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Abstract. The p-adic valuation of an integer x is the highest power of the prime p dividing
x. This work discusses the p-adic valuation of a sequence of numbers {en}, defined in terms
of the Fibonacci polynomials Fn(x).

1. Introduction

The Fibonacci numbers Fn are defined by the recurrence Fn = Fn−1 + Fn−2, with initial
conditions F0 = 0 and F1 = 1. The extension of this sequence to polynomials, the so-called
Fibonacci polynomials are defined by

Fn(x) = xFn−1(x) + Fn−2(x), for n ≥ 3, (1.1)

with initial conditions F1(x) = 1 and F2(x) = x. These are polynomials with positive integer
coefficients.

Divisibility properties of Fn appear in Lengyel [4]. For a prime p, the highest power of p that
divides n ∈ N is called the p-adic valuation of n and it is denoted by νp(n). The valuations of
the Fibonacci sequence are expressed in terms of α(k), the smallest value of n ≥ 1 such that
k divides Fn. This value is connected to π(k), the smallest period of the sequence Fn mod k.
For instance, it is known that α(k) divides π(k) [8, Theorem 3].

Theorem 1.1 (Lengyel, [4]). For n ≥ 1,

ν2(Fn) =











ν2(n) + 2, if n ≡ 0 mod 6;

1, if n ≡ 3 mod 6;

0, if n ≡ 1, 2, 4, 5 mod 6,

(1.2)

ν5(Fn) = ν5(n), and for a prime p 6= 2, 5,

νp(Fn) =

{

νp(n) + νp(Fα(p)), if α(p) |n;

0, if α(p) 6 |n.
(1.3)

Arithmetic properties of νp(Fn) have been described in [5] in terms of regular sequences,
a concept introduced by Allouche and Shallit [2, 1]. For k ≥ 2, the k-kernel of a sequence
{a(n)}n≥0 is the set of subsequences

{{a(ken+ i)}n≥0 : e ≥ 0, 0 ≤ i ≤ ke − 1}. (1.4)

A sequence is k-regular if the Z-module generated by its k-kernel is finitely generated. The
rank of this Z-module is called the rank of the sequence. An example of the results in [5] is
Theorem 1.2.

Theorem 1.2. Let p be a prime p ≡ 1, 4 mod 5 such that νp(Fα(p)) = 1. Then, {νp(Fn+1)}n≥0

is a p-regular sequence of rank at most p. Moreover, for p 6= 2, 5, the rank is conjectured to

be α(p) + 1.
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The goal of this note is to analyze a related sequence of numbers, defined by

en =

∫ ∞

0
Fn(x)e

−x dx. (1.5)

The first few values {1, 1, 3, 8, 31, 147, 853, 5824} are found in the site OEIS (developed by
N. Sloane) as entry A003470.

The central question discussed here concerns the sequence of p-adic valuations {νp(en) : n ∈
N}. Here, p is a prime and νp(x) is the highest power of p dividing the integer x. The analysis
of νp(en) proceeds as follows: for n ∈ N, consider first the sequence {en}modulo the prime p. If
en 6≡ 0 mod p, then νp(en) = 0. It is shown that {en mod p} is periodic with period length 2p.
Therefore, as a first step, one only needs to compute the values {e1 mod p, . . . , e2p mod p}.
The last term is special and e2p ≡ 0 mod p for every prime p. The valuation νp(e2p) is 1

for almost every prime. The condition

p−1
∑

j=0

(−1)jj!2 6≡ 0 mod p guarantees this. Among the

first 50000 odd primes, p25 = 97 is the only case where this condition fails. For this prime,
ν97(e194) = 2. Now, consider the remaining indices j ∈ {1, 2, . . . , 2p − 1} and say that j is a
root if ej ≡ 0 mod p. Assume j1 is such a root, then if n ≡ j1 mod p, it follows that νp(en) ≥ 1,
because en ≡ 0 mod p. In the second step, consider the p indices n ≡ j1 mod p2. Those indices
n with en 6≡ 0 mod p2 satisfy en ≡ 0 mod p and en 6≡ 0 mod p2; therefore, νp(en) = 2. This
process is continued for higher powers of the prime p. The main result is that at every level
of a branch, there is a single vertex where the valuation is not determined. Moreover, this
property is determined by a single congruence modulo p. The number of branches modulo p
remains an open question.

The coefficients {en} are expressed from the well-known formula

Fn(x) =

⌊n−1

2
⌋

∑

j=0

(

n− j − 1

j

)

xn−2j−1, (1.6)

which produces

en =

⌊n−1

2
⌋

∑

j=0

(n − j − 1)!

j!
. (1.7)

This shows that en is actually a positive integer.

The first result is an alternative expression for en.

Proposition 1.3. The numbers en are given by

e2n+1 =

n
∑

j=0

(2n − j)!

j!
=

n
∑

j=0

(n+ j)!

(n− j)!
(1.8)

and

e2n =

n−1
∑

j=0

(2n − j − 1)!

j!
=

n−1
∑

j=0

(n+ j)!

(n− j − 1)!
. (1.9)

Proof. The first expression in (1.8) and (1.9) comes from (1.7). To obtain the second formula,
reverse the order of summation. �
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Note 1.1. Observe that the term in e2n is

(n+ j)!

(n− j − 1)!
= (n+ j)(n + j − 1) · · · (n− j + 1)(n − j). (1.10)

Combining the terms in (1.10), one from each end, gives the form

(n+ j)!

(n− j − 1)!
= n

j
∏

ℓ=1

(

n2 − ℓ2
)

. (1.11)

Similarly, the term in e2n+1 is written as

(n+ j)!

(n− j)!
= n(n+ j)

j−1
∏

ℓ=1

(

n2 − ℓ2
)

. (1.12)

The coefficients {en} are now given in terms of the products P (n, j) defined by P (n, 0) = 1

and P (n, j) =

j
∏

ℓ=1

(

n2 − ℓ2
)

. Then,

e2n = n

n−1
∑

j=0

P (n, j) (1.13)

and

e2n+1 = 1 + n

n
∑

j=1

(n+ j)P (n, j − 1). (1.14)

Observe that P (n, j) = 0 for j ≥ n.

Note 1.2. Corollary 3.3 shows that {en mod m} is a periodic sequence with fundamental
period of length 2m. In particular, for p prime, the sequence has period 2p. The analysis
below will determine properties of the valuations νp(en) when n 6≡ 0 mod p. The special case
of νp(e2p) is discussed first.

The coefficient e2p is given by

e2p =

p−1
∑

j=0

(p+ j)!

(p− j − 1)!
. (1.15)

The general term in the sum is written as

(p+ j)!

(p− j − 1)!
= (p+ j)(p + j − 1) · · · (p+ 1)p(p − 1) · · · (p− j) (1.16)

and this gives

e2p
p

=

p−1
∑

j=0

(p+ j)(p + j − 1) · · · (p+ 1)× (p− 1) · · · (p− j). (1.17)

Now, consider the right side modulo p to obtain Proposition 1.4.

Proposition 1.4. Let p be a prime. Assume

β(p) =

p−1
∑

j=0

(−1)jj!2 mod p (1.18)
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is nonzero modulo p. Then νp(e2p) = 1. Among the first 50000 odd primes, this conditions
fails only for p = 97. In this case, ν97(e194) = 2.

Section 2 presents a variety of recurrences satisfied by {en}. Section 3 presents analytic
formulas for the valuations νp(en) for small primes p. These are defined as the highest power
of p dividing en. There is an interesting representation of {νp(en)}, appearing for the first
time at p = 7. This is discussed in detail in Section 3.

2. Recurrences

This section presents some recurrences satisfied by the numbers en. Applications to modular
properties of these numbers are discussed in later sections.

Theorem 2.1. The sequence {en} satisfies the recurrence

en = (n− 1)en−1 − en−2 + 1− (−1)n, (2.1)

with initial conditions e1 = e2 = 1.

Proof. The proof is done by a small variation of the WZ-method [6, 7]. Define

F (n, k) =
(n− k − 1)!

k!
and G(n, k) =

(n− k)!

k!
, (2.2)

so that en =

⌊n−1

2
⌋

∑

k=0

F (n, k). Now, check that

F (n+ 2, k)− (n+ 1)F (n + 1, k) + F (n, k) = G(n− 1, k) −G(n− 1, k − 1). (2.3)

In the usual application of the WZ-method, the next step is to sum over all integer values of
k. In this case, because the sums are finite and cannot be extended in a natural manner to
infinite sums, the boundary terms have to be addressed. Summing from k = 1 to n = ⌊n−1

2 ⌋
gives

n
∑

k=1

F (n+ 2, k) − (n+ 1)

n
∑

k=1

F (n + 1, k) +

n
∑

k=1

F (n, k) = G(n− 1, n)−G(n − 1, 0). (2.4)

This is now written in terms of en =

n
∑

k=0

F (n, k). The formulas are divided according to the

parity of n.
Assume first that n is even. Then, n = n/2− 1 and n+ 2 = n/2. Therefore,

n
∑

k=1

F (n+ 2, k) =

n/2−1
∑

k=1

F (n+ 2, k)

= −F (n+ 2, 0) +
n+2
∑

k=0

F (n+ 2, k) − F (n+ 2, n/2)

= en+2 − (n+ 1)!− n/2− 1.

Similarly,
n
∑

k=1

F (n+ 1, k) = en+1 − n!− 1 and
n
∑

k=1

F (n, k) = en − (n− 1)! (2.5)

and (2.4) gives en−(n−1)en−1+en−2 = 0. The case n is odd is treated in the same manner. �
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The recurrence (2.1), with n− 2 instead on n, gives an expression for en−2. Replacing it in
(2.1) gives a second form of this recurrence.

Corollary 2.2. The sequence en satisfies the recurrence

en = (n − 1)en−1 − (n− 3)en−3 + en−4, (2.6)

with e1 = e2 = 1, e3 = 3, and e4 = 8.

The WZ-method used above also produces recurrences for the subsequences {e2n} and
{e2n−1}.

Theorem 2.3. The sequence T1,n = e2n+1 satisfies the recurrence

(n+ 1)T1,n+2 − (2n + 3)(2n2 + 6n+ 3)T1,n+1 + (n+ 2)T1,n = 2(2n + 3) (2.7)

and T2,n = e2n satisfies

(2n+ 1)T2,n+2 − 2(n + 1)(4n2 + 8n + 1)T2,n+1 + (2n+ 3)T2,n = 2(2n + 1)(2n + 3). (2.8)

3. The p-adic Valuations of the Sequence {en}

This section begins the discussion on prime factorization of the sequence {en}. These
properties are expressed in terms of the p-adic valuation of en, the highest power of p that
divides en.

Using the expressions for e2n and e2n+1 in (1.13) and (1.14), the next result gives {en}
modulo m as sums of at most m terms.

Lemma 3.1. Suppose n ≡ n′ mod m. Then,

e2n ≡ n′
m
∑

j=0

P (n′, j) mod m, (3.1)

e2n+1 ≡ 1 + n′
m
∑

j=1

(n′ + j)P (n′, j − 1) mod m.

Proof. From P (n, j) =

j
∏

ℓ=1

(n2−ℓ2), it follows that P (n, j) ≡ P (n′, j) mod m, if n ≡ n′ mod m.

The result follows from P (n, j) ≡ 0 mod m for j ≥ m. �

Example 3.2. Lemma 3.1 reduces the computation of en mod m terms. For example, if
n ≡ 4 mod 6, then n′ = 4 and

e2n = e2(6k+4) ≡ 4

6
∑

j=0

P (4, j) = 5824 ≡ 4 mod 6. (3.2)

These congruences will be used to determine divisibility properties of {en}. In the case above,
e2n is congruent to 4 modulo 6, so it is not divisible by 3; that is, ν3(e2(6k+4)) = 0.

Corollary 3.3. The sequence {en mod m} is periodic of length 2m.

Proof. This follows directly from Lemma 3.1, and (1.13) and (1.14). �

Corollary 3.4. For a prime p, we have e2p−j ≡ (−1)j+1e2p+j mod p.
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Proof. Theorem 2.1 implies that 1 = e1 ≡ e2p+1 ≡ 2pe2p−e2p−1+2 mod p, which demonstrates
that e2p−1 ≡ 1 mod p. Similarly, it can be shown that 1 = e2 ≡ e2p+2 ≡ −e2p−2 mod p.
Theorem 2.1 also can be used to establish

e2p+j+2 ≡ (j + 1)e2p+j+1 − e2p+j + 1− (−1)j+2,

e2p−j−2 ≡ −(j + 1)e2p−j−1 − e2p−j + 1− (−1)j+2.

The result follows by induction. �

The rest of the section is devoted to producing closed-form expressions for the p-adic valu-
ations of {en} for small primes p.

3.1. The 2-adic Valuation. The next result gives the 2-adic valuation of en.

Theorem 3.5. For n ∈ N,

ν2(en) =



















0, if n 6≡ 0 mod 4;

3, if n ≡ 4 mod 8;

6, if n ≡ 8 mod 16;

ν2(n) + 4, if n ≡ 0 mod 16.

(3.3)

Proof. Because {en mod 2} is periodic of period 4, the table

n 1 2 3 4
en mod 2 1 1 1 0

shows that ν2(en) = 0, if n 6≡ 0 mod 4. Now, assume n ≡ 0 mod 4. Then (1.13), with n = 2k,
gives

e2k
k

≡

m
∑

j=0

P (k, j) mod m. (3.4)

For n ≡ 4 mod 8, that is, k ≡ 2 mod 4, one finds k2 ≡ 4 mod 16. Therefore, P (k, 2) ≡
0 mod 16. The relation (3.4) now reduces to

e2k
k

≡ P (k, 0) + P (k, 1) = 4 mod 16. (3.5)

It follows that ν2(e2k) = ν2(k) + 2 = 3, because k ≡ 2 mod 4. The last case is decided in the
same form. �

3.2. The 3-adic Valuation. The 3-adic valuation of {en} is determined next. The sequence
{en mod 3} is periodic with periodic pattern {1, 1, 0, 2, 1, 0}, so that ν3(en) is 0, unless n ≡
0 mod 3. In the remaining cases, ν3(en) ≥ 1. Assume first n ≡ 3 mod 6, and write n = 2k+1
with k ≡ 1 mod 3. Then P (k, 1) ≡ 0 mod 9, producing e2k+1 ≡ 1+k·(k+1)P (k, 0) ≡ 1+k(k+
1) mod 9. For k ≡ 1, 4, or 7 mod 9, this yields e2k+1 ≡ 3 mod 9. It follows that ν3(en) = 1,
if n ≡ 3 mod 6. In the remaining case, n ≡ 0 mod 6, write n = 2k with k ≡ 0 mod 3. Then,
k2 ≡ 0 mod 9, so that P (k, 3) ≡ 0 mod 9. Therefore,

e2k
k

≡ P (k, 0) + P (k, 1) + P (k, 2) ≡ 4 mod 9.

This gives ν3(en) = ν3(k) = ν3(n). These results are summarized next.
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Theorem 3.6. For n ∈ N,

ν3(en) =











ν3(n), if n ≡ 0 mod 6;

0, if n ≡ 1, 2, 4, 5 mod 6;

1, if n ≡ 3 mod 6.

(3.6)

3.3. The 5-adic Valuation. The 5-adic valuation ν5(en) is determined as in the previ-
ous two cases. The sequence n 6= 0 mod 10 is periodic of period 10 with periodic pattern
{1, 1, 3, 3, 1, 2, 3, 4, 1, 0}. Thus, en is divisible by 5, only when n ≡ 0 mod 10. In this
case, write n = 2k with k ≡ 0 mod 5. Then k2 ≡ 0 mod 25, so that P (k, 5) = 0 and

e2k
k

≡

4
∑

j=0

P (k, j). It follows that e2k/k ≡ 19 mod 25, establishing the next statement.

Theorem 3.7. For n ∈ N,

ν5(en) =

{

ν5(n), if n ≡ 0 mod 10;

0, if n 6≡ 0 mod 10.
(3.7)

4. The 7-adic Valuation and the Difference Function ∆

This section describes the 7-adic valuation ν7(en). For this prime, there is no finite analytic
expression for ν7(en) in terms of ν7(n), as in the case of previous primes. The sequence
{ν7(en)} is represented here by an infinite tree, with specific branching rules. The discussion
begins with some elementary statements.

Lemma 4.1. Assume n 6≡ 0, 6, 8 mod 14. Then, ν7(en) = 0.

Proof. The value en mod 7 is a periodic sequence of period 14, with fundamental period

{1, 1, 3, 1, 3, 0, 6, 0, 3, 6, 3, 6, 1, 0}. (4.1)

Therefore, en 6≡ 0 mod 7, if n 6≡ 0, 6, 8 mod 14 and the statement follows from here. �

Lemma 4.2. Assume n ≡ 0 mod 14. Then, ν7(en) = ν7(n).

Proof. An argument similar to the one used in the case p = 3 or p = 5 gives this result. The
details are omitted. �

The discussion now concentrates on indices of the form n ≡ 6 mod 14. The analysis for
n ≡ 8 mod 14 is similar.

Experimental results. The statements below come from a Mathematica experiment:

ν7(e6+14n) =

{

≥ 2, if n ≡ 0 mod 7;

1, if n 6≡ 0 mod 7.
(4.2)

Now, consider indices of the form 6+2·72n, coming from the indices where the valuation has
not been determined yet. The experimental data described above show that ν7(e6+2·72n) ≥ 2.
The index n is split according to its residue modulo 7. More symbolic experiments give

ν7(e6+2·72n) =

{

≥ 3, if n ≡ 3 mod 7;

2, if n 6≡ 3 mod 7;
(4.3)
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that may be written as

ν7(e6+2·3·72+2·73n) ≥ 3, (4.4)

ν7(e6+2·a·72+2·73n) = 2 if a ∈ {0, 1, 2, 4, 5, 6}.

The next step is to consider indices of the form 6 + 2 · 3 · 72 + 2 · 73n and again split n in
residue classes modulo 7. The data show that there is a single exceptional modular class for
which the valuation is at least 4. All the other classes have valuation 3. This process continues
indefinitely; a proof is presented below. At each level, there is a unique class whose valuation
is not determined, creating an infinite branching tree. The sequence {ν7(en)} has similar
characteristics to the 2-adic valuation of the Stirling numbers of the second kind discussed in
[3].

The proof of the statement above requires some preliminary results on the relation

e2k
k

≡

m
∑

j=0

P (k, j) mod m (4.5)

given in Lemma 3.1. Because we are interested in indices of the form 14n+ 6, define

α1,n =
e2(3+7n)

3 + 7n
mod 72, (4.6)

and use (4.5) to produce the table

n 0 1 2 3 4 5 6
α1,n 0 · 7 2 · 7 4 · 7 6 · 7 1 · 7 3 · 7 5 · 7

Because e2(3+7·0) is the only element divisible by 72, split the indices of the form 2(3 + 7 ·

0 + 72n) according to the value n mod 7 and consider the expression

α2,n =
e2(3+7·0+72n)

3 + 7 · 0 + 72n
mod 73. (4.7)

Again, (4.5) gives the table

n 0 1 2 3 4 5 6
α2,n 1 · 49 3 · 49 5 · 49 0 · 49 2 · 49 4 · 49 6 · 49

Note that in each table, the values are increasing by 2 · 7r for an appropriate value of r.
We will show that the number 2 is an invariant for p = 7 and n = 6, and that this pattern
continues at every level of the tree for p = 7. At this point it is useful to consider first the
more general situation where 7 is replaced by a prime p ≥ 7. From (1.13), it follows that

e2n+2c

n+ c
−

e2n
n

=

n+c−1
∑

j=0

[P (n+ c, j) − P (n, j)] , (4.8)

recalling that P (m, j) = 0 for j ≥ m. For a fixed prime p, introduce the notation

∆(n, j, r) = P (n+ pr, j)− P (n, j) (4.9)

to write (4.8) as

e2n+2pr

n+ pr
−

e2n
n

=

n+c−1
∑

j=0

∆(n, j, r). (4.10)

In what follows, Lemmas 4.3 to 4.7 lead to the definition of a function δp(n), which is
independent of both r and j. This function allows us to fully describe the tree structure and
explains the patterns seen in the experimental data above for p = 7.
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Lemma 4.3. The function ∆(n, j, r) satisfies the recurrence

∆(n, j, r) = (n2 − j2)∆(n, j − 1, r) + pr(2n + pr)P (n + pr, j − 1), (4.11)

with initial condition ∆(n, 0, r) = 0.

Proof. The relation P (n, j) = (n2 − j2)P (n, j − 1) gives

∆(n, j, r) = P (n+ pr, j) − P (n, j)

= ((n + pr)2 − j2)P (n + pr, j − 1)− (n2 − j2)P (n, j − 1)

= (n2 − j2) (P (n+ pr, j − 1)− P (n, j − 1)) + (2npr + p2r)P (n+ pr, j − 1)

= (n2 − j2)∆(n, j − 1, r) + pr(2n+ pr)P (n+ pr, j − 1),

as claimed. �

Lemma 4.4. For n, j, r ∈ N, the congruence ∆(n, j, r) ≡ 0 mod pr holds. This implies

P (n+ pr, j) ≡ P (n, j) mod pr.

Proof. Use induction on j and the statement of Lemma 4.3. �

Because ∆(n, j, r) is divisible by pr, it is convenient to define

∆p(n, j) =
∆(n, j, r)

pr
mod p. (4.12)

Although this function appears to depend on r, the next result demonstrates that the value
of ∆p(n, j) is independent of r.

Lemma 4.5. The function ∆p(n, j) satisfies the recurrence

∆p(n, j) ≡ (n2 − j2)∆p(n, j − 1) + 2nP (n, j − 1) mod p, (4.13)

with ∆p(n, 0) = 0.

Proof. This follows directly from Lemma 4.3. �

Lemma 4.6. Let p be prime and n < p. Then for j ≥ max(n, p−n), the equation ∆p(n, j) ≡
0 mod p holds. In particular, ∆p(n, j) = 0 when j ≥ p.

Proof. First consider n ≤ p−1
2 , so that n < p − n < p. The value P (n, n) = 0 in recurrence

(4.13) yields

∆p(n, n + 1) ≡ (n2 − (n+ 1)2)∆p(n, n) mod p. (4.14)

Iterating this relation for j ≥ n+ 1 gives

∆p(n, j) ≡
(

n2 − (n+ 1)2
) (

n2 − (n+ 2)2
)

· · ·
(

n2 − j2
)

∆p(n, n) mod p. (4.15)

The last factor is 0 when j = p− n. This shows that ∆p(n, j) = 0 for j ≥ p− n.

The argument is similar for n ≥ p+1
2 , beginning with P (n, p−n) = 0, so that equation 4.15

holds for j ≥ p− n. Then ∆p(n, j) = 0 for j ≥ n. �

The identity

e2(n+pr)

n+ pr
−

e2n
n

=

n−1+pr
∑

j=0

∆(n, j, r), (4.16)
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is now considered modulo pr+1. The periodicity of {en mod pr} shows that

n−1+pr
∑

j=0

∆(n, j, r) ≡ 0 mod pr. (4.17)

Therefore, (4.16) produces

1

pr

(

e2(n+pr)

n+ pr
−

e2n
n

)

≡

n−1+pr
∑

j=0

∆p(n, j) mod p. (4.18)

Lemma 4.6 shows that the sum could be stopped at j = p; that is Lemma 4.7.

Lemma 4.7. For n ∈ N, p prime, and r ∈ N,

1

pr

(

e2(n+pr)

n+ pr
−

e2n
n

)

≡

p
∑

j=0

∆p(n, j) mod p. (4.19)

Note: The expression on the right of (4.19) depends only on n and p. Introduce the notation

δp(n) =

p
∑

j=0

∆p(n, j) mod p. (4.20)

Naturally, 0 ≤ δp(n) < p, and this value is independent of r.

Lemma 4.8. For n, j, r ∈ N and p prime,

e2n+2jpr

n+ jpr
−

e2n
n

≡ δp(n)jp
r mod pr+1. (4.21)

Proof. The result follows from (4.19) and a telescoping argument. The details are omitted. �

The previous results are illustrated in the case p = 7.

Step 1. The sequence {en mod 7} is periodic with fundamental period

{1, 1, 3, 1, 3, 0, 6, 0, 3, 6, 3, 6, 1, 0}.

Therefore ν7(n) = 0, if n 6≡ 0, 6, 8 mod 14. This is Lemma 4.1.

Step 2. The algorithm requires the value of δ7(3). A direct computation of the values for
0 ≤ j ≤ 3 (noting that ∆7(n, j) = 0 for j ≥ 4) gives

δ7(3) =

3
∑

j=0

∆7(3, j) = 0 + 6 + 1 + 2 ≡ 2 mod 7. (4.22)

Step 3. Consider the numbers of the form e6+14j . Because e6+14j ≡ 0 mod 7, it follows that
ν7(e2(3+7j)) ≥ 1. The identity (4.21) becomes

e2(3+j7r)

3 + j7r
≡

e6
3

+ 2j · 7r mod 7r+1. (4.23)

Now, take r = 1. Then,
e2(3+7j)

3 + 7j
≡ 49 + 14j ≡ 14j mod 72. (4.24)

Because ν7(e2(3+2j)) ≥ 1, dividing (4.24) by 7 produces

e2(3+7j)

7(3 + 7j)
≡ 2j mod 7. (4.25)
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Because gcd(2, 7) = 1, there is a unique index j ∈ {0, 1, . . . , 6} such that
2j ≡ 0 mod 7; namely j = 0. Then, if j 6= 0,

e2(3+7j)

7(3 + 7j)
6≡ 0 mod 7, (4.26)

and this implies ν7(e2(3+7j)) ≤ 1. This proves (4.2).

Step 4. Relation (4.21), with r = 2 gives

e2(3+72j)

3 + j · 72
=

e6
3

+ δ7(3)j · 7
2 mod 73, (4.27)

which reduces to
e2(3+j·72)

72(3 + j · 72)
≡ 1 + 2j mod 7. (4.28)

Because gcd(2, 7) = 1, there is a unique value of j such that 1 + 2j ≡ 0 mod 7. Solving this
congruence gives j ≡ 3 mod 7. This proves (4.3).

This process may be continued indefinitely, because the condition for finding the unique
choice of index j, depends on the value δ7(3) = 2 6≡ 0 mod 7.

The algorithm presented in the previous example extends to other primes. The statement
of Theorem 4.12 requires some nomenclature.

Definition 4.9. Let p ≥ 3 be prime and {xn} a sequence of positive integers. The sequence of
valuations νp(xn) is said to have a tree structure if there is a finite subsetR = {r1, r2, . . . , rm} ⊂
N and each element r ∈ R has a tree associated with it, called tree associated to the vertex

a and denoted by Tp(r). This tree has a root, vertices arranged according to levels, and each
vertex v ∈ Tp(r) is assigned a collection of natural numbers, called the index set of the vertex
and denoted by Ip(v). A vertex v ∈ Tp(r) is called terminal if the p-adic valuation of xn has
the same value for each n ∈ In(v); otherwise, the vertex is called nonterminal.

The construction of the tree proceeds as follows:

1. For r ∈ R, the root of Tp(r) is r. This single vertex forms the 0th level of Tp(r). The index
set associated with the root is Ip(r) = {n ∈ N : n ≡ r mod 2p}.

2. If the root r is a nonterminal vertex, then level 1 has p vertices, formed by the p congruence
classes of r modulo 2p2. The vertices at this level are labeled {v1,0, v1,1,, . . . , v1,p−1}. For
j1 ∈ {0, 1, . . . , p − 1}, the index set of v1,j1 is the collection of numbers congruent to r + 2pj1
modulo 2p2. Note that such numbers are also, of necessity, congruent to r modulo 2p.

3. The branch of the tree corresponding to terminal vertices of level 1 stops at this level. Any
branch corresponding to a nonterminal vertex, say v1,j1 , is split into p new vertices. The index
set of these new vertices is the collection of numbers congruent to r + 2j1p + 2j2p

2 modulo
2p3, where j2 varies over {0, 1, . . . , p− 1}. These numbers are also congruent to r modulo 2p
and to r + 2j1p modulo 2p2. All these new vertices form the second level of the tree.

4. The next levels of the tree are constructed following the rules described in 3., increasing
the power of the prime p in the modularity condition.

For every p, νp(e2p) > 0. The trees Tp(r) with r 6= 2p are the internal branches in the tree
structure for {νp(en)}.

Definition 4.10. Let p be a prime and {xn} a sequence whose valuations {νp(xn)} have a
tree structure. This structure is called simple if every internal branch Tp(r) has the following
property: every level has a single nonterminal vertex.
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Example 4.11. For p = 7, there are three classes modulo 14 that serve as roots: 6, 8, and
14. The first level of the tree T7(6) has six terminal vertices, corresponding to index sets
{6 + 14n : n 6≡ 0 mod 7}. The valuation of these vertices is always 1. The second level also
has six terminal vertices, with valuations 2, corresponding to {6 + 2 · 72n : n 6≡ 3 mod 7}.
This pattern continues indefinitely.

Theorem 4.12. Let p be an odd prime. For r ∈ N, define

∆p(n, j; r) =
P (n+ pr, j) − P (n, j)

pr
mod p, (4.29)

and

δp(n) =

p
∑

j=0

∆p(n, j; r). (4.30)

Then δp(n) mod p is independent of r. Assume the condition δp(n) 6≡ 0 mod p. Then, the

sequence of valuations {νp(e2a)} has a simple tree structure with roots in the set

P(a) = {a ∈ {1, 2, . . . , p − 1} : e2a ≡ 0 mod p} . (4.31)

Example 4.13. For p = 7, there are two internal branches to consider, with roots at r = 2 · 3
and r = 2 · 4. Because δ7(3) = 2 and δ7(4) = 5 are nonzero modulo 7, the sequence {νp(e2n)}
has a simple tree structure.

Example 4.14. A similar result holds for the sequence νp(e2a+1). It can be shown that

1

pr
(

e2(n+pr)+1 − e2n+1

)

=

p
∑

j=1

n(n+ j)∆p(n, j) +

p
∑

j=1

(2n + j)P (n, j − 1) mod p.

The right side does not depend on r, so we may name this quantity δ′p(n). Then,

e2(n+j·pr)+1 ≡ e2n+1 + j · δ′p(n) · p
r mod p.

If δ′p(n) 6= 0 mod p, then the sequence of valuations {νp(e2a+1)} has a simple tree structure.

For example, e13 is congruent to 0 mod 23 and congruent to 23 · 14 mod 232, meaning that
r = 13 = 2 · 6 + 1 is a root for p = 23. It can be shown that δ′23(6) = 21, so that e13+46j ≡
e13 +23 · 21j ≡ 23(14+21j) mod 232. Because 21 and 23 are relatively prime, there is exactly
one value of j between 0 and 22 for which e13+46j ≡ 0 mod 232. As it turns out, when j = 7,
we get e335 ≡ 0 mod 232. Because δ′p(n) is independent of r, the same pattern continues at
each level of the tree, where exactly one branch does not terminate.

Recall that for a prime p, the roots of the branches are in the set {1, 2, . . . , 2p − 1}. The
primes p < 50 and their corresponding branches are indicated below. The condition δp(n) 6≡
0 mod p is satisfied in all these cases. Therefore, there is a simple tree structure in each of
these cases.
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p Roots of Branches
7 6, 8
11 10, 12
13 8, 12, 14, 18
23 13, 33
29 22, 36
31 5, 28, 29, 30, 32, 33, 34, 57
37 16, 58
41 11, 71
43 26, 60
47 10, 27, 67, 84

Note that if j is the root of a branch, then so is 2p − j.

Problem. Is it true that if the valuation {νp(e2n)} has internal branches, then its tree structure
must be simple? In other words, if νp(en) > 0 for some n ∈ {1, 2, . . . , 2p− 1}, must it be true
that δp(n) 6≡ 0 mod p?
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