POWERS OF TWO IN GENERALIZED LUCAS SEQUENCES
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ABSTRACT. For an integer k > 2, let (Lﬁf))n be the k-generalized Lucas sequence that starts
with 0,...,0,2,1 (k terms) and each term afterwards is the sum of the k preceding terms. In
this paper, we find all powers of two that appear in k-generalized Lucas sequences; i.e., we

study the Diophantine equation L,(lk) = 2" in positive integers n, k, m with k > 2.

1. INTRODUCTION

Let k > 2 be an integer. We consider a generalization of Lucas sequence called the k-

(k)

generalized Lucas sequence (Ly, " )p>_(r—2) defined as

LP =1 4+ 1+ 4 LW, foralln > 2, (1.1)
with the initial conditions L(_k()k_s) =... = L(_kl) =0, L(()k) = 2, and Lgk) =1 Ifk =2 we

obtain the classical Lucas sequence

Ly=2, Li=1, and L,=L, 1+ L, o for n>2

(Ln)n>0 = {2,1,3,4,7,11,18,29,47,76, 123,199, 322, 521,843, 1364, .. . }.
If k = 3, then the 3-Lucas sequence is

(L®),>_1 = {0,2,1,3,6,10,19, 35,64, 118, 217, 399, 734, 1350, 2483, 4567, . . . }.
If k = 4, then the 4-Lucas sequence is
(L),> o = {0,0,2,1,3,6,12,22,43, 83,160, 308, 594, 1145, 2207, 4254, 8200, . .. }.

Finding perfect powers in a binary recurrence sequence is an interesting problem in number
theory. For example, in [4], Bugeaud, Mignotte, and Siksek proved that 1, 2, and 4 are the
only powers of 2 that appear in the Lucas sequence. In [2], Bravo and Luca found all powers of
two that are k-generalized Fibonacci numbers. In general, there are several finiteness theorems
for perfect powers in any nondegenerate binary recurrence sequences. For example, Pethé [9]
and Shorey and Stewart [10] proved independently that there are only finitely many perfect
powers with an exponent greater than 1 in any nondegenerate binary recurrence sequence,
which are, in principle, effectively computable. But, finding the perfect powers is sometimes
a challenge.

In this paper, we investigate the problem of finding powers of 2 in the k-generalized Lucas
sequences. Namely, we determine all the solutions of the Diophantine equation

Lk = om. (1.2)

in positive integers n, k, m with & > 2. Following the argument from [2], we prove the following
result.
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Theorem 1.1. All the solutions of the Diophantine equation (1.2) in positive integers n,k,m
with k > 2 are
(n7 k? m) G {(07 k? 1)7 (17 k? 0)7 (37 27 2)7 (77 37 6)}' (1'3)
Namely, we have

L =2 W=1=20 1P =4=22and L!¥=64=25

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of algebraic numbers
and a reduction algorithm originally introduced by Baker and Davenport in [1]. Here, we use
a version from Dujella and Pethd in [5, Lemma 5(a)].

2. PRELIMINARY RESULTS

2.1. Linear Forms in Logarithms. For any nonzero algebraic number v of degree d over
@, whose minimal polynomial over Z is aH;»lzl (X —~U )), we denote the usual absolute log-
arithmic height of v by

d
1 .
h(v) = p log |a| + E log max (17 ”Y(])D
Jj=1

With this notation, Matveev proved the following theorem (see [6]).

Theorem 2.1. Let v1,...,7s be real algebraic numbers and let by, ..., bs be nonzero rational
integer numbers. Let D be the degree of the number field Q(v1,...,7s) over Q and let A; be a
positive real number satisfying

A; = max{Dh(y),|log~|,0.16} for j=1,...,s.
Assume that
B > max{|b1|,...,|bs|}
If’yi’l---’ygs —1+#0, then
|7§’1 e 723 — 1] > exp(—1.4-30°"3 . s%5. D?(1 +1log D)(1 + log B)A; - - - Ay).
2.2. Reduction Algorithm.

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction of the
wrrational v such that ¢ > 6M, and let A, B, u be some real numbers with A > 0 and B > 1.
Let

e = ||uqll — M - [|vqll,

where || - || denotes the distance from the nearest integer. If € > 0, then there is no solution of
the inequality

0<my—n+pu<AB™F
in positive integers m, n, and k with

log(Ag/e)

<M d k>
m < an Z g B
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2.3. Properties of k-generalized Lucas Sequence. In this subsection, we recall some facts
and properties of these sequences that will be used later.

The characteristic polynomial of the k-generalized Lucas numbers (lek))n,
Up(z)=af —aF =t - -1,

is irreducible over Q[x] and has just one root outside the unit circle; the other roots are strictly
inside the unit circle (see, for example, [7], [8] and [11]). In this paper, we denote by a = a(k)
the single real root larger than 1, which is located between 2(1 — 27%) and 2 (see [11]). We
label these roots as aq, ..., a with a = «1. To simplify the notation, in general, we omit the
dependence on k of a.
We now consider, for an integer s > 2, the function
z—1

L@ = e e -2

With this notation, in the following lemma, we recall some properties of the sequence

(Lﬁf“))nz_(k_m, which will be used in the proof of Theorem 1.1.

Lemma 2.3. [3, page 144]
(a) For allm > 1 and k > 2, we have

"t < L) < 9am, (2.1)
(b) The following “Binet-like” formula holds for all n > —(k — 2):
k
L = (205 — 1) fu(oi)ol . (2.2)
i=1

(¢) For alln > —(k — 2), we have

(d) If 2 <n <k, then
Lk =3.972 (2.4)

Now, we will prove the following lemma, which is a small variation of the upper bound in
inequality (2.1) and will be useful to bound m in terms of n.

Lemma 2.4. For every positive integer n > 2, we have
Lk < 3.9772, (2.5)
Moreover, if n > k + 2, then the above inequality is strict.

Proof. The proof follows from formula (2.4), LW =3.972 9 3. 972 for p =k + 1, and

induction for n > k 4 2 using the recurrence

LW =W W e33R 2 c3(n 3 ) <3202,

3. THE PROOF OF THEOREM 1.1

The proof of Theorem 1.1 will be done in three steps.
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3.1. Setup. Clearly, L((]k) = 2 and Lgk) =1 =2%for all £ > 2. We call these types of solutions
trivial solutions. Now, assume that we have a nontrivial solution (n,k, m) of equation (1.2).
By inequality (2.1) and Lemma 2.4, we have

"t < L) —9m <3972,

So, we get

log 2
n§m<0g >+1 and m <n. (3.1)
log

In addition to this, by using log2/log a < 3/2, it follows immediately from (3.1) that
3
m<n<§m+1. (3.2)

Because the Diophantine equation (1.2) was already solved for k = 2, we may assume that

k > 3. Because the solutions to equation (1.2) are nontrivial and Lglk) =3.2"2for2<n<k
(see relation (2.4)), in the remainder of the article we suppose that n > k + 1. So, we get
n >4 and m > 3.

Now, we give an inequality for n and m in terms of k.

Lemma 3.1. If (n, k,m) is a nontrivial solution in integers of (1.2) withk > 2 andn > k+1,
then the inequalities

m<n <2210k log3 k (3.3)
hold.
Proof. Equation (1.2) and inequality (2.3) imply that
3
12" — (2a — 1) fr(a)a" ] < 5 (3.4)
Dividing both sides of the above inequality by the positive number (2a — 1) f(a)a™~! and
using 2 + (k+ 1)(a —2) < 2 with 1/(2a — 1) < 1/2, we get
3
127 a~ D (20— 1) fru(a)) "t = 1| < T (3.5)
To prove (3.3), we use Theorem 2.1. We take ¢ = 3 and
Mm=2, v2=a v=_02a—-1)fr(a), by=m, by=-(n-1), bg=-1.
Let
A=2". a0~V (20 —1)fr(a) = 1. (3.6)
We check that A # 0. Assuming A = 0, we are led to

m_ 2a—1)(a—1) N
2+ (k+1)(a—2)
Conjugating the above relation by the automorphism of Galois ¢ : a — «; for some ¢ > 1 and
then taking absolute values, we have

(20; — 1)(a; — 1)
24 (k+1)(ay —2)

n—1

6
2M = e~ .
8 < | a7 < 1 < 8
Thus, A # 0.
We have v1,72,73 € K = Q(«), so we can take D = k. Because h(7y1) = log2 and
h(y2) = (log ) /k < (log2)/k = (0.693147...)/k, it follows that we can take A; = klog2 and

0.
As = 0.7. Furthermore, because h(vy3) < 6logk for all k£ > 3 (see [3] page 147), we can take
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As = 6klog k. By recalling that m < n —1 from (3.2), we can take B = n — 1. Thus, applying
Theorem 2.1 and taking into account inequality (3.5), we obtain
n—1<3.5-102k*log? klog(n — 1),
where we used 1+ logk < 2logk, 1+ log(n — 1) < 2log(n — 1), and 1/log o < 2, which hold
for Kk > 3 and n > 4.
Thus,
n—1
log(n —1)
Because the function x — z/logz is increasing for all > e, it is easy to check that the
inequality

< 3.5-1012k* log? k. (3.7)

< A implies x < 2Alog A, whenever A > 3.
log

Thus, the desired inequality follows after taking A = 3.5 - 10'2k*log? k and using inequality
(3.7) and 29 + 4log k + 2loglog k < 31log k, which holds for all & > 3. O

3.2. The Case 3 < k < 168. In this step, we use Lemma 2.2 several times to reduce the
upper bound on n.
To apply Lemma 2.2, we let

z=mlog2 — (n—1)loga —log i, (3.8)
where i = (2a — 1) fg(«). Then (3.6) and (2.1) imply that z # 0 and
e —1] < af_l. (3.9)
If z > 0 and after dividing both sides by log & and using 1/log o < 2 for all k& > 3, we obtain
0<my—n+p< AB~ (1), (3.10)
where
_ log2 :1—10gﬁ A=6, and B =aq,

~ loga’ loga’

Because « > 1 is a unit in Ok, « and 2 are multiplicatively independent, so v & Q.

For each k € [3,168], we find a good approximation of a and a convergent py/qy of the
continued fraction of v such that ¢, > 6M, where M = [2.2-10"*k*log? k|, which is an upper
bound on m by Lemma 3.3. After doing this, we use Lemma 2.2 on inequality (3.10). A
computer search with Pari-gp revealed that the maximum value of |log(Aq/e)/log B] over all
k € [3,168] is 172, which according to Lemma 2.2, is an upper bound on n — 1. Hence, we
deduce that the possible solutions (n,k,m) of the equation (1.2) for which k£ € [3,168] and
z > 0 have n < 173; therefore m < 172, since m < n.

Next, we treat the case z < 0. It is easy to see that 2/a™~! < 1/2 holds for all k > 3 and
n > 4. Thus, from (3.9), we have that |e* — 1| < 1/2 and therefore, e/l < 2. Since z < 0, we
have

6
0<lz] <ell —1=elfller —1] < ——.
@
In a similar way, as was done in the case when z > 0, we obtain
O<(n—1)y—m+pu< AB~(1), (3.11)
where ~
_loga log 1t —9, B-a

T log2’ r= log2’
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In this case, we also took M = [2.2 - 104k* log® k|, which is an upper bound on n — 1 by
Lemma 3.1, and we applied Lemma 2.2 to inequality (3.11). In this case, with the help of
Pari-gp, we found that the maximum value of [log(Agq/e)/log B| is 174. Thus, the possible
solutions (n,k,m) of equation (1.2) in the range k € [3,168] and z < 0 have n < 175, so
m < 174.

Finally, we used Mathematica to compare lek) and 2" for the range 4 < n < 175 and
3
3<m <174, with m <n < 7m + 1 and checked that the only solution of equation (1.2) in
this range is that given by Theorem 1.1. Therefore, we have dealt with the case k € [3,168].

3.3. The Case k > 168. Now, we assume that k£ > 168. Thus, we have
n<2.2-10"%k*log® k < 2F/2.
In [3, page 150], it was proved that

J
(2a — 1) fy(a)a™t =3. 2772 £ 3. 2771y 4 3 + 10,

where
2% 2n+2

So, from (3.4) and the above equality, we get

1)
27 =327 < (27 = 2o = 1) fp(@)a" T 432"y + 5+ nd|
3 3k - 2" on+1 2n+3k,
9 + ok + 9k /2 + 93k/2

We factor 3 - 272 on the right side of the above inequality and since 1/2"~1 < 1/2F/
(because n > k + 1), we obtain

4k 1 8 3 32k 1

<

ﬁ < 2k/27 3. 9k/2 < 2k/2’ and 3. 923k/2 < 2k/2
for £ > 169. Thus, we get
gm—n+2 6
- U< g5 (3.12)
As m < n (see (3.2)), we have m —n + 2 < 1. Then, it follows from (3.12) that
1 am—ntl g
g <1-— 3 < k2"

So, 2k/2 < 18, which is impossible since k > 168.
Therefore, we have no solutions (n, k,m) to equation (1.2) with & > 168. This completes
the proof of Theorem 1.1.
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