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Abstract. Let F0 and F1 be sets of natural numbers with even and odd sums of digits of
their Zeckendorf representation. Suppose Fi,j(X) = ]{n < X : n ∈ Fi, n+ 1 ∈ Fj}. We prove
asymptotic formulas for Fi,j(X).

1. Introduction

Let n be a natural number, and

n =
∞∑
k=0

nk2
k,

with nk ∈ {0, 1}, be the binary representation of n. Suppose

N0 = {n : n ∈ N,
∞∑
i=0

ni ≡ 0 (mod 2)},

and
N1 = N \ N0.

The sets Ni were first studied by Gelfond [2], who proved the uniform distribution of numbers
from these sets in arithmetic progressions.

Later, many interesting results about Ni were proved. For example, Eminyan [1] proved the
following result.

Theorem 1.1. Let Ni,j(X) be the number of the natural solutions of the equation n−m = 1,
n,m ≤ X, n ∈ Ni, m ∈ Nj, i, j = 0, 1. Then,

Ni,j(X) =
X

6
+O(logX),

if i = j, and

Ni,j(X) =
X

3
+O(logX),

if i 6= j.

Now, consider the sequence of Fibonacci numbers {Fk}: F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk
and recall that any natural n has Zeckendorf representation [6]

n =

∞∑
k=2

fkFk,

where fk ∈ {0, 1}, fkfk+1 = 0, and fk = 0 for k ≥ k0(n). An analogue of Gelfond’s result for
the Zeckendorf representation was proved in [3]. Our goal is to prove an analogue of Eminyan’s
result.
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2. Main Result

Consider the sets

F0 = {n : n ∈ N,
∞∑
k=0

fk ≡ 0 (mod 2)} and F1 = N \ F0.

Let Fi,j(X) be the number of the natural solutions of the equation n −m = 1, n,m ≤ X,
n ∈ Fi, m ∈ Fj , i, j = 0, 1. In other words,

Fi,j(X) = #{n < X : n ∈ Fi, n+ 1 ∈ Fj}.
Our main result is the following theorem.

Theorem 2.1. For i = j, we have

Fi,j(X) =

√
5

10
X +O(logX). (2.1)

For i 6= j, we have

Fi,j(X) =
5−
√

5

10
X +O(logX). (2.2)

Assume

ε(n) =

{
1, n ∈ F0;
−1, n ∈ F1.

Then, it is easy to see that

Fi,j(X) =
∑
n≤X

(−1)iε(n) + 1

2

(−1)jε(n+ 1) + 1

2
. (2.3)

Define two sums: S1(X) =
∑

0≤n<X ε(n), and S2(X) =
∑

0≤n<X ε(n)ε(n+ 1).

Lemma 2.2. For S1(X), the following estimate holds.

S1(X) = O(logX). (2.4)

Lemma 2.3. For S2(X), the following asymptotic formula holds.

S2(X) =
2
√

5− 5

5
X +O(logX). (2.5)

The proof of (2.1) and (2.2) is immediately obtained by substituting (2.4) and (2.5) in (2.3).
So, to prove Theorem 2.1, it is sufficient to prove Lemmas 2.2 and 2.3.

3. Proof of Lemma 2.2

First, consider a natural n with the Zeckendorf representation

n =

k∑
i=2

fiFi,

where fk 6= 0. Suppose n′ = n− Fk and note that

ε(n′) = −ε(n), (3.1)

because the Zeckendorf representation of n′ can be written as

n′ =

k−2∑
i=2

fiFi.
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Further, consider a sum

S∗1(k) = S1(Fk).

Using (3.1), we have

S∗1(k + 1) = S∗1(k) +

Fk+1−1∑
n=Fk

ε(n) = S∗1(k) +

Fk−1−1∑
n′=0

ε(n′ + Fk)

= S∗1(k) +

Fk−1−1∑
n′=0

(−ε(n′)) = S∗1(k)− S∗1(k − 1).

So, we get

S∗1(k + 1) = S∗1(k)− S∗1(k − 1).

The characteristic polynomial λ2 − λ + 1 of this recurrence relation has roots λ1,2 = 1±
√
−3

2 .
If we note that |λ1,2| = 1, we obtain the following result.

Lemma 3.1. There exists a constant C such that

|S∗1(k)| ≤ C. (3.2)

By more precise calculations, we can prove that the sequence {S∗1(k)} is periodic with the
period {2, 1, 0, 0, 1, 2}, but we do not need this result to prove Lemma 2.2.

Now, suppose that

X = Fk1 + Fk2 + · · ·+ Fkl ,

where ki ≥ ki+1 + 2. Consider the numbers n(t) =
∑t

i=1 Fki , and represent S1(X) as

S1(X) =
∑
n<X

ε(n) =
l∑

t=1

n(t)−1∑
n=n(t−1)

ε(n) =
l∑

t=1

Fkt
−1∑

n′=0

ε(n′ + n(t−1)).

Similarly, as in (3.1), for n(t−1) ≤ n < n(t) − 1, we have

ε(n) = ε(n− n(t−1))ε(nt−1) = (−1)t−1ε(n− n(t−1)).
Hence,

S1(X) =
l∑

t=1

(−1)t−1
∑

n≤Fkt
−1
ε(n) =

l∑
t=1

(−1)t−1S∗1(kt).

Using (3.2), we obtain

S1(X) ≤
l∑

t=1

|S∗1(kt)| ≤ Cl.

Further, note that k1 ≥ l, and therefore,

Fl ≤ n.
Using the Binet formula, we have

φl − (−φ)−l√
5

< X,

where φ = 1+
√
5

2 is the golden mean. By elementary calculations, we obtain that there exists
a constant C1 such that

l < logφX + C1.
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Hence, we have
l = O(logX) (3.3)

and Lemma 2.2 is proved.

4. Proof of Lemma 2.3

Similar to the previous section, consider the sum

S∗2(k) = S2(Fk).

We have

S∗2(k + 1) = S∗2(k) +

Fk+1−1∑
n=Fk

ε(n)ε(n+ 1) = S∗2(k) +

Fk−1−1∑
n′=0

ε(n′ + Fk)ε(n
′ + Fk + 1).

From (3.1), we obtain that ε(n′+Fk) = −ε(n′) for n′ < Fk−1, and ε(n′+Fk+1) = −ε(n′+1)
for n′ < Fk−1− 1. However, it is easy to see that ε(n′+Fk + 1) = ε(n′) for n′ = Fk−1− 1. So,
we get ε(n′+Fk)ε(n

′+Fk+1) = ε(n′)ε(n′+1) for n′ < Fk−1−1, and ε(n′+Fk)ε(n
′+Fk+1) =

−ε(n′)ε(n′ + 1) for n′ = Fk−1 − 1. Therefore,

S∗2(k + 1) = S∗2(k) +

Fk−1−1∑
n′=0

ε(n′)ε(n′ + 1)− 2ε(Fk−1 − 1)ε(Fk−1).

Because ε(Fk−1) = −1, we have

S∗2(k + 1) = S∗2(k) + S∗2(k − 1) + 2ε(Fk−1 − 1).

Note that the Zeckendorf representation of Fk−1 − 1 has the form

Fk−1 − 1 = Fk−2 + Fk−4 + Fk−6 + · · ·
So, we have

S∗2(k + 1) = S∗2(k) + S∗2(k − 1) + 2χ4(k), (4.1)

where

χ4(k) =

{
1, k ≡ 2, 3 (mod 4);
−1, k ≡ 0, 1 (mod 4).

Applying (4.1) four times, we obtain

S∗2(k + 1) = S∗2(k − 1) + S∗2(k − 2) + 2S∗2(k − 3) + S∗2(k − 4). (4.2)

The characteristic polynomial of (4.2) has roots λ1,2 = 1±
√
5

2 , λ3,4 = ±
√
−1, and λ5 = −1.

Initial conditions for (4.2) can be found by direct calculations. So, standard techniques from
the theory of the recurrent relations leads to

S∗2(k) =
3−
√
−1

5
(−
√
−1)k +

3 +
√
−1

5
(
√
−1)k +

2−
√

5

5

(
1 +
√

5

2

)k
+

2 +
√

5

5

(
1−
√

5

2

)k
.

(4.3)
Equation (4.3) implies the asymptotic formula

S∗2(k) =
2−
√

5

5
φk +O(1).

Using the Binet formula, we obtain

S∗2(k) =
2
√

5− 5

5
Fk +O(1). (4.4)
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Now, to prove Lemma 2.3, we again assume

X = Fk1 + Fk2 + · · ·+ Fkl ,

and n(t) =
∑t

i=1 Fki . So, we can write S2(X) as

S2(X) =
∑
n<X

ε(n)ε(n+1) =
l∑

t=1

n(t)−1∑
n=n(t−1)

ε(n)ε(n+1) =
l∑

t=1

Fkt
−1∑

n′=0

ε(n′+n(t−1))ε(n′+n(t−1)+1).

By the arguments discussed above, we have

S2(X) =

l∑
t=1

Fkt
−1∑

n′=0

ε(n′)ε(n′ + 1) +O(l) =

l∑
t=1

S∗2(kt) +O(l).

Combining this with (3.3) and (4.4), we obtain the required result.

5. Concluding Remarks

There are two interesting ways to generalize Theorem 2.1.
First, we can replace the equation n−m = 1 in the definition of the sets Fi by n− km = h.

For the binary representations, in [5], it was proved that for odd k > 1, we have Ni,j(X) ∼ 1
4X.

What we can say about the functions Fi,j(X) in this case?
The second interesting problem is to generalize Theorem 2.1 to other recurrent sequences.
Also in [4], it was proved that there are infinitely many prime numbers in each set Ni. What

can we say about the prime numbers in the sets Fi?
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