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Abstract. In this paper, we prove that the variant semi-Fibonacci sequence satisfies a p-
similarity property for a number of different primes p. The case p = 3 explains an empirical
observation of Neil Sloane about the growth rate of the sequence. Taking p = 3 and p = 5
together, we show that the sequence is aperiodic modulo any integer n > 2.

1. Introduction

There have been a number of papers devoted to integer sequences that are self-similar or
fractal in nature (see [2, 3, 4] and the references within). In addition, Michael Gilleland
has compiled a list of self-similar sequences in the Online Encyclopedia of Integer Sequences
(OEIS) [1]. There is no consensus about terminology so, I introduce the following definitions.

Definition 1.1. S is m-self-similar if for all n > 0, S(mn) = S(n).

Definition 1.2. S is m-similar if for every N , there exists an n ≥ 0 such that for k, 0 < k <

N , S(n+ k) = mS(k).

For instance, the Thue-Morse sequence (A010060 in the OEIS) is 2-self-similar, the number
of integer-sided right triangles with hypotenuse n (A046080) is p-self-similar for all p 6≡ 1
(mod 4), and Gould’s sequence (A001316) is 2-self-similar and 2-similar. In this paper, we
will examine a sequence that is p-similar for many different values of p. This self-similarity,
however, is far from obvious, and we do not know for which values of p the sequence is p-similar
(though we suspect the answer is all of them).

The semi-Fibonacci sequence (A030067) is defined by

a(1) = 1, a(2n) = a(n), a(2n + 1) = a(2n− 1) + a(2n).

Now, consider the sequence defined by

b(1) = 1, b(2n) = b(n),

b(2n+ 1) =

{

b(2n− 1)− b(2n), if b(2n − 1)− b(2n) > 0;

b(2n− 1) + b(2n), otherwise.

This is called the variant semi-Fibonacci sequence (A109671) due to Eric Angelini. The
OEIS has a slightly different definition, namely that b(2n+1) is the smallest positive number
such that |b(2n + 1) − b(2n − 1)| = b(n). Hence, b(2n + 1) = b(2n − 1) − b(n), if that is
positive; and otherwise, b(2n + 1) = b(2n− 1) + b(n). Because b(n) = b(2n), these definitions
are equivalent and for our purposes, it is more convenient to use the former.

Note that a and b are 2-self-similar by definition. The sequence a has another kind of self-
similarity — it remains the same when the first occurrence of every number is removed — but
this will not be discussed further. As for b, here are its first 31 terms:

1 1 2 1 1 2 3 1 2 1 1 2 3 3 6 1 5 2 3 1 2 1 1 2 3 3 6 3 3 6 9.
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The underlined segments hint at the 3-similarity of b. The proof of 3-similarity is inductive,
but the key difficulty is to prove that the first term of each segment is indeed a 3 (the same
goes for general p). This is hard because the terms of b between segments behave in an
unpredictable way. Right before a segment begins, b becomes predictable due to a focusing
effect.

Using p-similarity for two different primes p (we choose 3 and 5 in Section 4 but any pair
of twin primes for which b is p-similar would work), we prove that the generating function of
b is not rational and that b is aperiodic modulo n for all n > 2. We also examine the growth
rate of b and the set of numbers appearing in b. Finally, we prove part of a conjecture of Neil
Sloane.

2. Preliminary Results

Lemma 2.1. If S is m1-self-similar and m2-self-similar, then S is m1m2-self-similar. If S is

m1-similar and m2-similar, then S is m1m2-similar.

Proof. For the first part, we have S(m1m2n) = S(m2n) = S(n). For the second part, let
n2 satisfy S(n2 + k) = m2S(k) for 0 < k < N and n1 satisfy S(n1 + k) = m1S(k) for
0 < k < n2 +N . Then,

S(n1 + n2 + k) = m1S(n2 + k) = m1m2S(k)

for 0 < k < N . �

Remark 2.2. Every sequence S is 1-self-similar and 1-similar and so, the set of n for which

S is n-self-similar is a multiplicative monoid, as is the set of n for which S is n-similar.

Proposition 2.3. For all n ≥ 0,

b(3n + 1) ≡ b(3n+ 2) ≡ b(3n + 3) + 1 ≡ 1 (mod 2).

Proof. We use induction. Suppose that for all m, 0 ≤ m < n, b(3m + 1) ≡ b(3m + 2) ≡ 1
(mod 2), and b(3m+ 3) ≡ 0 (mod 2). We now divide the proof into cases.

Case 1: n is odd. We can then write n as 2m+ 1. Then,

b(3n+ 1) = b(3(2m + 1) + 1) = b(6m+ 4) = b(3m+ 2),

which is odd, and

b(3n + 3) = b(3(2m+ 1) + 3) = b(6m+ 6) = b(3m+ 3)

is even. Also, b(3n) is even, so b(3n + 2) = b(3n)± b(3n + 1) is odd.

Case 2: n is even. We can then write n as 2m. Then,

b(3n + 2) = b(3(2m) + 2) = b(6m+ 2) = b(3m+ 1),

which is odd. Because b(3n− 1) is odd and b(3n) is even, b(3n+1) = b(3n− 1)± b(3n) is odd.
Finally, b(3n+ 3) = b(3n + 1)± b(3n + 2) is even.

The base case is n = 0. Then, b(1) = b(2) = 1 and b(3) = 2. �

Remark 2.4. By parity, there is no n such that b(n) = b(n+ 1) = b(n+ 2).

Remark 2.5. The sequence b is not n-similar for any even n as otherwise, b would contain

arbitrarily long strings of even numbers, whereas we know that b does not even have two

consecutive even numbers.
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3. Focusing

Definition 3.1. A focusing sequence S is a sequence of positive integers such that for every

n > 0, 2S(n)− 2 ≤
∑n−1

i=1 S(i).

Remark 3.2. The maximal focusing sequence is described by the recurrence

S(n) = ⌊
2 +

∑n−1
i=1 S(i)

2
⌋ = ⌈

1 +
∑n−1

i=1 S(i)

2
⌉,

which is the definition of A005428 in the OEIS.

Remark 3.3. If S is a focusing sequence, 0 < S(1) ≤
∑0

i=1 S(i)+2
2 = 1 so S(1) = 1. Similarly,

0 < S(2) ≤
∑1

i=1 S(i)+2
2 = 3

2 so S(2) = 1 as well.

Lemma 3.4. Let S be a focusing sequence. Let T satisfy T (1) = 1, T (2n) = S(n), and

T (2n + 1) = T (2n− 1)± T (2n) > 0. Then, T is a focusing sequence.

Proof. Let n > 2. Suppose that for all 0 < m < n,

2T (m)− 2 ≤

m−1
∑

i=1

T (i).

We divide the proof into cases.

Case 1: n is even. Then,

2T (n)− 2 = 2S
(n

2

)

− 2 ≤

n
2
−1

∑

i=1

S(i) =

n
2
−1

∑

i=1

T (2i) <

n−1
∑

i=1

T (i).

Case 2: n is odd and T (n) = T (n− 2)− T (n− 1). Then, T (n− 2) > T (n) so we have

2T (n)− 2 < 2T (n− 2)− 2 ≤

n−3
∑

i=1

T (i) <

n−1
∑

i=1

T (i).

Case 3: n is odd, T (n) = T (n− 2) + T (n− 1), and T (n− 2) ≥ T (n− 1). Then,

n−3
∑

i=1

T (i) ≥ 2T (n− 2)− 2

so

n−1
∑

i=1

T (i) ≥ 2T (n− 2)− 2 + T (n− 2) + T (n− 1)

≥ 2T (n− 2) + 2T (n− 1)− 2 = 2T (n)− 2.

Case 4: n is odd, T (n) = T (n− 2) + T (n− 1), and T (n− 2) < T (n− 1). Then,

2T (n− 1)− 2 = 2S
(n− 1

2

)

− 2 ≤

n−1
2

−1
∑

i=1

S(i)
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so

n−1
∑

i=1

T (i) ≥ T (n− 1) + T (n− 2) +

n−1
2

−1
∑

i=1

T (2i)

= T (n) +

n−1
2

−1
∑

i=1

S(i) ≥ T (n) + 2T (n− 1)− 2

> T (n) + T (n− 1) + T (n− 2)− 2 = 2T (n)− 2.

Since

2T (1) − 2 = 0 ≤

0
∑

i=1

T (i)

and

2T (2)− 2 = 2S(1) − 2 = 0 ≤
1

∑

i=1

T (i)

by Remark 3.3, the result follows by induction. �

Theorem 3.5. For some n ≡ 0 (mod 3), let S be defined by S(k) = b(n − k) for all k,

0 < k < n. Let T be defined as T (k) = b(2n − k) for all k, 0 < k < 2n. If S is a focusing

sequence, then so is T .

Proof. Set b′(1) = 1, and for k > 1, recursively define

b′(k) =

{

b′(k − 1)− S(n+ 1− k), if b′(k − 1)− S(n+ 1− k) > 0;

b′(k − 1) + S(n+ 1− k), otherwise.

We now show that for all 0 < k ≤ n, b′(k) = b(2k−1). Assume that b′(k−1) = b(2(k−1)−1)
for some k > 1. By the definition of S,

S(n+ 1− k) = b(k − 1) = b(2k − 2)

so

b′(k) =

{

b(2(k − 1)− 1)− b(2(k − 1)), if b(2(k − 1)− 1)− b(2(k − 1)) > 0;

b(2(k − 1)− 1) + b(2(k − 1)), otherwise.

= b(2(k − 1) + 1) = b(2k − 1).

The base case is k = 1. Then, b′(1) = 1 = b(1) = b(2k − 1). Therefore for all k > 0,
b′(k) = b(2k − 1).

Next, we prove that

b′(k) ≤
n−k
∑

i=1

S(i) + 2

for 0 < k < n+ 1. Assume that for 1 < k < n+ 1,

b′(k − 1) ≤

n+1−k
∑

i=1

S(i) + 2.

If

b′(k) = b′(k − 1) + S(n+ 1− k),
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then
S(n + 1− k) ≥ b′(k − 1)

and so

b′(k) ≤ 2S(n + 1− k) ≤
n−k
∑

i=1

S(i) + 2

because S is a focusing sequence. If

b′(k) = b′(k − 1)− S(n+ 1− k),

then

b′(k) = b′(k − 1)− S(n+ 1− k) ≤
n+1−k
∑

i=1

S(i) + 2− S(n+ 1− k) =
n−k
∑

i=1

S(i) + 2.

The base case is k = 1. Since

b′(1) = 1 <

n−1
∑

i=1

S(i) + 2,

the proposition holds for all k < n+ 1 by induction. In particular,

b′(n) ≤
0

∑

i=1

S(i) + 2 = 2.

Since b′(n) = b(2n − 1) and 2n − 1 ≡ 2 (mod 3), b′(n) is odd by Proposition 2.3. Thus,
T (1) = b′(n) = 1. Also,

T (2k) = b(2(n − k)) = b(n− k) = S(k)

and

T (2k − 1) = b(2(n − k) + 1) = b(2(n − k)− 1)± b(2(n − k)) = T (2k + 1)± T (2k),

so
T (2k + 1) = T (2k − 1)± T (2k).

Thus by Lemma 3.4, T is a focusing sequence. �

Corollary 3.6. Let S be a focusing sequence defined by S(k) = b(n− k) for all k, 0 < k < n,

for some n ≡ 0 (mod 3). For j > 0, let nj = 2jn and let Tj be defined as Tj(k) = b(nj − k)
for all k, 0 < k < nj . Then, Tj is a focusing sequence.

Proof. Because n ≡ 0 (mod 3), nj = 2jn ≡ 0 (mod 3). The corollary follows by repeated
application of Theorem 3.5. �

Definition 3.7. For prime p, B(p), when it exists, is the smallest positive integer such that

1. The sequence starting with b(B(p) − 1) and going backward to b(1) is a focusing se-

quence.

2. b(B(p)) = p− 1, b(B(p) + 1) = p, b(B(p) + 2) = p, and b(B(p) + 3) = 2p.

Remark 3.8. B(2) does not exist, because if it did, then using Remark 3.3,

b(B(2)− 2) = b(B(2) − 1) = b(B(2)) = 1.

That, however, would violate Remark 2.4. It would also violate Remark 2.5.

Remark 3.9. Since p 6= p − 1 ± p, B(p) ≡ 0 (mod 2). By Remark 3.8, p is odd. Thus,

b(B(p)) ≡ 0 (mod 2) so B(p) ≡ 0 (mod 3).
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Remark 3.10. For j ≥ 0, b(2jB(p)) = b(2j−1B(p)) = · · · = b(20B(p)) = p− 1.

Lemma 3.11. For j ≥ −1, b(2jB(p) + 1) = p.

Proof. Let j > −1. By Corollary 3.6 (which we can use because B(p) is divisible by 3 by
Remark 3.9), b(2jB(p)− 1) is the first term of a focusing sequence and therefore, equal to 1.
By Remark 3.10, b(2jB(p)) = p− 1. Since 1− (p− 1) = 2− p ≤ 0, we have b(2jB(p)+ 1) = p.

For j = −1, 2jB(p)+1 is an integer because B(p) is even by Remark 3.9. Thus, b(B(p)
2 +1) =

b(B(p) + 2) = p. �

Lemma 3.12. Let j > −1 and let p be such that B(p) exists. Assume that b(2j−1B(p)+ k) =
pb(k) for all 0 < k < 2j+1. For all 0 < k < 2j+2, b(2jB(p) + k) = pb(k).

Proof. Let c(k) = b(2jB(p)+k)
p

for 0 < k < 2j+2. Suppose there exists 0 < j′ < j + 2 such that

for all k < 2j
′

, c(k) = b(k). Then for all 0 < k < 2j
′

,

c(2k) =
b(2jB(p) + 2k)

p
=

b(2j−1B(p) + k)

p
=

pb(k)

p
= b(k) = c(k)

and

c(2k + 1) =
b(2jB(p) + 2k + 1)

p

=

{

b(2jB(p)+2k−1)−b(2jB(p)+2k)
p

, if b(2jB(p)+2k−1)−b(2jB(p)+2k)
p

> 0;
b(2jB(p)+2k−1)+b(2jB(p)+2k)

p
, otherwise.

=

{

c(2k − 1)− c(2k), if c(2k − 1)− c(2k) > 0;

c(2k − 1) + c(2k), otherwise.

By Lemma 3.11, c(1) = 1. Therefore, c satisfies the same recursive property of b. Thus,

c(k) = b(k) for all k < 2j
′+1. Because j′ = 1 satisfies the required property, the lemma follows

by induction. �

Lemma 3.13. For all j ≥ −1, 0 < k < 2j+2, and p for which B(p) exists, b(2jB(p) + k) =
pb(k).

Proof. The base case is j = −1. Then 0 < k < 2, so k = 1. Indeed, b(2jB(p) + 1) = p = pb(k)
by Lemma 3.11. The result follows by induction, using Lemma 3.12. �

Corollary 3.14. If B(p) exists, then b is p-similar.

Proof. Given N , take j = ⌈log2 N⌉ − 2 and n = 2jB(p). When k < N , k < 2⌈log2 N⌉ = 2j+2.
Hence, b(n+ k) = pb(k) by Lemma 3.13. �

Remark 3.15. We note that B(3) = 12. By Lemma 3.13, b(12 · 2n + m) ≡ 0 (mod 3) for

all 0 < m < 2n+2. Thus, b(3 · 2n + m) ≡ 0 (mod 3) for all 0 < m < 2n. For p 6= 3,
b(B(p) + 1) = p 6≡ 0 (mod 3), so 2 · 2k − 2 < B(p) < 3 · 2k for some k. Additionally, B(p) ≡ 0
(mod 6). Thus, we can refine our bound to 2 ·2k < B(p) ≤ 3 ·2k for all p, including 3. Clearly

k = ⌈log2B(p)⌉ − 2. It is easy to check that there is no n ≤ 8 such that

b(n) = b(n+ 1)− 1 = b(n + 2) − 1 =
b(n+ 3)− 2

2
.

Therefore, B(p) > 8 and k ≥ 2.
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Theorem 3.16. For all N ≥ −1, 0 < m < 2N+2, n ≥ 0, and p for which B(p) exists,

b(2N
(B(p)(2n(⌈log2 B(p)⌉−2) − 1)

2⌈log2 B(p)⌉−2 − 1

)

+m) = pnb(m).

Proof. Let k = ⌈log2B(p)⌉ − 2. By Remark 3.15, k ≥ 2 and B(p) ≤ 3 · 2k. Therefore,

j−1
∑

i=0

2kiB(p) ≤ 3 ·

j−1
∑

i=0

2k(i+1) = 3 · 2kj
j−1
∑

i=0

( 1

2k

)i

= 3 · (2kj
∞
∑

i=0

( 1

2k

)i

− 2kj
∞
∑

i=j

( 1

2k

)i

)

≤ 3 · (2kj
∞
∑

i=0

(1

4

)i

− 2kj
∞
∑

i=j

( 1

2k

)i

)

< 3 · (2kj
∞
∑

i=0

(1

4

)i

− 2kj
( 1

2k

)j

) = 3 · (2kj
4

3
− 1) = 2kj+2 − 3.

That means that
∑j−1

i=0 2
kiB(p) ≤ 2kj+2 − 4. It follows that

2N
j−1
∑

i=0

2kiB(p) +m < 2N
(

j−1
∑

i=0

2kiB(p) + 4
)

≤ 2N (2kj+2 − 4 + 4) = 2N2kj+2.

Applying Lemma 3.13 repeatedly,

b(2N
(B(p)(2n(⌈log2 B(p)⌉−2) − 1)

2⌈log2 B(p)⌉−2 − 1

)

+m) = b(2N2k(n−1)B(p) + 2N
n−2
∑

i=0

2kiB(p) +m)

= pb(2N2k(n−2)B(p) + 2N
n−3
∑

i=0

2kiB(p) +m)

= p2b(2N2k(n−3)B(p) + 2N
n−4
∑

i=0

2kiB(p) +m)

= · · ·

= pn−1b(2NB(p) +m) = pnb(m).

�

A natural question to ask is when B(p) exists. A computer search up to 1,000,000,000 yields
the following results (plugging in N = −1 and m = 1 to Theorem 3.16 to get the formula).
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p B(p) Formula for pn Formula’s Growth Rate

3 12 b
(

6·(22n−1)
3 + 1

)

= 3n n
log 3

log 4

5 2268 b
(

1134·(210n−1)
1023 + 1

)

= 5n n
log 5

log 1024

7 20340 b
(

10170·(213n−1)
8191 + 1

)

= 7n n
log 7

log 8192

11 302688 b
(

151344·(217n−1)
131071 + 1

)

= 11n n
log 11

log 131072

13 283776 b
(

141888·(217n−1)
131071 + 1

)

= 13n n
log 13

log 131072

17 1074128 b
(

537064·(219n−1)
524287 + 1

)

= 17n n
log 17

log 524288

19 672960 b
(

336480·(218n−1)
262143 + 1

)

= 19n n
log 19

log 262144

23 263280 b
(

131640·(217n−1)
131071 + 1

)

= 23n n
log 23

log 131072

29 22051824 b
(

11025912·(223n−1)
8388607 + 1

)

= 29n n
log 29

log 8388608

31 2748912 b
(

1374456·(220n−1)
1048575 + 1

)

= 31n n
log 31

log 1048576

37 67416576 b
(

33708288·(225n−1)
33554431 + 1

)

= 37n n
log 37

log 33554432

41 36846720 b
(

18423360·(224n−1)
16777215 + 1

)

= 41n n
log 41

log 16777216

43 166979328 b
(

83489664·(226n−1)
67108863 + 1

)

= 43n n
log 43

log 67108864

47 163571136 b
(

81785568·(226n−1)
67108863 + 1

)

= 47n n
log 47

log 67108864

53 89536512 b
(

44768256·(225n−1)
33554431 + 1

)

= 53n n
log 53

log 33554432

59 269850624 b
(

134925312·(227n−1)
134217727 + 1

)

= 59n n
log 59

log 134217728

61 274435008 b
(

137217504·(227n−1)
134217727 + 1

)

= 61n n
log 61

log 134217728

71 569617920 b
(

284808960·(228n−1)
268435455 + 1

)

= 71n n
log 71

log 268435456

89 703549056 b
(

351774528·(228n−1)
268435455 + 1

)

= 89n n
log 89

log 268435456

97 272467968 b
(

136233984·(227n−1)
134217727 + 1

)

= 97n n
log 97

log 134217728

101 22129536 b
(

11064768·(223n−1)
8388607 + 1

)

= 101n n
log 101

log 8388608

137 551375712 b
(

275687856·(228n−1)
268435455 + 1

)

= 137n n
log 137

log 268435456

4. Applications

Proposition 4.1. The generating function f(x) =
∑∞

i=1 b(i)x
i is not a rational function.

Proof. Suppose f(x) = P (x)
Q(x) for polynomials P (x) and Q(x). Let Q(x) = c0 + c1x + c2x

2 +

· · ·+ cqx
q be of degree q and P (x) be of degree p. Let j be such that 2j+2 > q and 12 · 2j > p.

Let n = 12 · 2j . By Lemma 3.13, b(n+ k) = 3b(k) for all k, 0 < k < q < 2j+2. Looking at the
xn+q term of the equation f(x)Q(x) = P (x), we have

c0b(n+ q) + c1b(n+ q − 1) + · · ·+ cqb(n) = 0.
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Then,

b(n) = −
c0

cq
b(n+ q)− · · · −

cq−1

cq
b(n+ 1) = 3(−

c0

cq
b(q)− · · · −

cq−1

cq
b(1)).

Notice also that b(n) = b(12) = b(B(3)) = 2. Dividing both sides of the equation by 3, we
have

2

3
= −

c0

cq
b(q)− · · · −

cq−1

cq
b(1).

Now, let m = 2268 · 2j . By Lemma 3.13, b(m + k) = 5b(k) for all k, 0 < k < q < 2j+2.
Looking at the xm+q term of the equation f(x)Q(x) = P (x), we have

c0b(m+ q) + c1b(m+ q − 1) + · · ·+ cqb(m) = 0.

Then,

b(m) = −
c0

cq
b(m+ q)− · · · −

cq−1

cq
b(m+ 1) = 5(−

c0

cq
b(q)− · · · −

cq−1

cq
b(1)).

Also, notice that b(m) = b(2268) = b(B(5)) = 4. Dividing both sides of the equation by 5, we
have

4

5
= −

c0

cq
b(q)− · · · −

cq−1

cq
b(1) =

2

3
,

which is a contradiction. �

Lemma 4.2. For all N ≥ −1, n > 0, and p for which B(p) exists,

b(2N
(B(p)(2n(⌈log2 B(p)⌉−2) − 1)

2⌈log2 B(p)⌉−2 − 1

)

) = pn − pn−1.

Proof. Let k = ⌈log2B(p)⌉ − 2. Since B(p) ≤ 3 · 2k < 2k+2,

b(2N
(B(p)(2nk − 1)

2k − 1

)

) = b
(B(p)(2nk − 1)

2k − 1

)

= b
( B(p)

2k − 1
(2k(2(n−1)k − 1) + 2k − 1)

)

= b
(

2k
B(p)(2(n−1)k − 1)

2k − 1
+B(p)

)

= pn−1b(B(p))

= pn − pn−1

by Theorem 3.16. When N = −1, the same reasoning holds because B(p) is even. �

Proposition 4.3. If b is eventually periodic modulo m > 1, then m = 2.

Proof. Suppose that b has minimum period k modulo m. We know that there exists some A

such that for all n ≥ A, b(n + k) ≡ b(n) (mod m). Let

k1 = 2A+k 12(2
2ϕ(m) − 1)

3
.

By Lemma 4.2 and Theorem 3.16 (plugging in p = 3, N = A + k, and n = ϕ(m)), b(k1) =
2 · 3ϕ(m)−1 and for all 0 < j ≤ k < 2A+k+2, we have b(k1 + j) = 3ϕ(m)b(j). Let

k2 = 2A+k 2268(2
10ϕ(m) − 1)

1023
.
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By Lemma 4.2 and Theorem 3.16 (plugging in p = 5, N = A + k, and n = ϕ(m)), b(k2) =

4·5ϕ(m)−1, and for all 0 < j ≤ k < 2A+k+2, we have b(k2+j) = 5ϕ(m)b(n). By Euler’s theorem,

b(k1 + j) ≡ 3ϕ(m)b(j) ≡ b(j) ≡ 5ϕ(m)b(j) ≡ b(k2 + j) (mod m).

Setting j = k,

b(k1 + k) ≡ b(k1) ≡ 2 · 3ϕ(m)−1 ≡
2

3
3ϕ(m) ≡

2

3
≡ b(k2 + k)

≡ b(k2) ≡ 4 · 5ϕ(m)−1 ≡
4

5
5ϕ(m) ≡

4

5
(mod m)

using b’s periodicity. Cross-multiplying, we have 10 ≡ 12 (mod m). Hence, m = 2. �

Proposition 4.4. For all n > 0,

b(2n − 1) =

{

2 · 3
n−2
2 , if n is even;

3
n−1
2 , otherwise.

Proof. Plugging in N = −1, m = 1, and p = 3 to Theorem 3.16 and simplifying, we get
b(22n+1 − 1) = 3n. Plugging in N = 0, m = 3, and p = 3 to Theorem 3.16 and simplifying, we
get b(22n+2 − 1) = 2 · 3n. �

Neil Sloane conjectured in the OEIS [5] that the values at 2n−1 are those given by Proposi-
tion 4.4 and that these are the record values of the sequence. The second part seems plausible
based on how much quicker the rate of growth is for 3 than for the other primes. However,
this remains open.

Do all positive integers appear in b? All the numbers from 1 to 10,000 appear among its
first 1,000,000,000 terms. (The smallest that does not is 14,732.) Because b is p-similar for 3,
5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 89, 97, 101, and 137, we know
(by Lemma 2.1) that if n has a prime factorization consisting only of these primes, then n

appears in b (b is n-similar). If B(p) were proven to exist for all odd primes, all odd numbers
would thus be guaranteed to appear in b. We may extend the definition of B to odd composite
numbers. Just because b is n-similar does not mean that B(n) exists. However, if B(n) existed
for all odd numbers, then b(B(2m+ 1)) = 2m, so all positive integers would appear in b.
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