications

Let gn = fn. Replace x with 1/
√
x in equation (2.1) and multiply the resulting equation

with x(r+s+t)/2. This yields

x(r+s+t)/2fr+s+t =
(

xr/2fr+1

)(

xs/2fs+1

)(

xt/2ft+1

)

+ x
[

x(r−1)/2fr

] [

x(s−1)/2fs

] [

x(t−1)/2ft

]

− x3
[

x(r−2)/2fr−1

] [

x(s−2)/2fs−1

] [

x(t−2)/2ft−1

]

;

Jr+s+t(x) = Jr+1(x)Js+1(x)Jt+1(x) + xJr(x)Js(x)Jt(x)− x3Jr−1(x)Js−1(x)Jt−1(x),

where fn = fn(1/
√
x).

On the other hand, let gn = ln. Replacing x with 1/
√
x in equation (2.1) and multiplying

the resulting equation with x(r+s+t)/2 yields

jr+s+t(x) = Jr+1(x)Js+1(x)jt+1(x) + xJr(x)Js(x)jt(x)− x3Jr−1(x)Js−1(x)jt−1(x).

Combining the two cases, we get

cr+s+t = Jr+1(x)Js+1(x)ct+1 + xJr(x)Js(x)ct − x3Jr−1(x)Js−1(x)ct−1. (4.1)

In particular, we have

c2m+n = J2
m+1(x)cn+1 + xJ2

m(x)cn − x3J2
m−1(x)cn−1;

c3n = J2
n+1(x)cn+1 + xJ2

n(x)cn − x3J2
n−1(x)cn−1;

Cr+s+t = Jr+1Js+1Ct+1 + 2JrJsCt − 8Jr−1Js−1Ct−1;

C2m+n = J2
m+1Cn+1 + 2J2

mCn − 8J2
m−1Cn−1;

C3n = J2
n+1Cn+1 + 2J2

nCn − 8J2
n−1Cn−1. (4.2)

Using j2n − 9J2
n = 4(−2)n [2, 7], we can rewrite identity (4.2) as follows [10]:

C3
n+1 + 2C3

n − 8C3
n−1 =

{

C3n, if Cn = Jn;

9C3n, otherwise.

Next, we present a graph-theoretic confirmation of identity (4.1).
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4.1. Graph-theoretic Proof. Consider the weighted digraph D2 in Figure 2 with vertices

v1 and v2. It follows from its weighted adjacency matrix M =

[

1 x
1 0

]

that

Mn =

[

Jn+1(x) xJn(x)
Jn(x) xJn−1(x)

]

.

Figure 2. Jacobsthal Digraph D2

The sum of the closed walks of length n from v1 to itself is Jn+1(x), and that from v2 to
itself is xJn−1(x). Consequently, the sum of the weights of all closed walks of length n is
Jn+1(x) + xJn−1(x) = jn(x) [7]. These facts play a central role in the graph-theoretic proof.
Proof. (In the interest of brevity and clarity, we omit the argument in the functional notation,
when there is no confusion.)

Part 1. Suppose cn = Jn(x). The sum S of the weights of closed walks w of length r+s+ t−1
that originate at v1 is Jr+s+t. We will now compute S in a different way.

Case 1. Suppose w begins with a loop. The sum of the weights of such walks is

1 · Jr+s+t−1 = Jr+(s+t−1)

= Jr+1Js+t−1 + xJrJs+t−2.

Case 2. Suppose w does not begin with a loop. The sum of the weights of such walks is

x · 1 · Jr+s+t−2 = xJr+(s+t−2)

= x(Jr+1Js+t−2 + xJrJs+t−3)

= xJr+1Js+t−2 + x2JrJs+t−3.

Thus,

S = (Jr+1Js+t−1 + xJrJs+t−2) + (xJr+1Js+t−2 + x2JrJs+t−3)

= Jr+1(Js+t−1 + xJs+t−2) + xJr(Js+t−2 + xJs+t−3)

= Jr+1Js+t + xJrJs+t−1.

Notice that

Jr+1Js+t = Jr+1(Js+tJt + xJr+1JsJt−1)

= Jr+1Js+1(Jt+1 − xJt−1) + xJr+1JsJt−1

= Jr+1Js+1Jt+1 − xJr+1Js+1Jt−1 + xJr+1JsJt−1;

xJrJs+t−1 = xJr(JsJt + xJs−1Jt−1)

= xJrJsJt + x2JrJs−1Jt−1

= xJrJsJt + x2(Jr+1 − xJr−1)Js−1Jt−1)

= xJrJsJt − x3Jr−1Js−1Jt−1 + x2Jr+1Js−1Jt−1.
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Thus,

S = (Jr+1Js+1Jt+1 + xJrJsJt − x3Jr−1Js−1Jt−1)− xJr+1Js+1Jt−1 + xJr+1Jt−1(Js + xJs−1)

= Jr+1Js+1Jt+1 + xJrJsJt − x3Jr−1Js−1Jt−1.

Equating the two values of S gives the desired result.

Part 2. Suppose cn = jn(x). The sum S of the weights of all closed walks of length r + s+ t
in the digraph is jr+s+t.

We will now compute S in a different way. The sum S of the weights of closed walks of
length r+s+t−1 originating at v1 is Jr+s+t+1, and that of those originating at v2 is xJr+s+t−1.
Then, by identity (4.1) with cn = Jn(x), we have

S = Jr+s+(t+1) + xJr+s+(t−1)

= (Jr+1Js+1Jt+2 + xJrJsJt+1 − x3Jr−1Js−1Jt)

+ x(Jr+1Js+1Jt + xJrJsJt−1 − x3Jr−1Js−1Jt−2)

= Jr+1Js+1(Jt+2 + xJt) + xJrJs(Jt+1 + xJt−1)− x3Jr−1Js−1(Jt + xJt−2)

= Jr+1Js+1jt+1 + xJrJsjt − x3Jr−1Js−1jt−1.

This, coupled with the earlier value of S, yields the desired result. �

Finally, we explore the Vieta and Chebyshev consequences of identity (2.1).

5. Vieta and Chebyshev Implications

Using the gibonacci-Vieta and Vieta-Chebyshev relationships in Table 1, we can extract
the Vieta and Chebyshev counterparts of identity (2.1); in the interest of brevity, we omit the
basic algebra:

Vr+1Vs+1dt+1 − xVr(x)Vs(x)dt + Vr−1(x)Vs−1(x)dt−1 =

{

xdr+s+t, if dn = Vn;

xdr+s+t, otherwise;

Ur+1Us+1et+1 − 2xUrUset + Ur−1Us−1et−1 =

{

2xer+s+t+2, if en = Un;

2xer+s+t+2, otherwise.
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