
AN INTEGER SEQUENCE WITH A DIVISIBILITY PROPERTY

MUHAREM AVDISPAHIĆ AND FARUK ZEJNULAHI

Abstract. Modifying the divisibility condition, we introduce a new integer sequence and
establish its representation in terms of Fibonacci numbers and the golden mean.

1. Introduction

A permutation {ai}∞i=1 of positive integers is said to be divisible if

n∑
i=1

ai ≡ 0 (mod n) for all n ∈ N.

A concrete example of a permutation with such a property is the OEIS sequence A019444.
Our point of interest in the present note is a case of a modified divisibility condition.

Let the sequence {zn}∞n=1 be defined as follows: z1 = 1 and zn (n > 1) is the least positive
integer distinct from z1, z2, . . . , zn−1 such that∑

n
=

n∑
i=1

zi ≡ 1 (mod n+ 1) for all n ∈ N.

We shall prove that the sequence {zn}∞n=1 possesses the properties given in the next theorem.

Theorem 1.1. The sequence {zn}∞n=1 is a permutation of the set of positive integers and the
following formulas hold:

zn =


1, for n = 1;
Fk+1, for n = Fk (k > 2);
Fk−1 − 1, for n = Fk − 1 (k > 4);
bkτc , for n =

⌊
kτ2
⌋

, n 6= Fk (k > 2) and n 6= Fk − 1 (k > 4);⌊
kτ2
⌋
, for n = bkτc , n 6= Fk (k > 2) and n 6= Fk − 1 (k > 4).

Here, {Fk}∞k=1 denotes the Fibonacci sequence and τ = 1+
√
5

2 is the golden mean.

2. Preliminaries

To prove Theorem 1.1, we need several facts about the Fibonacci sequence and the golden
mean. Some of these results are new or possibly new, as indicated in Remark 2.5 at the end

of this section. Let τ1 =
√
5−1
2 and note that τ2 = 3+

√
5

2 . The straightforward identities

τ = 1 + τ1, τ
2 = 1 + τ , and ττ1 = 1 will be used in the sequel without special mention.

Lemma 2.1. For any k ∈ N, the following identities are valid:

(i) bbkτc τc = bkτc+ k − 1.
(ii) b(bkτc+ 1) τc = bkτc+ k + 1.

(iii) b(bkτc+ k) τc = 2 bkτc+ k.
(iv) bkτc = bjτc for j ∈ N if and only if k = j.
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Proof. We check (iii) and (iv). The first two identities can be derived analogously. The proof
of (iii) is accomplished through the following chain of equivalent statements, the last one being
obviously true:

k + 2 bkτc < (bkτc+ k) τ < k + 2 bkτc+ 1

⇐⇒ bkτc < (bkτc+ k) (τ − 1) < bkτc+ 1

⇐⇒ bkτc < (bkτc+ k) τ1 < bkτc+ 1

⇐⇒ bkτc τ < bkτc+ k < (bkτc+ 1) τ

⇐⇒ bkτc (τ − 1) < k < (bkτc+ 1) (τ − 1) + 1

⇐⇒ bkτc τ1 < k < (bkτc+ 1) τ1 + 1

⇐⇒ bkτc < kτ < bkτc+ 1 + τ .

For (iv), suppose n = bkτc = bjτc. Adding up relations n ≤ jτ < n+ 1 and −n− 1 < −kτ ≤
−n, we get −1 < (j − k) τ < 1. Multiplication by τ1 gives −τ1 < j − k < τ1. This yields
j − k = 0 because 0 < τ1 < 1. �

Next, we adopt the notation
x ≺ y ⇐⇒ x+ 2 ≤ y.

Theorem 2.A. (Zeckendorf) Every positive integer n has the unique representation of the
form

n = Fi1 + Fi2 + · · ·+ Fir , (∆)

where i1 ≺ i2 ≺ · · · ≺ ir, and i1 ≥ 2.

Relation (∆) is known as the Fibonacci representation of n.

Definition 2.2. With respect to (∆), we introduce sets A1, A2, A3, and A4 as follows:
n ∈ A1 ⇔ i1 = 2 and i2 is odd or n = 1.
n ∈ A2 ⇔ i1 = 2 and i2 is even.
n ∈ A3 ⇔ i1 > 2 and i1 is even.
n ∈ A4 ⇔ i1 > 2 and i1 is odd.

We also make use of the function e : N→ N defined by

e (n) = Fi1−1 + Fi2−1 + · · ·+ Fir−1,

where n is represented using (∆).
For the sake of completeness of exposition, we recall the following theorem.

Theorem 2.B. (Beatty-Skolem) If α and β are positive irrational numbers such that 1
α+ 1

β = 1,

then the sets Sα = {bnαc : n ∈ N} and Sβ = {bnβc : n ∈ N} form a disjoint decomposition of
the set of positive integers, i.e., Sα ∪ Sβ = N and Sα ∩ Sβ = ∅.

The next lemma provides some useful information about the sets A1, A2, A3, and A4 and
the function e.

Lemma 2.3.

(i) If n ∈ A1 ∪A2 and n = 1 + Fi2 + · · ·+ Fir , then
b(1 + Fi2 + · · ·+ Fir) τc = 1 + Fi2+1 + · · ·+ Fir+1.

(ii) If n ∈ A3 and n = Fi1+Fi2+· · ·+Fir , then b(Fi1 + · · ·+ Fir) τc = Fi1+1+· · ·+Fir+1−1.
(iii) If n ∈ A4 and n = Fi1 +Fi2 + · · ·+Fir , then b(Fi1 + · · ·+ Fir) τc = Fi1+1 + · · ·+Fir+1.
(iv) If a (n) = bnτc and b (n) =

⌊
nτ2

⌋
, then e (a (n)) = n and e (b (n)) = a (n).
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(v) e (n) = b(n+ 1) τ1c.
(vi) If j is odd and j > 1, then e (Fj − 1) = Fj−1 and if j is even and j > 2, then

e (Fj − 1) = Fj−1 − 1.

Proof. (i) We have

(1 + Fi2 + · · ·+ Fir) τ =

(
τ + τ1
τ + τ1

+
τ i2 + (−τ1)i2

τ + τ1
+ · · ·+ τ ir + (−τ1)ir

τ + τ1

)
τ

=
τ2 + 1

τ + τ1
+
τ i2+1 − (−τ1)i2−1

τ + τ1
+ · · ·+ τ ir+1 − (−τ1)ir−1

τ + τ1

=
τ2 − τ21
τ + τ1

+
τ i2+1 + (−τ1)i2+1

τ + τ1
+ · · ·+ τ ir+1 + (−τ1)ir+1

τ + τ1

+
1 + τ21 − (−τ1)i2+1 − (−τ1)i2−1 − · · · − (−τ1)ir+1 − (−τ1)ir−1

τ + τ1

= 1 + Fi2+1 + · · ·+ Fir+1 +
1 + τ21
τ + τ1

(
1− (−τ1)i2−1 − · · · − (−τ1)ir−1

)
.

The above equality implies

(1 + Fi2 + · · ·+ Fir) τ > 1 + Fi2+1 + · · ·+ Fir+1 +
1 + τ21
τ + τ1

(
1− τ21 − τ41 − · · ·

)
> 1 + Fi2+1 + · · ·+ Fir+1

and

(1 + Fi2 + · · ·+ Fir) τ < 1 + Fi2+1 + · · ·+ Fir+1 +
1 + τ21
τ + τ1

(
1 + τ21 + τ41 + · · ·

)
= 1 + Fi2+1 + · · ·+ Fir+1 + 1.

Combining these two estimates, we obtain (i).
(ii) and (iii) can be deduced in a similar way as (i).
(iv) follows easily from (i), (ii), and (iii). For example, if n ∈ A3 and n = Fi1 + · · · + Fir ,

then b (n) = Fi1+2 + · · ·+ Fir+2 − 1 = F3 + F5 + · · ·+ Fi1+1 + Fi2+2 + · · ·+ Fir+2. So, we get
e (b (n)) = F2 + F4 + · · ·+ Fi1 + Fi2+1 + · · ·+ Fir+1 = Fi1+1 − 1 + Fi2+1 + · · ·+ Fir+1 = a (n).

(v) also follows from (i), (ii), and (iii). To see this, it is sufficient to note that b(n+ 1) τ1c =
b(n+ 1) τc−(n+ 1), and then go through the cases n+1 ∈ A1∪A2, n+1 ∈ A3, and n+1 ∈ A4.

(vi) If j is odd and j > 1, then e (Fj − 1) = e (F2 + F4 + · · ·+ Fj−1) = F1 + F3 + · · · +
Fj−2 = Fj−1. If j is even and j > 2, then e (Fj − 1) = e (F1 + F3 + · · ·+ Fj−1 − 1) =
e (F3 + · · ·+ Fj−1) = F2 + · · ·+ Fj−2 = Fj−1 − 1. �

Lemma 2.4. Let S (τ) = {bnτc : n ∈ N} and S
(
τ2
)

=
{⌊
nτ2

⌋
: n ∈ N

}
. Then,

(i) S (τ) ∪ S
(
τ2
)

= N and S (τ) ∩ S
(
τ2
)

= ∅.
(ii) S

(
τ2
)

= A4.
(iii) n− 1 ∈ S (τ)⇐⇒ bnτc = b(n− 1) τc+ 2 (n > 1).
(iv) n− 1 ∈ S

(
τ2
)
⇐⇒ bnτc = b(n− 1) τc+ 1 (n > 1).

Proof. (i) This follows immediately from Theorem 2.B because 1
τ + 1

τ2
= 1.

(ii) Let b (n) =
⌊
nτ2

⌋
and n = Fi1 + Fi2 + · · ·+ Fir be the Fibonacci representation of n.

If n ∈ A1∪A2, then b (n) =
⌊
nτ2

⌋
= bnτc+n = 1+Fi2+1+ · · ·+Fir+1+1+Fi2 + · · ·+Fir =

F3 + Fi2+2 + · · ·+ Fir+2 ∈ A4.
If n ∈ A3, then b (n) = Fi1+2+· · ·+Fir+2−1 = F3+F5+· · ·+Fi1+1+Fi2+2+· · ·+Fir+2 ∈ A4.
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If n ∈ A4, then b (n) = Fi1+2 + · · ·+ Fir+2 ∈ A4.
The above formulas imply the inclusion S

(
τ2
)
⊂ A4.

Next, we check the opposite inclusion.
Let n ∈ A4 and n = Fi1 + Fi2 + · · · + Fir be the Fibonacci representation of n. If i1 > 3,

then Fi1−2 + Fi2−2 + · · ·+ Fir−2 belongs to A4 and
⌊
(Fi1−2 + Fi2−2 + · · ·+ Fir−2) τ

2
⌋

= Fi1 +
Fi2 + · · ·+ Fir .

If i1 = 3, then
⌊
(1 + Fi2−2 + · · ·+ Fir−2) τ

2
⌋

= F3 + Fi2 + · · ·+ Fir . Thus, A4 ⊂ S
(
τ2
)
.

(iii) The number of elements of S (τ) that are not larger than n− 1 equals
⌊
n
τ

⌋
. Indeed, let

k be the largest positive integer such that bkτc ≤ n − 1. Then, bkτc ≤ n − 1 < b(k + 1) τc
gives kτ < n < (k + 1) τ , i.e., k =

⌊
n
τ

⌋
. If n− 1 ∈ S (τ), then⌊

n
τ

⌋
= 1+

⌊
n−1
τ

⌋
⇐⇒ bnτ1c = 1+b(n− 1) τ1c ⇐⇒ bnτc−n = 1+b(n− 1) τc− (n− 1)⇐⇒

bnτc = b(n− 1) τc+ 2.
(iv) can be checked in an analogous way as (iii). �

Remark 2.5. Lemma 2.1 (i) and Lemma 2.1 (ii) appear as a theorem in [4]. Lemma 2.1 (iii)
is possibly new. A proof of Zeckendorf ’s theorem can be found in [5] (see also [3]). Lemma 2.3
(i), (ii), and (iii) are ours. Carlitz studied the function e in [2], where Lemma 2.3 (iv) can be
found. Lemma 2.3 (v) is possibly new. Lemma 2.4 (ii), (iii), and (iv) are ours. Regarding the
Beatty-Skolem theorem, we refer to [1, 4] (see also [3]).

3. Proof of Theorem 1.1

Let Mn =
∑

n−1
n+1 for n ∈ N. We have z1 = 1 and M1 = 0; z2 = 3 and M2 = 1. We start by

establishing the following proposition and its corollary.

Proposition 3.1. For any n > 2, we have zn = Mn−1 and Mn = Mn−1, if Mn−1 6= zk
(k = 1, . . . , n− 1), and zn = Mn−1 + n+ 1 and Mn = Mn−1 + 1, otherwise.

Proof. We proceed by induction. The claim is obviously true for n = 3. Suppose that it holds
for all 3 ≤ k ≤ n− 1. Then, {Mk}n−1k=1 is nondecreasing. Indeed, from

∑
k−1 = kMk−1 + 1 and∑

k = (k + 1)Mk + 1, we get zk = (k + 1)Mk − kMk−1. Therefore, Mk = Mk−1 if zk = Mk−1,
and Mk = Mk−1 + 1 if zk = Mk−1 + k + 1. Hence, Mk ≥Mk−1 for k ≤ n− 1.

The next observation we need is Mk ≤Mk−1+1 ≤Mk−2+2 ≤ · · · ≤M1+k−1 = k−1 < k.
Also, note that zk ≤Mk−1 + k + 1 for k ≤ n− 1.
We now derive the claim for zn. If Mn−1 does not appear among z1, . . . , zn−1, then we can

take zn = Mn−1 because
∑

n =
∑

n−1 +Mn−1 = nMn−1 + 1 + Mn−1 ≡ 1 (mod n+ 1) and
Mn−1 < n− 1. Note that Mn = Mn−1 < n− 1 in this case.

If Mn−1 is equal to zk for some k ≤ n− 1, then we let zn = Mn−1 + n+ 1 because

max
k≤n−1

zk ≤ max {M1 + 3, . . . ,Mn−2 + n} = Mn−2 + n ≤Mn−1 + n < Mn−1 + n+ 1,

and ∑
n

=
∑

n−1
+Mn−1 + n+ 1 = nMn−1 + 1 +Mn−1 + n+ 1 ≡ 1 (mod n+ 1) .

Then,

Mn =

∑
n−1

n+ 1
= Mn−1 + 1 < n and zn = Mn + n.

Finally, we also note that {Mk}∞k=1 = N0. �
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Corollary 3.2.

(i) The sequence {Mn}∞n=1 is nondecreasing.
(ii) Mn < n for n ∈ N.

(iii) zn ≤Mn−1 + n+ 1 for n ∈ N.
(iv) {zn}∞n=1 is a permutation of N.

Proof. Assertions (i), (ii), and (iii) follow easily from the proof of Proposition 3.1. We will
prove (iv). The mapping n 7→ zn is one-to-one because each zn differs from all zl, l < n.
Furthermore, {zn}∞n=1 = N. Indeed, for j ∈ N, there exists k ≥ 2 such that j = Mk. Then,
either j = zl for some l ≤ k or j = Mk = zk+1 by Proposition 3.1. Hence, n 7→ zn is a
permutation of N. �

We shall prove our theorem in the following more general form.

Theorem 3.3.

(i) z1 = 1 and M1 = 0.
(ii) If n = Fk (k > 2), then zn = Fk+1 and Mn = Fk−1.

(iii) If n =
⌊
kτ2
⌋
, n 6= Fj (j > 2), and n 6= Fj − 1 (j > 4), then zn = bkτc = Mn.

(iv) If n = bkτc, n 6= Fj (j > 2), and n 6= Fj − 1 (j > 4), then zn =
⌊
kτ2
⌋
, Mn = k.

(v) If n = Fk − 1 (k > 4), then zn = Fk−1 − 1 = Mn.

Proof. For n ≤ 10, each of the cases (ii)–(v) appears at least once, as seen in Table 1.

n 1
F2

2
F3

3
F4

4
F5−1

5
F5

6
b4τc

7
F6−1

8
F6

9
b6τc

10⌊
4τ2
⌋ 11
b7τc

12
F7−1

13
F7

14
b9τc

15⌊
6τ2
⌋

zn 1 3 5 2 8 10 4 13 15 6 18 7 21 23 9
Mn 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9

Table 1. The first 15 pairs (zn,Mn)

Thus, the assertion of the theorem is valid for n ≤ 10. We assume the assertion holds for all
10 ≤ m < n and prove it is true for n.
(ii) If n = Fk, then n− 1 = Fk− 1. So, by the induction hypothesis, zn−1 = Fk−1− 1 = Mn−1.
Then, Mn = Mn−1 +1 = Fk−1 and zn = Mn+n = Fk−1 +Fk = Fk+1 according to Proposition
3.1.
(iii) If n =

⌊
kτ2
⌋
, n 6= Fj , and n 6= Fj − 1, then because

⌊
kτ2
⌋

= k + bkτc, Lemma 2.1
(i) gives n − 1 = k − 1 + bkτc = bbkτc τc. Obviously, n − 1 6= Fj − 1 because n 6= Fj . If
n − 1 = bbkτc τc = Fs, then Lemma 2.3 (iv) yields bkτc = e (bbkτc τc) = e (Fs) = Fs−1. By
the same reasoning, bkτc = Fs−1 implies k = Fs−2. Then, we have n =

⌊
kτ2
⌋

= k + bkτc =

Fs−2 +Fs−1 = Fs, which is not the case. Thus, Mn−1 = bkτc and zn−1 =
⌊
bkτc τ2

⌋
. Next, we

check whether Mn−1 appears among z1, . . . , zn−2. (We already have Mn−1 6= zn−1.)

(1) bkτc cannot take the form
⌊
jτ2
⌋
.

(2) bkτc 6= bjτc for j 6= k by Lemma 2.1 (iv).
(3) bkτc = Fj yields k = e (bkτc) = e (Fj) = Fj−1 by Lemma 2.3 (iv). Then, we have

n = k + bkτc = Fj−1 + Fj = Fj+1, which contradicts the assumption n 6= Fs.
(4) Suppose bkτc = Fj − 1. For even j, one has Fj − 1 = Fj−1 + · · ·+ F3 ∈ A4 = S

(
τ2
)
.

However, bkτc ∈ S
(
τ2
)

is impossible. If j is odd, then k = e (bkτc) = e (Fj − 1) =
Fj−1 by Lemma 2.3 (vi). This yields n = k+bkτc = Fj−1+Fj−1 = Fj+1−1, contrary
to the assumption n 6= Fl − 1.
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Hence, Mn−1 /∈ {z1, . . . , zn−1} and zn = Mn−1 = bkτc = Mn.
(iv) If n = bkτc, n 6= Fj , and n 6= Fj − 1, then n− 1 6= Fj − 1. We check the remaining three
options.

(1) n−1 = Fj : Then, bkτc = 1+Fj and k = e (bkτc) = 1+Fj−1. The induction hypothesis
gives us zn−1 = Fj+1 and Mn−1 = Fj−1. Now, Fj−1 appears as zm for m = Fj−2 <
n− 1. Hence, Mn = Mn−1 + 1 = Fj−1 + 1 = k and zn = Mn + n = k + bkτc =

⌊
kτ2
⌋
.

(2) n−1 =
⌊
jτ2
⌋

and n−1 6= Fi: In this case, zn−1 = Mn−1 = bjτc. Thus, Mn = Mn−1 +

1 = bjτc+1 and zn = Mn+n. Then, bkτc =
⌊
jτ2
⌋
+1 = j+bjτc+1 = b(bjτc+ 1) τc by

Lemma 2.1 (ii). So, k = bjτc+1. We end up with Mn = k and zn = k+bkτc =
⌊
kτ2
⌋
.

(3) n − 1 = bjτc and n − 1 6= Fi: Then, bkτc + k − 1 = bbkτc τc = b(bjτc+ 1) τc =
bjτc + j + 1 = bkτc + j. Hence, k − 1 = j. The induction hypothesis says that
zn−1 =

⌊
jτ2
⌋

and Mn−1 = j. Because bkτc = b(k − 1) τc+ 1, Lemma 2.4 (iv) implies

k − 1 = j ∈ S
(
τ2
)
. Thus, j =

⌊
lτ2
⌋

= blτc+ l.
Here, blτc = Fs is not possible because we would have l = e (blτc) = Fs−1. Then,
Lemma 2.1 (iii) yields n − 1 = b(blτc+ l) τc = 2 blτc + l = 2Fs + Fs−1 = Fs+2,
contradicting n− 1 6= Fi.
It is not the case that blτc = Fs− 1. Namely, for s odd, we have l = e (Fs − 1) = Fs−1
by Lemma 2.3 (vi). Then, n−1 = 2 blτc+ l = 2Fs−2 +Fs−1 = Fs+2−2. This implies
n = Fs+2−1, which is not the case. Analogously, for s even, l = e (Fs − 1) = Fs−1−1.
Then, n − 1 = 2Fs − 2 + Fs−1 − 1 = Fs+2 − 3 = F5 + · · · + Fs+1 ∈ A4 = S

(
τ2
)

by
Lemma 2.4 (ii). This is impossible because n− 1 ∈ S (τ).
Thus, the induction hypothesis yields zblτc =

⌊
lτ2
⌋

= j = Mn−1. Note that zblτc ∈
{z1, . . . , zn−1} because blτc < j = k − 1 < bkτc − 1 = n − 1. Therefore, Mn =
Mn−1 + 1 = j + 1 = k and zn = Mn + n = k + bkτc =

⌊
kτ2
⌋
.

(v) n = Fk − 1: Then, n − 1 = Fk − 2. So, n − 1 6= Fj and n − 1 6= Fj − 1 for k > 5. We
consider the remaining two cases.

(1) n − 1 = Fk − 2 cannot have the form
⌊
jτ2
⌋
. Namely, for k even, we have Fk − 2 =

F2 + F5 + · · · + Fk−1 ∈ A1. An odd k leads to Fk − 2 = F4 + F6 + · · · + Fk−1 ∈ A3.
However, (A1 ∪A3) ∩ S

(
τ2
)

= ∅.
(2) If n − 1 = bjτc, then zn−1 =

⌊
jτ2
⌋

and Mn−1 = j. In this case, j = Fk−1 − 1.
Indeed, we see, by induction, that b(Fk−1 − 1) τc = Fk − 2 (= n− 1 = bjτc). We
check j = Fk−1 − 1 /∈ {z1, . . . , zn−1}:

2.1. Fk−1 − 1 differs from Fl − 1 (for l 6= k − 1) and from Fl.
2.2. Suppose Fk−1 − 1 =

⌊
lτ2
⌋

= zblτc, where blτc 6= Fs, Fs − 1. The case k − 1

being even yields blτc = e
(⌊
lτ2
⌋)

= e (Fk−1 − 1) = Fk−2 − 1, and this contradicts the
assumption that blτc 6= Fs−1. The case k−1 being odd implies blτc = e (Fk−1 − 1) =
Fk−2, contradicting blτc 6= Fs.

2.3. Finally, suppose Fk−1 − 1 = blτc = zblτ2c, where
⌊
lτ2
⌋
6= Fs, Fs − 1. If k − 1 is

even, then Fk−1 − 1 ∈ S
(
τ2
)
, which in our case is impossible. For k − 1 odd, we get

l = e (blτc) = e (Fk−1 − 1) = Fk−2. Then,
⌊
lτ2
⌋

= l+blτc = Fk−2 +Fk−1−1 = Fk−1.

This contradicts the assumption
⌊
lτ2
⌋
6= Fs − 1.

Taking into account that Mn−1 = j = Fk−1−1 /∈ {z1, . . . , zn−1}, we get Mn = Mn−1 = Fk−1−1
and zn = Fk−1 − 1.
This completes the proof of the theorem. �

Remark 3.4. The sequence {zn}∞n=1 is initially considered in [6].
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Remark 3.5. The first 100, 000 members of the sequence {zn}∞n=1, can be obtained by pro-
gramming our Proposition 3.1 in Python.

z_list = [-1,1,3]

m_list = [-1,0,1]

n = 2

for n in range(2,100000):

if m_list[n] in z_list:

m_list.append(m_list[n]+1)

z_list.append(m_list[n+1]+n+1)

else:

m_list.append(m_list[n])

z_list.append(m_list[n+1])

with open(’results,txt’, ’w’) as f:

f.write(’index, M, Z\n’)

for i in range(1,100000):

f.write(str(i) + ’,’+ str(m_list[i]) +’,’+str(z_list[i])+’\n’)

The first one hundred members of {zn}∞n=1 are: 1, 3, 5, 2, 8, 10, 4, 13, 15, 6, 18, 7, 21, 23, 9,
26, 28, 11, 31, 12, 34, 36, 14, 39, 41, 16, 44, 17, 47, 49, 19, 52, 20, 55, 57, 22, 60, 62, 24, 65,
25, 68, 70, 27, 73, 75, 29, 78, 30, 81, 83, 32, 86, 33, 89, 91, 35, 94, 96, 37, 99, 38, 102, 104, 40,
107, 109, 42, 112, 43, 115, 117, 45, 120, 46, 123, 125, 48, 128, 130, 50, 133, 51, 136, 138, 53,
141, 54, 144, 146, 56, 149, 151, 58, 154, 59, 157, 159, 61, 162.
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