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Abstract. We obtain exact divisibility results for the powers of the balancing and Lucas-
balancing numbers. This gives all the results analogous to those of Fibonacci and Lucas
numbers from 1970 to 2019. For example, Hoggatt and Bicknell-Johnson (1977) and Benjamin
and Rouse (2009) proved that if F k

n | m, then F k+1
n | Fnm, which was later generalized by

Pongsriiam (2014) to include the exact divisibility such as F k+1
n ‖ Fnm, provided that F k

n ‖ m,
n ≥ 3, and n 6≡ 3 (mod 6). Here, Fn is the nth Fibonacci number. For the balancing numbers
Bn, we show that Bk

n ‖ m if and only if Bk+1
n ‖ Bnm for all k ≥ 1 and m,n ≥ 2. The

corresponding results for the Lucas-balancing numbers are also given.

1. Introduction

For integers m,n ≥ 1, and k ≥ 0, we say that mk exactly divides n and write mk ‖ n if
mk | n and mk+1 ∤ n. In this paper, we explore the exact divisibility by powers of the balancing
and Lucas-balancing numbers. Recall that n is said to be a balancing number if it is a solution
to the Diophantine equation

1 + 2 + · · · + (n− 1) = (n+ 1) + (n+ 2) + · · · + (n+ r),

for some r ∈ N. The sequence (Bn)n≥0 of balancing numbers is defined by the recurrence
Bn+1 = 6Bn −Bn−1 for n ≥ 1, with B0 = 0 and B1 = 1, and the sequence (Cn)n≥0 of Lucas-
balancing numbers is defined by the same recursive pattern as (Bn)n≥0, but with the initial
values C0 = 1 and C1 = 3 (see [2, 17, 25]). The literature regarding divisibility properties of
the Fibonacci numbers Fn and Lucas numbers Ln is well-known, but those of the balancing
and Lucas-balancing numbers are, to some extent, not very prevalent. Recall that one of the
tools used in Matijasevich’s solution to Hilbert’s 10th problem [12, 13, 14] is the following
divisibility relation:

F 2
n | Fnm if and only if Fn | m. (1.1)

Hoggatt and Bicknell-Johnson [5] gave a generalization of (1.1) by replacing F 2
n by F 3

n , and
for a general k, they proved that

if F k
n | m, then F k+1

n | Fnm. (1.2)

Benjamin and Rouse [3] and Seibert and Trojovský [29] also provided a different proof of
(1.2). Then the investigation on exact divisibility results for a subsequence of (Fn)n≥1 began
with the work of Tangboonduangjit, et al. [18, 31] and was generalized by Onphaeng and
Pongsriiam [15]. The most general results in this direction were obtained by Pongsriiam [20],
where (1.2) is extended to include the divisibility and exact divisibility for both the Fibonacci
and Lucas numbers. Finally, Onphaeng and Pongsriiam [16] have recently given the converse
of the results in [20], which completely answers these questions for the Fibonacci and Lucas
numbers.
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In this paper, we show divisibility properties analogous to those in [3, 5, 16, 20, 29] for the
balancing and Lucas-balancing numbers. For other related and recent results on Fibonacci,
Lucas, balancing, and Lucas-balancing numbers, see [4, 6, 22, 24, 26, 27, 30].

2. Preliminaries

We first recall some basic properties of Bn and Cn in the following lemmas.

Lemma 2.1. ([17] and [25]) Let m and n be positive integers. Then, the following statements

hold.

(i) Bn | Bm if and only if n | m. Furthermore, gcd(Bm, Bn) = Bgcd(m,n).

(ii) gcd(Bn, Cn) = 1.
(iii) B2n = 2BnCn.

(iv) (Binet’s formula) Bm = α2m−β2m

α2−β2 and Cm = α2m+β2m

2 , where α = 1 +
√
2 and β =

1−
√
2.

From this point on, we let α = 1 +
√
2 and β = 1 −

√
2. In addition, we sometimes apply

Lemma 2.1 without reference. Furthermore, if x ∈ R, then we write ⌊x⌋ to denote the largest
integer not exceeding x.

Lemma 2.2. If m and n are positive integers, then

Bmn =
n
∑

j=1

(

n

j

)

Bj
mBn−j

m−1(−1)n−jBj =
m
∑

j=1

(

m

j

)

Bj
nB

m−j
n−1 (−1)m−jBj .

Proof. Applying the Binet formula given in Lemma 2.1, we get α2Bm − Bm−1 = α2m and

β2Bm−Bm−1 = β2m. Putting the values of α2m and β2m into Bmn = (α2m)n−(β2m)n

4
√
2

and then

applying the binomial expansion, we obtain the first equality. Because Bmn = Bnm, we can
interchange the role of m and n to obtain the second equality. �

Lemma 2.3. Let m and n be positive integers. Then, the following statements hold.

(i) Bmn =
∑⌊m−1

2
⌋

j=0

( m
m−2j−1

)

B2j+1
n Cm−2j−1

n 8j .

(ii) Cmn =
∑⌊m

2
⌋

j=0

( m
m−2j

)

B2j
n Cm−2j

n 8j .

Proof. By the Binet formula, we obtain that α2n = Cn +
√
8Bn and β2n = Cn −

√
8Bn.

Substituting α2n and β2n in Bmn = (α2n)m−(β2n)m

4
√
2

and applying the binomial expansion, we

get

Bmn =
1

4
√
2

m
∑

i=0

(

m

i

)√
8
i
Bi

nC
m−i
n (1− (−1)i)

=
1

4
√
2

m
∑

i=0

(

m

m− i

)√
8
i
Bi

nC
m−i
n (1− (−1)i). (2.1)

If i is even, then 1− (−1)i = 0. So, we consider the sum in (2.1) when i is odd, say i = 2j+1.
Then (2.1) becomes

Bmn =

⌊m−1

2 ⌋
∑

j=0

(

m

m− 2j − 1

)

B2j+1
n Cm−2j−1

n 8j ,

which is the same as (i). The proof of (ii) is similar. �
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Lemma 2.4. ([15]) Let k, ℓ, m, and s be positive integers and sk | m. Then, sk+ℓ |
(m
j

)

sj

for all 1 ≤ j ≤ m satisfying 2j−ℓ+1 > j. In particular, sk+1 |
(

m
j

)

sj for all 1 ≤ j ≤ m, and

sk+2 |
(m
j

)

sj for all 3 ≤ j ≤ m.

For each n ∈ N, the order (or the rank) of appearance of n in the balancing sequence,
denoted by α(n), is the smallest positive integer k such that n | Bk. Similarly, the order of
appearance of n in the Fibonacci sequence, denoted by z(n), is the smallest k ∈ N such that
n | Fk. It is well-known that n | Fm if and only if z(n) | m, and n | Bm if and only if α(n) | m.
In addition, if p is a prime and n ∈ N, we write νp(n) to denote the p-adic valuation (or p-adic

order) of n, which is defined to be the nonnegative integer k such that pk ‖ n.
Marques [9] obtained a formula for z(F k

n ) and for z(Lk
n) in some special cases, which were

later completed by Pongsriiam [21], and were used in the proof of the converse of exact
divisibility results in [16]. For other formulas concerning z(n), see, for example, the recent
articles by Marques [10], Marques and Trojovský [11], Trojovský [32], Pongsriiam [23], and
Khaochim and Pongsriiam [7, 8]. Here, we recall the formula of α(Bk

n) obtained by Patel,
Dutta, and Ray [19].

Lemma 2.5. ([19]) If Bn is the nth balancing number and α is the order of appearance, then

α(Bk+1
n ) = nBk

n, for every k ≥ 0 and n ≥ 1.

Lengyel’s theorem on νp(Fn) and νp(Ln) is often used in the proof of exact divisibility results
for Fn and Ln. More general results by Ballot [1], Sanna [28], and Young [33] also lead to
formulas for νp(Bn) and νp(Cn) as follows.

Lemma 2.6. For each n ∈ N, the p-adic valuation of Bn is given by

ν2(Bn) = ν2(n)

and if p 6= 2, then

νp(Bn) =

{

νp(n) + νp(Bα(p)), if α(p) | n;
0, otherwise.

Furthermore, ν2(Cn) = 0, because Cn is always odd.

3. Main Results

In this section, we will provide some exact divisibility properties related to the sequences
(Bn) and (Cn). We first apply Lemma 2.5 to obtain the following theorem.

Theorem 3.1. Let m and n be positive integers. Then, the following statements hold.

(i) B2
n | Bmn if and only if Bn | m.

(ii) B3
n | Bmn if and only if B2

n | m.

Proof. By the second equality in Lemma 2.2, we obtain

Bmn ≡ (−1)m−1mBnB
m−1
n−1 (mod B2

n).

From this, we see that

B2
n | Bmn ⇔ B2

n | (−1)m−1mBnB
m−1
n−1 ⇔ Bn | (−1)m−1mBm−1

n−1 ⇔ Bn | m,

where the last equivalence is obtained from gcd(Bn, (−1)m−1Bm−1
n−1 ) = 1. Similarly, by Lemma

2.2, we have

Bmn ≡ (−1)m−1mBnB
m−1
n−1 + 3m(m− 1)B2

nB
m−2
n−1 (−1)m−2 (mod B3

n)

≡ (−1)m−2mBnB
m−2
n−1 (−Bn−1 + 3(m− 1)Bn) (mod B3

n).
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Because gcd(Bn, (−Bn−1 + 3(m− 1)Bn)) = gcd(Bn, Bn−1) = 1, we obtain

B3
n | Bmn ⇔ B3

n | mBnB
m−2
n−1 ⇔ B2

n | m.

This completes the proof. �

We can generalize Theorem 3.1 to higher powers of Bn as shown in Theorem 3.2. Observe
that our theorem looks simpler than the one for Fibonacci and Lucas numbers [16, 20] because
ν2(Bn) and ν2(Cn) are simpler than ν2(Fn) and ν2(Ln).

Theorem 3.2. For all k ≥ 1 and m,n ≥ 2, we have Bk
n | m if and only if Bk+1

n | Bnm.

Proof. Let Bk
n | m. Then by Lemma 2.4, Bk+1

n |
(m
j

)

Bj
n for all 1 ≤ j ≤ m. Then by Lemma

2.2, we obtain Bk+1
n | Bnm. Conversely, assume that Bk+1

n | Bnm. Then, α(Bk+1
n ) | nm.

Applying Lemma 2.5 gives us the desired result. Alternatively, to prove that Bk
n | m, we can

show that νp(B
k
n) ≤ νp(m) for all primes p dividing Bn. This method will appear again in the

proof of Theorem 3.5. If p = 2 and p | Bn, then we obtain, from the assumption Bk+1
n | Bnm,

that

0 ≤ ν2(Bnm)− ν2(B
k+1
n ) = ν2(nm)− (k + 1)ν2(n)

= ν2(n) + ν2(m)− (k + 1)ν2(n)

= ν2(m)− kν2(n) = ν2(m)− ν2(B
k
n),

which implies ν2(B
k
n) ≤ ν2(m). Similarly, if p 6= 2 and p | Bn, then

0 ≤ νp(Bnm)− νp(B
k+1
n ) = νp(nm) + νp(Bα(p))− (k + 1)(νp(n) + νp(Bα(p)))

= νp(m)− k(νp(n) + νp(Bα(p))) = νp(m)− νp(B
k
n),

which leads to νp(B
k
n) ≤ νp(m). Therefore, νp(B

k
n) ≤ νp(m) for all p dividing Bn, as required.

This completes the proof. �

Theorem 3.3. For all k ≥ 1 and m,n ≥ 2, we obtain Bk
n ‖ m if and only if Bk+1

n ‖ Bnm.

Proof. Assume that Bk
n ‖ m. Then, Bk

n | m. By Theorem 3.2, we obtain Bk+1
n | Bnm. So, to

prove that Bk+1
n ‖ Bnm, it is enough to show that Bk+2

n ∤ Bnm. Applying Theorem 3.2 again,
but replacing k by k + 1, we see that Bk+2

n | Bnm implies Bk+1
n | m, which contradicts the

assumption Bk
n ‖ m. So Bk+2

n ∤ Bnm, as required. For the converse part, suppose Bk+1
n ‖ Bnm.

So Bk+1
n | Bnm, and hence, Bk

n | m by Theorem 3.2. If Bk+1
n | m, then again, we would have

Bk+2
n | Bnm, contradicting Bk+1

n ‖ Bnm. Therefore, Bk+1
n ∤ m. Hence, Bk

n ‖ m and the proof
is complete. �

Theorem 3.4. Let m, r ≥ 1. If r is even, then C2
m ∤ Cmr. If r is odd, then

(i) C2
m | Cmr if and only if Cm | r.

(ii) C3
m | Cmr if and only if C2

m | r.

Proof. By the Binet formula, we get α2m = Cm +
√
8Bm and β2m = Cm −

√
8Bm. Hence,

proceeding in the same way as in Lemma 2.3, we obtain

Cmr =
(α2m)r + (β2m)r

2
=

1

2

r
∑

j=0

(

r

j

)

Cr−j
m Bj

m

√
8
j
(1 + (−1)j). (3.1)
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If j is odd, then 1 + (−1)j = 0. So, we consider (3.1) when j is even, say j = 2i. Then,

Cmr =

⌊ r

2
⌋

∑

i=0

(

r

2i

)

Cr−2i
m B2i

m8i. (3.2)

Now, it can be said that, except for the last term, all the terms on the right side of (3.2) are

divisible by C2
m. If r is even, then the last term is 8r/2Br

m and so, Cmr ≡ 8r/2Br
m (mod C2

m).
Because gcd(Cm, 2) = 1 = gcd(Cm, Bm), we obtain C2

m ∤ Cmr. Suppose r is odd. Then all
terms in (3.2), except the last term, are divisible by C3

m. Therefore,

Cmr ≡ rCmBr−1
m 8

r−1

2 (mod C3
m).

From this, we see that C3
m | Cmr ⇔ C2

m | r and C2
m | Cmr ⇔ Cm | r. �

By Theorem 3.4, it is natural to consider the divisibility of Cnm by Ck+1
n only when m is

odd, as shown in the next theorem.

Theorem 3.5. Suppose m,n ≥ 1 and m is odd. Then Ck
n | m if and only if Ck+1

n | Cnm.

Proof. Assume that Ck
n | m. By virtue of Lemma 2.4, Ck+1

n |
(m
j

)

Cj
n for 1 ≤ j ≤ m. So, if

we replace j by m − 2j, we have Ck+1
n |

(

m
m−2j

)

Cm−2j
n for 1 ≤ m − 2j ≤ m, which simplifies

to 0 ≤ j ≤ m−1
2 . Then, by virtue of Lemma 2.3, Ck+1

n | Cnm. Conversely, assume that

Ck+1
n | Cnm. To show that Ck

n | m, we prove that νp(C
k
n) ≤ νp(m) for every prime p dividing

Cn. Because Cn is odd, we consider only p | Cn and p ≥ 3. If α(p) | n, then we obtain, from

Lemmas 2.1 and 2.6, that νp(Cn) = νp

(

B2n

2Bn

)

= νp(B2n) − νp(2Bn) = νp(B2n) − νp(Bn) =

(νp(2n) + νp(Bα(p))) − (νp(n) + νp(Bα(p))) = 0, which is not the case. Similarly, if α(p) ∤ 2n,

then νp(Cn) = νp

(

B2n

2Bn

)

= 0, which is false. Therefore, α(p) | 2n and α(p) ∤ n. Thus,

νp(Cn) = νp

(

B2n

2Bn

)

= νp(B2n) = νp(n) + νp(Bα(p)). Now, because Ck+1
n | Cnm, we obtain

0 ≥ νp(C
k+1
n )− νp(Cnm) = νp(C

k
n) + νp(Cn)− νp(B2nm) + νp(Bnm)

= νp(C
k
n) + νp(Bnm) + νp(n) + νp(Bα(p))− νp(2mn)− νp(Bα(p))

= νp(C
k
n) + νp(Bnm)− νp(m) ≥ νp(C

k
n)− νp(m),

which implies νp(C
k
n) ≤ νp(m), as required. The proof is complete. �

Theorem 3.6. Suppose m,n ≥ 1 and m is odd. Then Ck
n ‖ m if and only if Ck+1

n ‖ Cnm.

Proof. Let Ck
n ‖ m. So, Ck

n | m and Ck+1
n ∤ m. By virtue of Theorem 3.5, Ck+1

n | Cnm.

The only thing left to prove is Ck+2
n ∤ Cnm. Now, by Lemma 2.4, we have Ck+2

n |
(

m
j

)

Cj
n for

3 ≤ j ≤ m, which can be rewritten as Ck+2
n |

( m
m−2j

)

Cm−2j
n for 0 ≤ j ≤ m−3

2 . Then, by virtue

of Lemma 2.3,

Cnm ≡ mCnB
m−1
n 8

m−1

2 (mod Ck+2
n ).

Now, we have

Ck+2
n | Cnm ⇔ Ck+1

n | m.

Because Ck+1
n ∤ m, we obtain Ck+2

n ∤ Cnm. Conversely, let Ck+1
n ‖ Cnm. Because Ck+1

n | Cnm,
we obtain, by Theorem 3.5, that Ck

n | m. If Ck+1
n | m, then we again apply Theorem 3.5 to

get Ck+2
n | Cnm, which contradicts the assumption Ck+1

n ‖ Cnm. Hence, Ck+1
n ∤ m, which gives

the desired result that Ck
n ‖ m. �
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Theorem 3.7. Let m and r be positive integers. If r is odd, then Cm ∤ Bmr. Suppose r is

even. Then, the following statements hold.

(i) Cm | Bmr.

(ii) C2
m | Bmr if and only if Cm | r.

(iii) C3
m | Bmr if and only if C2

m | r.
Proof. Proceeding in the similar manner as in Theorem 3.4, we obtain

Bmr =
(α2m)r − (β2m)r

4
√
2

=
1

4
√
2

r
∑

j=0

(

r

j

)

Cr−j
m Bj

m

√
8
j
(1− (−1)j)

=

⌊ r−1

2 ⌋
∑

i=0

(

r

2i+ 1

)

Cr−2i−1
m B2i+1

m 8i. (3.3)

Case 1. r is odd. Then, all terms except the last term in (3.3) are divisible by Cm. Therefore,

Bmr ≡ Br
m8

r−1

2 (mod Cm). Because Cm > 1 and gcd(Cm, Bm) = 1 = gcd(Cm, 8), we see that
Cm ∤ Bmr.
Case 2. r is even. Then, all terms except the last term in (3.3) are divisible by C3

m. The last
term corresponds to i = (r − 2)/2 and so

Bmr ≡ rCmBr−1
m 8

r−2

2 (mod C3
m). (3.4)

Because (3.4) also holds when mod C3
m is replaced by mod Cm and mod C2

m, we see that Cm

divides Bmr, C
2
m | Bmr ⇔ C2

m | rCm ⇔ Cm | r, and C3
m | Bmr ⇔ C3

m | rCm ⇔ C2
m | r. This

completes the proof. �

Because Cn ∤ Bnm, if m is odd, it is natural to extend Theorem 3.7 under the assumption
that m is even as follows.

Theorem 3.8. Suppose k, m, and n are positive integers and m is even. Then Ck
n | m if and

only if Ck+1
n | Bnm.

Proof. Let Ck
n | m. Then, by Lemma 2.4, we obtain Ck+1

n |
(m
j

)

Cj
n for all 1 ≤ j ≤ m and hence,

Ck+1
n |

(

m
m−2j−1

)

Cm−2j−1
n for every 0 ≤ j ≤ m−2

2 . So, by Lemma 2.3, Ck+1
n | Bmn. Conversely,

assume that Ck+1
n | Bnm. To show that Ck

n | m, we follow the proof of Theorem 3.5. So, let p
be an odd prime dividing Cn. As already shown in the proof of Theorem 3.5, we can assume
that α(p) | 2n and α(p) ∤ n. Then α(p) | nm, because m is even. Because Ck+1

n | Bnm, we
have

0 ≤ νp(Bnm)− νp(C
k+1
n ) = νp(n) + νp(m) + νp(Bα(p))− νp(Cn)− νp(C

k
n)

= νp(m)− νp(C
k
n),

which implies νp(C
k
n) ≤ νp(m). Therefore, Ck

n | m, as required. �

Theorem 3.9. Suppose k, m, and n are positive integers and m is even. Then Ck
n ‖ m if and

only if Ck+1
n ‖ Bnm.

Proof. Let Ck
n ‖ m. By Theorem 3.8, Ck+1

n | Bnm. If Ck+2
n | Bnm, we apply Theorem 3.8

again to obtain Ck+1
n | m, which contradicts the assumption Ck

n ‖ m. So, Ck+1
n ‖ Bnm. The

converse can be proved similarly. If Ck+1
n ‖ Bnm, we apply Theorem 3.8 twice to conclude

that Ck
n ‖ m. �
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